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SCALARIZATION AND CONVERGENCE IN UNIFIED SET OPTIMIZATION

KuausuBoo'* AND C.S. LALITHAZ?

Abstract. This paper deals with scalarization and stability aspects for a unified set optimization
problem. We provide characterization for a unified preference relation and the corresponding unified
minimal solution in terms of a generalized oriented distance function of the sup-inf type. We establish
continuity of a function associated with the generalized oriented distance function and provide an
existence result for the unified minimal solution. We establish Painlevé—Kuratowski convergence of
minimal solutions of a family of scalar problems to the minimal solutions of the unified set optimization
problem.
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1. INTRODUCTION

Set optimization has attracted a huge attention in last few decades due to numerous applications in variety
of fields, such as economics, finance, control theory, game theory, statistics and engineering, for details see [22]
and references therein.

Scalarization is one of the widely used techniques to study vector and set optimization problems in terms of
associated scalar problems. In this technique, minimal solutions of the given problem are usually characterized
in terms of minimal solutions of the associated parametric scalar problems. The scalarization technique includes
linear and nonlinear scalarization approaches; see [2,3,22,31]. The most commonly used nonlinear scalarizing
functions are Gerstewitz function [8] and oriented distance function [14] as they have nonconvex separation
properties as the key feature. One of the important features of the oriented distance function is that it is
appropriate even when the ordering set has empty interior.

Various extensions of oriented distance function in the study of set optimization have been considered in
literature [4,10,17-19,23,35]. Ha [10] introduced one such extension to define a Hausdorfl-type distance, which
was later used by Chen et al. [4] and Jiménez et al. [18] to derive scalar characterizations of certain set order
relations with respect to cone and the corresponding notions of minimal solutions. Characterizations of set
relations with respect to cone through various extensions of the oriented distance have been investigated in
[15,17,18].

Keywords. Unified set optimization, nonlinear scalarization, oriented distance function, semicontinuity, Painlevé—Kuratowski
convergence.
1 Department of Mathematics, University of Delhi, Delhi 110007, India.

2 Department of Mathematics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
*Corresponding author: thakurkhushboo4@gmail.com

© The authors. Published by EDP Sciences, ROADEF, SMAT 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://doi.org/10.1051/ro/2021169
https://www.rairo-ro.org
https://orcid.org/0000-0002-8513-8257
mailto:thakurkhushboo4@gmail.com
https://creativecommons.org/licenses/by/4.0

3604 KHUSHBOO AND C.S. LALITHA

Set optimization problem involves comparison of sets by means of set relations. A variety of set relations with
respect to convex cones and their applications in certain areas have been studied in the literature [22,23,25].
Attempts have been made in the past to study optimization problems in a unified setting by means of general
preference relations [6, 7,24, 32, 34]. For vector optimization problems, Rubinov and Gasimov [34] introduced
a unified preference relation based on a conic set. Flores-Bazén and Herndndez [6] and Flores-Bazén et al. [7]
introduced a unified notion of minimality with respect to a preference relation induced by a nonempty proper
set which was further extended to study scalarization scheme for set optimization problems in [24].

Apart from determining solutions of vector and set optimization problems, scalarization techniques have been
used to study stability aspects as well. Stability theory deals with the investigation of the behaviour of solution
sets of the perturbed problems where perturbations are on the feasible set, objective function or ordering set.
One of the stability aspects studied in the literature is in terms of convergence of solution sets (see [9,21]). In
order to study stability wvia scalarization the associated scalarized problem is perturbed instead of the original
problem and then the convergence of solution sets of perturbed scalarized problems to the solution set of the
given problem is established. In vector case, a lot of work has been done in this direction (see [20,30] and
references therein). Moreover, in case of set optimization, the study of stability on the ground of scalarization
techniques is not much advanced. Recently, Liu et al. [33] introduced monotonicity properties of set-valued map
via scalarizations and investigated the stability aspect in terms of continuity.

Continuity and convexity of the scalarizing functions play an important role in establishing existence and
stability results. Han and Huang [12] established the continuity and convexity of a generalized Gerstewitz
function, whereas Kuwano and Tanaka [28] established the continuity of a set-valued map using the continuity
of the nonlinear scalarizing function considered in [27]. Recently, Huerga et al. [15] investigated the continuity and
convexity of six types of scalarizing functions based on the oriented distance function. Scalarization techniques
have been used to study properties of continuity of set-valued maps in [16,29].

