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ON THE DERIVATIVE-FREE QUASI-NEWTON-TYPE ALGORITHM FOR
SEPARABLE SYSTEMS OF NONLINEAR EQUATIONS

HASSAN MOHAMMAD'?*®, ALTYU MUHAMMED AWWAL?34

AUWAL BALA ABUBAKARY25® AND AHMAD SALIHU BEN MUSAS

Abstract. A derivative-free quasi-Newton-type algorithm in which its search direction is a product
of a positive definite diagonal matrix and a residual vector is presented. The algorithm is simple
to implement and has the ability to solve large-scale nonlinear systems of equations with separable
functions. The diagonal matrix is simply obtained in a quasi-Newton manner at each iteration. Under
some suitable conditions, the global and R-linear convergence result of the algorithm are presented.
Numerical test on some benchmark separable nonlinear equations problems reveal the robustness and
efficiency of the algorithm.
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1. INTRODUCTION

Consider the problem of finding a solution of nonlinear system of equations

g(z) =0, (1.1)

where g = (g1, g2,...9n) : R — R™ is a separable function. The separability here means each of the component
g; depends on only one or a few components of the vector z. This structure has been studied and regarded as
partial separability by Griewank and Toint in [6-8].
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n
Problem (1.1) may arise from an unconstrained optimization problem, for example, let f(x) = Z gi(x).
i=1

Then the nonlinear system of equations problem (1.1) is equivalent to the unconstrained optimization problem
min f(x), = €R" (1.2)

For finding the solution of general nonlinear equations, quasi-Newton methods are famous and commonly
used algorithms because of their derivative-free nature [17,21]. However, among these methods, some are not
suitable for large-scale problems due to matrix storage requirements. As such, methods that considered non-
linear equations with structured functions are given much attention. Nevertheless, several quasi-Newton-type
alternatives are given over the last decade (see for example [14,18,19,23,25,27]). The spectral gradient method
initially introduced by Barzilai and Borwein has been successfully used as a derivative-free approach for solving
large-scale nonlinear equations by La Cruz-Martinez-Raydan in [11,13]. Specifically, La Cruz et al. [13] presented
a derivative-free spectral residual method (dfsane) for solving large-scale nonlinear equations. The algorithm
uses a scalar multiple of identity for estimating the Jacobian of the function g. Moreover, some algorithms
that uses a diagonal matrix to approximate the Jacobian of the residual function g have been studied in the
literature. For details, interested reader may refer to the following references [5, 10,24, 26].

In this paper, we incorporate the diagonal Hessian approximation approach studied by Deng and Wan [2] and
the spectral residual approach presented in [13] to propose, analyze and implement a derivative-free algorithm
for separable problems, which can be seen as an improved version of the dfsane algorithm that used a positive
definite diagonal matrix as the approximation of the Jacobian of the function g. A derivative-free line search is
employed to analyze the convergence of the proposed algorithm.

The paper is organized as follows. Section 2 describes some preliminaries and the algorithm. Section 3
addresses the global convergence and rate of convergence results of the algorithm. Section 4 presents the numer-
ical experiments, and conclusions are given in Section 5. Unless otherwise stated, throughout this paper we
denote u}, to refer to the ith component of a vector ug. Also, || - || stands for the Euclidean norm of vectors and
the induced 2-norm of matrices.

2. PRELIMINARIES AND ALGORITHM

In this section, we present the derivative-free quasi-Newton-type algorithm. We begin by briefly reviewing
the conference paper by Deng and Wan [2].

Based on the idea of Shi and Sun in [22], Deng and Wan presented a spectral conjugate gradient method
for solving unconstrained optimization problem (1.2), in which the spectral parameter is a specific diag-
onal matrix chosen such that it owns some quasi-Newton property. They considered a diagonal matrix

Qr = diag(qi, q,ﬂ ...,qy), and solved the following constrained optimization problem
1o, . 2
min =3 (qhviy — i), (2.1)

Li<qi<Ux 2 ‘=

where Ly, and Uy, are given lower and upper bounds for ¢ such that 0 < Ly < ¢, < Uy, and so @y is a safely
positive definite matrix. The solution of the problem (2.1) is given by

Sho1 : Sh1
Y1’ vk T Yp1 T k

. L if k=t <[

g =" vy (22)
Us, if Z’;: > Uy

Ly+U, : —
kg ka lf yllg—l_oﬂ
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where Ly = ¢1]|gkll, Ux = c1llgk]| + ¢2 and ¢1, ca > 0. Unfortunately, the authors in [2] do not present numerical
implementation of the method.

