On the derivative-free quasi-Newton-type algorithm for separable systems of nonlinear equations
RAIRO. Operations Research, Tome 55 (2021) no. 6, pp. 3293-3316

A derivative-free quasi-Newton-type algorithm in which its search direction is a product of a positive definite diagonal matrix and a residual vector is presented. The algorithm is simple to implement and has the ability to solve large-scale nonlinear systems of equations with separable functions. The diagonal matrix is simply obtained in a quasi-Newton manner at each iteration. Under some suitable conditions, the global and R-linear convergence result of the algorithm are presented. Numerical test on some benchmark separable nonlinear equations problems reveal the robustness and efficiency of the algorithm.

DOI : 10.1051/ro/2021154
Classification : 65K05, 65H10, 90C30, 90C53
Keywords: Separable nonlinear equations, derivative-free methods, quasi-Newton-type methods, convergence, numerical experiments
@article{RO_2021__55_6_3293_0,
     author = {Mohammad, Hassan and Muhammed Awwal, Aliyu and Bala Abubakar, Auwal and Salihu Ben Musa, Ahmad},
     title = {On the derivative-free {quasi-Newton-type} algorithm for separable systems of nonlinear equations},
     journal = {RAIRO. Operations Research},
     pages = {3293--3316},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/ro/2021154},
     mrnumber = {4338793},
     zbl = {1483.65079},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021154/}
}
TY  - JOUR
AU  - Mohammad, Hassan
AU  - Muhammed Awwal, Aliyu
AU  - Bala Abubakar, Auwal
AU  - Salihu Ben Musa, Ahmad
TI  - On the derivative-free quasi-Newton-type algorithm for separable systems of nonlinear equations
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 3293
EP  - 3316
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021154/
DO  - 10.1051/ro/2021154
LA  - en
ID  - RO_2021__55_6_3293_0
ER  - 
%0 Journal Article
%A Mohammad, Hassan
%A Muhammed Awwal, Aliyu
%A Bala Abubakar, Auwal
%A Salihu Ben Musa, Ahmad
%T On the derivative-free quasi-Newton-type algorithm for separable systems of nonlinear equations
%J RAIRO. Operations Research
%D 2021
%P 3293-3316
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021154/
%R 10.1051/ro/2021154
%G en
%F RO_2021__55_6_3293_0
Mohammad, Hassan; Muhammed Awwal, Aliyu; Bala Abubakar, Auwal; Salihu Ben Musa, Ahmad. On the derivative-free quasi-Newton-type algorithm for separable systems of nonlinear equations. RAIRO. Operations Research, Tome 55 (2021) no. 6, pp. 3293-3316. doi: 10.1051/ro/2021154

[1] Y. Bing and G. Lin, An Efficient Implementation of Merrill’s Method for Sparse or Partially Separable Systems of Nonlinear Equations. SIAM J. Optim. 1 (1991) 206–221. | MR | Zbl | DOI

[2] S. Deng and Z. Wan, A diagonal quasi-newton spectral conjugate gradient algorithm for nonconvex unconstrained optimization problems. In: Proceedings of the 5th International Conference on Optimization and Control with Applications. Curtin University (2012) 305–310.

[3] J. E. Dennis and J. J. Moré, A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28 (1974) 549–560. | MR | Zbl | DOI

[4] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. | MR | Zbl | DOI

[5] M. A. Gomes-Ruggiero, J. M. Martínez and A. C. Moretti, Comparing algorithms for solving sparse nonlinear systems of equations. SIAM J. Sci. Statist. Comput. 13 (1992) 459–483. | MR | Zbl | DOI

[6] A. Griewank and Ph. L. Toint, Local convergence analysis for partitioned quasi-newton updates. Numer. Math. 39 (1982) 429–448. | MR | Zbl | DOI

[7] A. Griewank and Ph. L. Toint, On the unconstrained optimization of partially separable functions, in Nonlinear Optimization 1981., Academic press (1982) 301–312. | MR | Zbl

[8] A. Griewank and Ph. L. Toint, Partitioned variable metric updates for large structured optimization problems. Numer. Math. 39 (1982) 119–137. | MR | Zbl | DOI