In this paper, we study scalaraization using oriented distance function and stability results for a unified set
optimization problem. We define a unified notion of minimal solutions with respect to a preference set relation
considered in [24]. Using a generalized oriented distance function of sup-inf type, which extends a scalarizing
function considered in [15], we establish scalar characterizations of preference set relation and minimal solutions.
The set of minimal solutions is characterized as the union of minimal solutions of a family of parametric scalar
problems where the objective function is given in terms of the generalized oriented distance function. We also
investigate the continuity of a map associated with the generalized oriented distance function which leads to
the existence result of unified minimal solutions as well as for the minimal solutions considered in [24]. We
also observe that the existence result in this paper is different from the one established in [24]. The complete
characterization of minimal solutions and the continuity of the associated map are further used to study stability
results in terms of convergence of solution sets. We establish the lower and upper convergence of the minimal
solution sets of a sequence of perturbed scalarized problems, obtained by perturbing the feasible set, to the
set of minimal solutions of the unified set optimization problem in Painlevé-Kuratowski sense. Although, the
notion considered in this paper is stronger than the notion of minimal solution considered in [24], it enables us
to study scalarizations and convergence aspects of some well-known notions of minimal solution sets which can
not be determined by means of scalarization established in [24]. Also, by means of examples we demonstrate
that the scalarization results established in this paper extend the scalarization results of [18] with alternative
assumptions.

The organization of the paper is as follows. In Section 2, we recall some basic notions and results to be used
in the sequel. In Section 3, we introduce a unified notion of minimal solutions and study characterizations of
preference set relation and minimal solutions in terms of generalized oriented distance function. We also deal
with complete scalarizations for minimal solution sets in terms of minimal solutions of a family of parametric
scalar problems. Section 4 deals with the continuity of the function associated with oriented distance function
and Section 5 deals with the lower and upper convergence of minimal solution sets in Painlevé-Kuratowski
sense. Section 6 provides some concluding remarks.
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FIGURE 1. Set inducing quasi order relation.

2. PRELIMINARIES

Let Y be a real normed linear space and P(Y") denote the set of all nonempty subsets of Y. For aset A € P(Y)
we denote the interior, closure, boundary and complement of A by intA, clA, 0A and A€, respectively.
From [24] we consider the lower set preference relation <4 in P(Y’) induced by a nonempty proper subset S
of Y. For A,B e P(Y)
A<k B «— BCA-S.

This preference relation unifies some of the set relations studied in literature (see [24], Rem. 3.1). Also, it can
be seen that this preference relation is reflexive if Oy € S and transitive if S + S C S. Preference relation
induced by a convex cone is a quasi order relation, that is, it is both reflexive and transitive. Observe that the
preference relation induced by S = NU {0} in P(R), where N is the set of natural numbers, is a quasi order
relation. Another example of a quasi order relation in P(R?) is the one induced by S = {(y1,y2) € R? : yp >
ly11} U {(y1,92) € R? : yo > 1}, as shown in Figure 1.

Motivated by a unified solution concept considered by Flores-Bazén et al. [7], a preference relation <g is
given in [24] for elements of Y. For a,b € Y,

a=<gb << a—-beb.

Clearly, the preference relation jls in P(Y) is an extension of the preference relation <g in Y. Also, we recall
from [24] that for a set A € P(Y) an element a € A is said to be an S-minimal point of A if there does not
exist any a € A\{a}, such that a <g a. We denote the set of S-minimal points of A by Es(A).

We now recall continuity notions for a set-valued map from Khan et al. [22]. For convenience, we propose to
use the term semicontinuity in place of continuity.

Definition 2.1. Let X and Y be real normed linear spaces and T € X. A set-valued map F' : X =3 Y is said
to be

(1) ([22], Def. 3.1.1(a)) upper semicontinuous at Z if for any open set V' C Y with F(Z) C V there exists a
neighborhood U of Z such that F(u) C V, for all u € U.

(i) ([22], Def. 3.1.1(b)) lower semicontinuous at T if for any open set V C 'Y with F(Z) NV # 0 there exists a
neighborhood U of Z such that F(u) NV # 0, for all u € U.

The set-valued map F' is upper (resp. lower) semicontinuous on a set  C X if it is upper (resp. lower)
semicontinuous at every x € Q.
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We next recall sequential characterizations of upper and lower semicontinuity of the set-valued map F'.

Lemma 2.2 ([22]). Let X and Y be real normed linear spaces, F: X =Y and T € X.

(i) ([22], Prop. 3.1.9). If F(Z) is compact, then F is upper semicontinuous at T iff for any sequences (T )nen C
X with x, — T and (Yn)nen with y, € F(x,), there exist a subsequence (Yn, )ken Of (Yn)nen and § € F(T)
such that y,, — 7.

(i) ([22], Prop. 3.1.6(iv)). F is lower semicontinuous at T iff for any sequence (xp)neny € X with x, — T and
g € F(T) there exists a sequence (Yn)nen with y, € F(xy,) for sufficiently large n such that y, — .

The distance of a point y € Y from a set A C Y is defined as d(y, A) := inf,c4 ||y — a| . From [14] we recall
that, the oriented distance function with respect to the set A is a function A4 : Y — R U {£oo} defined as

Aa(y) :=d(y, A) —d(y,A°).

Clearly, Ainta = Aa = Aga if A is convex set with nonempty interior (see [22], Page 233). Also, Ag(y) = +o0
and Ay (y) = —oo, for all y € Y.
We now state the nonconvex separation properties from Zaffaroni [36].

Proposition 2.3 ([36], Prop. 3.2). For S € P(Y), S #Y, the following assertions hold:

(i) Ag is real-valued and Lipschitzian with rank 1.
(ii) Ag(y) < 0 for every y € intS, Ag(y) =0 for every y € S and Ag(y) > 0 for everyy € intS°.

3. SCALAR CHARACTERIZATIONS OF PREFERENCE RELATION AND MINIMAL SOLUTIONS

Using oriented distance function, Chen et al. [4] derived characterizations of set order relations induced by a
closed convex pointed cone. In this section, we first provide scalar characterizations of the preference set relation
using oriented distance function.

In the following theorem the proof of the first part follows on the lines of Proposition 3.8 in [4] and second
part follows from Theorem 4.11 in [18].

Theorem 3.1. (i) If A, B € P(Y), then

A=< B = supinf Ag(a—b) <0.
beB acA

If S is closed and inf,c aAg(a —b) is attained for each b € B, then

sup inf Ag(a—b) <0 = A<L B
beBacA

(ii) If intS # 0 and A, B € P(Y), then

A=<l ¢ B — iggAS(a—b)<O, for each b € B.
a

—int
The following example shows that the reverse implication fails to hold in the absence of either of the assump-
tions of the first part.

Example 3.2. Let Y = R?2, A = (—1,0) x (—1,0) a = {(0,0)}. If S is as in Figure 1, then S is closed
but inf,esAg(a — b) = 0 is not attained for b = ( 0) € B. If we replace A by [-1 O] [-1,0] and S
by intS, then inf,caAg(a —b) = 0 is attained at a = (0,0) but S is not closed. In either case, we have
suppepinfaeaAg(a — b) = infaealAg(a) =0 but B A—S.
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Remark 3.3. If S = —K, where K is a closed convex proper pointed cone, then Theorem 3.1(i) reduces to
Proposition 3.8 of [4]. Also, the same characterization has been established in Theorem 4.1 of [18] for the case
when the set S = —K, K being a proper convex cone, under the assumption that A is K-closed, that is, the set

A+ K is closed.
We now consider the following set optimization problem:

(P) S-Minimize F(z)
subject to x € M,

where F': X =2 Y is a set-valued map, X is a real normed linear space and M is a nonempty subset of X.
With the help of the preference relation jls a notion of S-l-minimal solution was introduced in Defini-
tion 5.1 of [24] for a set optimization problem. We recall that an element Z € M is said to be an S-I-minimal
solution of (P) if
F(z) <5 F(z), z € X = F(z) <5 F(2).

We next propose a stronger notion of minimal solutions, namely S-l-minimizers.

Definition 3.4. An element z € M is said to be an S-I-minimizer of (P), if there does not exist any = € M\{z}
such that F(z) <4 F(z).

Clearly, every S-l-minimizer is an S-l-minimal solution. We denote the set of S-I-minimizers of (P) by
S-1-Mzer. If the set-valued map F : R = R? is defined as

F(z) =1[0,]z|] x [0, |z]], forallz € R,
M =10,1] and S is as in Figure 1, then it can be seen that S-I-Mzer = {1}.