[9] C. T. Kelley, A comparison of iteration schemes for chandrasekhar H -equations in multigroup neutron transport. J. Math. Phys. 21 (1980) 408–409. | MR | Zbl | DOI

[10] N. Krejiść, Z. Lužanin and I. Radeka, Newton-like method for nonlinear banded block diagonal system. Appl. Math. Comput. 189 (2007) 1705–1711. | MR | Zbl

[11] W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18 (2003) 583–599. | MR | Zbl | DOI

[12] W. La Cruz, J. M. Martínez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems: theory and experiments. Citeseer , Technical Report RT-04-08 (https://www.ime.unicamp.br/~martinez/lmrreport.pdf) (2004).

[13] W. La Cruz, J. Martínez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75 (2006) 1429–1448. | MR | Zbl | DOI

[14] W. J. Leong, M. A. Hassan and M. W. Yusuf, A matrix-free quasi-Newton method for solving large-scale nonlinear systems. Comput. Math. with Appl. 62 (2011) 2354–2363. | MR | Zbl | DOI

[15] D. Li and M. Fukushima, A globally and superlinearly convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37 (1999) 152–172. | MR | Zbl | DOI

[16] L. Lukšan, C. Matonoha and J. Vlcek, Problems for nonlinear least squares and nonlinear equations. Technical report (2018).

[17] J. M. Martı́Nez, Practical quasi-Newton methods for solving nonlinear systems. J. Comput. Appl. Math. 124 (2000) 97–121. | MR | Zbl | DOI

[18] H. Mohammad, Barzilai-Borwein-like method for solving large-scale nonlinear systems of equations. J. Nigerian Math. Soc. 36 (2017) 71–83. | MR | Zbl

[19] H. Mohammad and M. Y. Waziri, On Broyden-like update via some quadratures for solving nonlinear systems of equations. Turk. J. Math. 39 (2015) 335–345. | MR | Zbl | DOI

[20] H. Mohammad and S. A. Santos, A structured diagonal Hessian approximation method with evaluation complexity analysis for nonlinear least squares. Comput. Appl. Math. (2018). | MR | Zbl

[21] J. Nocedal and S. J. Wright, Numerical Optimization. Springer Science (2006). | MR | Zbl

[22] Z. J. Shi and G. Sun, A diagonal-sparse quasi-Newton method for unconstrained optimization problem. J. Syst. Sci. Math. Sci. 26 (2006) 101–112. | MR | Zbl

[23] Z. Wan, Y. Chen, S. Huang and D. Feng, A modified nonmonotone BFGS algorithm for solving smooth nonlinear equations. Optim. Lett. 8 (2014) 1845–1860. | MR | Zbl | DOI

[24] M. Y. Waziri and Z. Abdul Majid, An improved diagonal Jacobian approximation via a new quasi-cauchy condition for solving large-scale systems of nonlinear equations. J. Appl. Math. 2013 (2013). | MR | Zbl | DOI

[25] M. Y. Waziri, W. J. Leong, M. A. Hassan and M. Monsi, Jacobian computation-free Newton’s method for systems of non-linear equations. J. Numer. Math. Stoch. 2 (2010) 54–63. | MR | Zbl

[26] M. Y. Waziri, W. J. Leong, M. Mamat and A. U. Moyi, Two-step derivative-free diagonally Newton’s method for large-scale nonlinear equations. World Appl. Sci. J. 21 (2013) 86–94.

[27] S. Wu and H. Wang, A modified Newton-like method for nonlinear equations. Comput. Appl. Math. 39 (2020) 1–18. | MR | Zbl

[28] G. Yu, S. Niu and J. Ma, Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. J. Ind. Manag. Optim. 9 (2013) 117–129. | MR | Zbl | DOI

[29] G. Yuan and X. Lu, A new backtracking inexact BFGS method for symmetric nonlinear equations. Comput. Math. Appl. 55 (2008) 116–129. | MR | Zbl | DOI

[30] L. Zhang, A derivative-free conjugate residual method using secant condition for general large-scale nonlinear equations. Numer. Algorithms 83 (2020) 1277–1293. | MR | Zbl | DOI

Cité par Sources :