Remark 3.5. The notion S-l-minimizer unifies several existing notions of minimal and approximate minimal
solutions available in the literature. From Lemma 3.1 of [24] we observe that if 0y € 5S¢, S+ 5 C S, and
Eg(F(u)) # 0 for each w € M, then the notion of S-I-minimizer coincides with the notion of S-I-minimal
solution. Further, if S = —K, where K is a proper convex cone, then we have the notion of strict [-minimal
solutions considered in Definition 5.1(iii) of [18]. Also, for € > 0 and e € —intK,, if we choose S = —ee — int kK,
then the set S-I-Mzer reduces to the set of approximate weak [-minimal solutions considered in Definition 4.1
of [5]. Moreover, for S = —intK if F' is K-proper, that is, F'(u) + K # Y, for each u € M, and K-closed valued,
then the notion of S-I-minimizer reduces to the notion of weak [-minimal solutions considered in [37], Page 3770.

We next establish that the set of S-l-minimizers is closed under the upper semicontinuity assumption on F.
Theorem 3.6. If S is open and F' is upper semicontinuous and compact-valued on M, then S-I-Mzer is closed.

Proof. Let (25,)nen C S-I-Mzer be such that x,, — Z. Suppose on the contrary T ¢ S-I-Mzer. Then, there exists
x € M\{Zz} such that

F(z) C F(x) - S. (3.1)

Since x,, € S-I-Mzer it follows that there exists y, € F(x,) such that
yn ¢ F(z) - 5. (3.2
By Lemma 2.2(i) there exist § € F'(Z) and a subsequence (yn, )keny Of (Yn)nen such that y,, — . Since S is
open, therefore from (3.2) we have § ¢ F(z) — .S which contradicts (3.1). O

Remark 3.7. In view of Remark 3.5, the above theorem provides the closedness of the set of weak [-minimal
solutions for S = —int K. However, Han and Huang ([11], Prop. 2.3) required an additional assumption that the
feasible set is closed, to establish the same result.
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The following example justifies that the above theorem may not hold in the absence of upper semicontinuity
of F.

Example 3.8. Let F': R = R? be defined as

0,6):0<t<1}, if z>0,
F(x)_{g,g)}, } ifxzo,

M = (—1,1) and S = {(y1,%2) € R? : y5 > y?}. Clearly, F is not upper semicontinuous on M and S-I-Mzer =
(—1,0].

The following characterizations for S-I-minimizers of (P) easily follow from Theorem 3.1.
Theorem 3.9. For & € M, the following assertions hold:

(i) For each x € M\{z}, let inf,cp,)As(y — ) be attained for every y € F(z). If S is closed, then T is an
S-l-minimizer if and only if

g € F(Z)sup 125 )AS (y—g) >0, forallz € M\{z}.
yel(x

(ii) If S is open, then T is an S-l-minimizer if and only if for all x € M\{Z}

inf Ag(y —g) >0, for some j € F(Z).
yEF(2)

We next characterize S-I-minimzers in terms of minimal solutions of a family of parametric scalar problems.
In this regard, we first define an oriented distance map D : P(Y) x P(Y) — RU {£o0} as

D(A, B) :=sup inf Ag(a — D).
beB a€A

Clearly, D is finite-valued if the sets A and B are compact. The function D was introduced by Ha [10] in which
they considered —K instead of S where K being a proper closed convex pointed cone. This function has also
been considered in [4,15,17-19].

The parametric scalar minimization problem associated with v € M is

(P(w)) Minimize D(F(x), F(u))
subject to x € M.

We denote the set of minimal (resp. strict minimal) solutions of (P(u)) by argminP(u) (resp. st argminP(u)),
that is,

argminP (u) =

8l
m
<
9
!
O

,F(u)) < D(F(x), F(u)), for allz € M}

zeM:D(F(z),F(u)) < D(F(x), F(u)), for all z € M\ {z}}).

I

(resp. st argminP (u) =

The next lemma gives a monotonic implication in terms of the scalar map D.

Lemma 3.10. If S+ S C S and A, B,C € P(Y), then the following assertions hold:

() A<, B = D(4,C) < D(B,C).
(ii) If S is open and, B and C are compact sets, then

A=L B = D(AC)<D(B,0).



SCALARIZATION AND CONVERGENCE IN UNIFIED SET OPTIMIZATION 3609

Proof. We only prove (ii) as the proof of (i) follows on similar lines. Let A <5 B and b € B. Then, there exists
a’ € Asuch that b—a’ € —S. As S+ S5 C S we have b — S C a’ — S. Clearly, for any ¢ € C' we have

d(c,a’ — S) <d(c,b—S) and d(c, (b— S)°) < d(c,(a' — 9)°)
with at least one of the inequality being strict as S is open. Hence,

iggAS(a —c¢) < Agla' —¢) < Ag(b—c).

Since B is compact and the above inequality holds for each b € B we have

inf Ag(a — inf Ag(b—
spste =) < jpp fslb =0

which implies that inf,c 4Ags(a—c) < D(B, C). As Ag is continuous therefore the function g(c) := inf,c 4 Ag(a—
¢) is upper semicontinuous and hence, the compactness of C' implies that D(A,C) < D(B, C). |

Remark 3.11. The following example shows that the compactness assumption of the sets cannot be relaxed
in Lemma 3.10(ii).

Example 3.12. Let Y = R? and S be the interior of the set in Figure 1. If A = B = (—1,0) x (—1,0) and
C = {(0,0)}, then A <5 B and D(4,C) = D(B,C) = 0. However, if A = [-1,0] x [-1,0], B = {(—1,—1)} and
C =R2, then A <L B and D(A,C) = D(B,C) = +oo.

The following lemma will be used in the sequel.
Lemma 3.13. For A€ P(Y), if Oy € clS and Eg(A) # 0, then D(A, A) = 0.

Proof. Let a € A, hence inf,caAg(a—a) < Ag(0y). As Oy € clS we obtain inf,c4Ag (e —a) < 0 which
further implies that D(A, A) < 0.

Let 6 € Eg(A), then a —a € S° for every a € A\ {a}. This implies that inf,caAg (a —a) =0 as 0y € clS
and thus D(A, A) = supzcsinfacalg (@ —a) > infocaAg (e —a) = 0. O

The following example shows that the lemma may fail to hold in the absence of either of the assumptions.

Example 3.14. Let Y = R? and 4 = {(y,0) : 0 <y < 1}. If S = {(y1,92) € R% : yo > 1}, then Oy ¢ clS.
However, Eg(A) = A and D(A,A) = 1. If S = {(y1,y2) € R? : yo > —1}, then Oy € clS but Eg(A) = () and
D(AA) = —1.

Remark 3.15. (i) Ha ([10], Lem. 3.4(ii)) proved that D(A, A) = 0, for S = —K where K is a closed convex
pointed cone, provided either int K = () or E_x(A) # 0.

(ii) Assuming K to be a proper convex cone, Jiménez et al. ([18], Prop. 3.15) proved that D(A, A) =0, if A is
K-proper, that is, A+ K # Y. Now, if we consider A = {(y1,y2) € R? : 0 < y; < 1}\{(y1,%2) € R?: 0 <
y1 < 1,y2 =0} and K = {(y1,y2) € R? : yo = 0}, then A is not K-proper whereas E(_x)(A) = {(0,0)} is
nonempty. Evidently, D(A, A) = 0.

(iii) It may further be noted that Proposition 3.15 of [18] cannot be extended assuming A to be S-proper, that
is, A— S #Y and thus results of [18] cannot be extended for arbitrary set. For instance in Example 3.14,
for S = {(y1,y2) € R? 1 yo > —1}, the set A— S #Y but D(4,4) = —1.

In the next theorem, we characterize an S-I-minimizer of (P) in terms of a strict minimal (resp. minimal) solu-
tion of a parametric scalar problem provided S is a closed (resp. open) set in P(Y'). As a consequence we obtain
complete characterizations of the set of S-I-minimizers of (P). Using Theorem 3.9, Lemmas 3.10 and 3.13, the
proof of the first and the second part of the following theorem easily follows on the lines of Theorems 5.6 and 5.7
in [18], respectively.
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Theorem 3.16. Let & € M, Oy € clS and Eg (F(Z)) # 0. Then, the following assertions hold:
(i) For each x € M\{z}, if inf c p(»)As (y — §) is attained for every y € F (z) and S is closed, then
z € S-I-Mzer <= I € st argminP(Z).
(ii) If S is open, S+ S C S and F(Z) is compact, then
T € S-I-Mzer <= Z € argminP(Z).

Remark 3.17. (i) Jiménez et al. ([18], Thm. 5.6) established Theorem 3.16(i) under the assumptions of K-
closedness and K-properness.

(ii) It is known that E(_inx)(A) # 0 for any compact set A CY (see [11], Rem. 2.5), where K is closed convex
pointed solid cone. However, Eg(A) may be empty for a compact set with respect to an arbitrary set S. For
instance, if S = {(y1,92) € R? : yo > 0} and A = [0, 1] x [0,1], then Eg(A) = 0. Hence, the nonemptiness
of Eg(F(z)) in Theorem 3.16(ii) can not be relaxed even though F(Z) is compact.

We now present complete scalarizations of the set of S-I-minimizers.

Theorem 3.18. Let Oy € clS, S+ S C S and Es(F(z)) # 0, for every x € M. Then, the following assertions
hold:

(i) For each x € M\{z}, if inf c p(»)As(y — @) is attained for every j € F(Z) and S is closed, then

S-1-Mzer = U st argminP (u).
ueM

(ii) If S is open and F' is compact-valued on M, then

S-I-Mzer = U argminP (u).
ueM

Proof. (i) From Theorem 3.16(i) we have S-I-Mzer C J,c st argminP(u). Let Z € st argminP(u) for some
u € M and z € M\{z} be such that F(z) <} F(z). Using Lemma 3.10(i) we get D(F(z), F(u)) < D(F(z), F(u))
which contradicts the fact that Z € st argminP (u).

(ii) Proof follows on similar lines using Theorem 3.16(ii) and Lemma 3.10(ii).

We now give an example to illustrate the above theorem.

Example 3.19. Let X =R, Y =R? M = [0,1]. Define F : X =Y as

{(0,1)}, if =<0,
F(z)=<¢ {(t,0):teR}, if 0<z<1,
{(1,1)}, if > 1.

If S is as in Figure 1, then all the conditions of Theorem 3.18(i) hold and S-I-Mzer = {0,1}. The parametric
scalar functions corresponding to the problem (P(0)), (P(1)) and (P(u)) for 0 < w < 1, respectively, are as
follows:

0, if z <0,
1 if 0<x <1,

b
1 .
5 if x>1,

D(F(x), F(0)) =
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%, if =<0,
D(F(z),F(1))=<1, if0<z<]l,
0, if x>1,

D(F(z), F(u)) =0, for allz € X.

Therefore, st argminP(0) = {0}, st argminP(1) = {1} and st argminP(u) = @ for 0 < u < 1 and hence, S-I-Mzer
= Uucarst argminP (u).

4. CONTINUITY OF A SCALAR MAP ASSOCIATED WITH ORIENTED DISTANCE MAP

Han and Huang [12] investigated continuity and convexity properties of an extended Gerstewitz function
considered in [13]. Using these properties they established the lower and upper semicontinuity of the strong
approximate solution map for a parametric set optimization problem. Inspired by their work, in this section we
establish the continuity of the nonlinear scalar function D which leads to an existence result for S-I-minimizers.
For this purpose we associate a map © : X x X — R U {£oo} with the map D, defined as

O(z,u) :== D(F(z), F'(u)).
Theorem 4.1. If F' is continuous and compact-valued on X, then © is continuous on X x X.

Proof. To establish the lower semicontinuity of ©, where ©(x, u) = sup, ¢ p(,)infyc r(2)As(y—v), we need to show
that L, (0©) := {(z,u) € X x X : O(z,u) < a} is closed for each o € R. For a fixed a € R, let ((zy,un)),cn €
L.(0©) be such that (zy,u,) — (Z,a). Let v € F(a). Since u,, — 4 and F is lower semicontinuous at 4, there
exists a sequence (v, )nen With v, € F(u,) for sufficiently large n such that v, — 0. As © (x,, u,) < « it follows

that infycpey,)As (¥ —vn) < a, for each n € N. Now, F(z,) is compact so there exists y, € F(x,) such that
AS(yn - Un) < a, (41)

for each n € N. Since F is upper semicontinuous at Z therefore by Lemma 2.2(i) there exist a subsequence
(Uni)ken Of (Yn)nen and y € F(T) such that y,, — 3. By Proposition 2.3(i) we know Ag is continuous and
hence, from (4.1) we get
inf Ag(y—17)<As(y—7) <o
yEF(2)

As the above inequality holds for any v € F/(u) it yields sup,¢ p(z)inf e r(z)As(y—v) < a, that is, (7, u) € La(©).

We next prove the wupper semicontinuity of the map O, that 1is, the set U,(©) :=
{(z,u) € X x X : O(z,u) > a} is closed for each o € R. For a fixed a € R, let ((zn,un)),eny € Ua(©)
be such that (x,,u,) — (Z,a). Let § € F(Z). By the lower semicontinuity of F at Z, there exists a
sequence (Yn)neny with y, € F(z,) for sufficiently large n such that y, — ¢. Since O (z,,u,) > «,
g(v) = infyep,)As(y — v) is upper semicontinuous and F' is compact-valued it follows that there exists
Un € F(uy) such that inf,cp,)As(y —vn) > «, for each n € N. Hence, we have

As(yn — vp) > a, (4.2)

for each n € N. Again by the upper semicontinuity of F' at @ there exist a subsequence (vn, )ren Of (Vn)nen
and o € F(a) such that v,, — ©. Thus from (4.2) we have Ag(y — ) > « which further implies that
(Z,u) € Uy(O). O

Remark 4.2. We observe that the above theorem extends Corollary 1 of [15] for S = — K, where K is a proper
closed convex cone. However, the proof follows on different lines using cone upper and lower semicontinuity
notions.

The following is an outcome of the above theorem and establishes the continuity of the objective function of
the parametric scalar problem.
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Corollary 4.3. If F' is continuous and compact-valued on M and uw € M, then O(.,u) is continuous on M.

In view of Corollary 4.3 it is clear that the problem (P(u)) has a minimal solution if M is compact. Hence
using Theorem 3.18(ii) we have the following existence theorem for S-Il-minimizers.

Theorem 4.4. Let Oy € clS, S+ S C S and Es(F(z)) # 0 for every x € M. If S is open, M is compact and
F is continuous and compact-valued on M, then S-1-Mzer # ().

Remark 4.5. (i) In view of Remark 3.5, if F' is continuous and compact-valued on M and M is compact, then

there exists a weak [-minimal solution of (P).

(ii) As every S-l-minimizer is an S-I-minimal solution of (P) therefore the above theorem provides an existence
theorem for S-I-minimal solutions as well where the preference relation jfg need not be quasi order. However,
the existence theorem of S-l-minimal solutions established in Theorem 5.1 of [24] is applicable only when
jfg quasi order.

5. STABILITY via SCALARIZATION

In this section, we discuss the convergence of minimal solution sets by virtue of scalarization. By employing
scalarization results and continuity of the map associated with oriented distance map, we establish the upper
and lower Painlevé-Kuratowski set convergence of the sequence of minimal solution sets of parametric scalarized
problems to the set of S-I-minimizers of (P).

From [22] we recall the notion of Painlevé—Kuratowski convergence for a sequence of sets in X. The sequence
(Q)neny € X is said converge to the set Q C X in the Painlevé—Kuratowski sense, if Ls(Q,) C Q C Li(Q,),
where

Ls () ={r e X :3x,, —zwithz,, € Q,},
Li(Q,) :={z € X : Jz, — x with z,, € Q,, for n sufficiently large} .

The inclusion Ls(€2,,) C Q (resp. Q C Li(2,)) is referred to as upper (resp. lower) part of Painlevé—Kuratowski
convergence, denoted by €, - Q (resp. Qp, S Q). Clearly, Li(£2,) C Ls(,).

We next recall from [26] that a sequence (£,)nen of subsets of X upper converges to a set  C X in the
Hausdorff sense, if (,,Q) — 0, where e(£2,,Q) := sup,cq, d(z,§2). We denote this convergence by (2, La.
From Corollary 2.1 in [21] it is known that if Q is a closed set and €, L Q, then Q, Ka.

The following lemma will be used in the sequel to establish the Painlevé-Kuratowski set convergence.

Lemma 5.1 ([1], Lem. 3.3). If Q, K Q, where (Uy)nen is a sequence of nonempty subsets of X and Q is a
nonempty compact set in X, then for any sequence (x,)nen with x,, € Q,, there exists a subsequence (T, )rken
of (xp)nen and x € Q such that x,,, — x.

We consider the following family of parametric scalar optimization problems by perturbing the feasible set
of the scalar problem (P(u)). We consider the problem (P, (u)) for each n € N, where M,, C X is a nonempty
set and u € M, as follows

(Pr(u)) Minimize D(F(z), F(u))
subject to =z € M,.
We denote the set of minimal solutions of (P, (u)) by argminP,, (u).

We now establish the lower part of convergence of the set of minimal solutions of the perturbed problem
(P,(w)) to the set of minimal solutions of (P(u)).
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Theorem 5.2. If the following conditions hold:

(a) M, = M,
(b) F is continuous and compact-valued on X,
(¢c) M, M and M s compact,

then U, ¢y, argminP,, (u) S Uuearst argminP (u).
Proof. Let x € |J, 5t argminP (u), which implies that = € st argminP (), for some @ € M, that is,

D(F(z),F(u)) <D(F(x), F (), (5.1)

for all x € M. Since M,, K M there exist sequences (Z, )nen and (@p)nen with Z,, @, € M, such that Z, — T
and u, — u. We claim that for sufficiently large n

D (F(zn), F (un)) < D (F(x), F (4n)) -
for all x € M,,. On the contrary, let there exists a subsequence (ny)ren and &, € M,, such that

D(F(Zn,), F(uny,)) < D(F(Zn,), F(tn,))- (5-2)

Since M, B0 and M s compact, therefore by Lemma 5.1 there exists a subsequence (@nkl)leN of (&n,, )ken
and & € M such that &, — &. Taking limit along the subsequences in (5.2) and using Theorem 4.1 we have

D(F(2), F(u)) < D(F(z), F(u))
which contradicts (5.1). O

The next theorem establishes the upper part of convergence of the set of minimal solutions of the perturbed
problem (P, (u)) to the set of minimal solutions of (P(u)).

Theorem 5.3. If the conditions (a)—(c) of Theorem 5.2 hold, then

U argminP , (u) K U argminP (u).
u€ My, ueM

Proof. Let Z € Ls(U,ey, argminP, (u)). Then, there exist a subsequence (ZIn,)ycy With Z,, €
UueMnk argminP,, (u) such that z,, — . Let ,, € argminP, (u,,) for some u,, € M,,. As u,, € M,,

and My, LN M, hence by Lemma 5.1 there exists a subsequence (unkl>l€N of (tn, )y and @ € M such that

Upy, — U It is sufficient to show that z € argminP(@). Let x € M. As M, K M there exists a sequence (T, )nen
with x,, € M,, such that x,, — x. As Tp,, € argminPnkl (unkl) we have

B (r (1) # () 22 (). o))
By Theorem 4.1 it follows that D (F(z), F(a)) < D (F(z), F(a)) and hence, T € argminP(a). O

Finally using Theorem 3.18, 5.2 and 5.3 we have the following conclusion.

Theorem 5.4. Let Oy € clS and S+ S5 C S. Let Es(F(u)) # 0 for each w € M and the conditions (a)-(c) of
Theorem 5.2 hold. Then, the following assertions hold:
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(i) If S is closed, then

U argminP, (u) K S-1-Mzer.
u€ My,

(ii) If S is open, then

U argminP, (u) K S-1-Mzer.
ueM,,

Remark 5.5. From Remark 2.5 of [11], we have F_k(A) and E_;,;x(A) are nonempty for any compact set
A € P(Y) and hence, the following holds immediately from the above theorem and Remark 3.5.

Corollary 5.6. Let K be a closed convex pointed cone with nonempty interior. If the conditions (a)—(c) of
Theorem 5.2 hold, then

(1) Uuen, argminP,, (u) K 1-SMin.
(i) Uyenr, argminP,, (u) K - WhMzer.

It may be observed that if F' is a single-valued map, then the notion of S-I-minimizer reduces to the notion of
S-minimal solution considered in [7]. We denote the set of S-minimal solutions of (P) by S-Min. The following
corollary is an consequence of Theorem 5.4.

Corollary 5.7. Let Oy € clS and S+ S C S. If the conditions (a)-(c) of Theorem 5.2 hold, then

(1) Uuen, argminP,, (u) X S-Min, provided S is closed.
(i) Uyenr, argminP,, (u) K S-Min, provided S is open.

Remark 5.8. Shiva and Lalitha ([20], Thm. 5.6) gave a similar result for a unified notion of minimal solution
using Gerstewitz scalarizing function.

6. CONCLUSIONS

This paper focused on the study of scalarization using an oriented distance function of sup-inf type and
stability in Painlevé—Kuratowski convergence sense for a unified set optimization problem. A unified notion of
minimal solutions is characterized in terms of minimal solutions of a parametric scalar problem with objective
function as the generalized oriented distance function. Further, the continuity of a map associated with the
generalized oriented distance function led to an existence result for the unified minimal solutions as well as
for the minimal solutions considered in [24]. We further established the lower and upper part of Painlevé-
Kuratowski convergence of the sequence of minimal solution sets of perturbed scalarized problems to the set of
minimal solutions of the given set optimization problem. It would be interesting to investigate the convexity and
other properties of the scalarizing function to explore existence results as well as convexity and connectedness
of the minimal solution set.
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