Next, to build our propose algorithm, we begin by assembling the diagonal matrix similar to the one pro-
posed by Deng and Wan. The difference between the former and later is on the safeguard that ensure positive
definiteness of the diagonal matrix. To construct the diagonal matrix of the proposed algorithm, we make use
of the following Lemma (Lemma 1 in [20]).

Lemma 2.1. Let D = diag(d) be a diagonal matriz in R™*", and let uw and v be vectors in R™. Then, the
solution of the constrained linear least-squares problem with simple bounds

L1 9
min 5 ||diag(d)v - ull%,

subject to —d < 0,

is given by
b u,if s >0,
0, if & <0 orv' =0.

vt

i=1,2,...,n.

Based on the results of Lemma 2.1, the resulting diagonal matrix is positive semi-definite. However, to obtain a
descent direction that will be used with a suitable line search technique, we define a positive definite diagonal
matrix Dy (k > 1) with entries

EE S |

di = k—1 ylicfl _ 1=1,2,...,n. (2.3)

1 if 2= <Qorst ,=0
s, k—1 )

)

where sp_1 =z —xk_1 and yr—1 = g(ax) —g(xr—1). The search direction of the diagonal derivative-free method
is obtained as a solution of the linear system:

Dypr + g(xi) =0, (2.4)
where

(2.5)

Do — diag(d}, d3, ,..., dp), ifk>1
T, if k=0

is a diagonal matrix, whose entries are computed using equation (2.3).
Furthermore, we safeguard Dy, for very small and very large values by means of a projection of its entries
into a given scalar interval [d, d] such that 0 < d < 1 and d > 1. Hence, the i-th entry of the matrix Dy, is

: y;‘c—l 3 Y
P e O O 29
1, if s, =0.

It can be seen from equation (2.6), the sequence {d}} is uniformly bounded for each i and k. In fact, 0 < d <
di < d Vi, Vk. Consequently, Dy, is invertible for each k > 0.

In contrast to the diagonal matrix proposed by Deng and Wan [2], the safeguard procedure here is simple, as
it set the nonpositive entries of the generated diagonal matrix to a nonnegative parameter d, and the undefined
entries to 1. Thus, at a certain iterate where some of the entries of the diagonal matrix becomes undefined, the
entries are set to 1. Unlike Deng and Wan proposed diagonal matrix, where the undefined entries are set to the
average of the lower and upper bounds Lj and Ug. The detail steps of the derivative-free quasi-Newton-type
approach is given below.
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Algorithm 1: Derivative-free quasi-Newton-type algorithm for separable nonlinear equations (dfnwt).

oo
Input : Given zg € R™, p,§ € (0,1), 0 <d < 1 <d, and a positive sequence {wy} such that Z wyp < 0o0. Set k := 0.
k=0
Step 1: Compute g(zg), if ||g(zk)|| = 0, then
| stop.
end
Step 2: if £k =0, then

| set pp = —g(zp);
else

Compute pg := —D,;lg(ack)7 where Dy, = diag(d}@, dz, ey dR),

T
dz _ {max{min{zzi, d}, d} , if s?_l #0 i=12.
1, if sj,_; =0,
where sp_1 =z — T_1, and yp_1 = g(xk) — g(Tp—1)-
end
Step 3: Let aj, = p/, where j is the least non-negative integer satisfying

lg(zx + P p)lI” < (1 + wi)llg(zn) | +6(07)* (g(zk), pr), (2.7)

Compute s, = agpr, Thy1 = Tk + Sk.
Step 4: Set kK =k + 1 and go to Step 1.

Remark 2.2. Since the matrix Dy is diagonal, the product at Step 2 of Algorithm 1 when k # 0 is simply the
product between the diagonal elements of D,:l and the corresponding components of g(xy), computed in O(n)
operations.

Remark 2.3. By the definition of the search direction in Step 2, it can be deduce easily that,
1 1
gllg(xk)ll < llpell < S llg(za)ll (2.8)

Remark 2.4. The line search condition (2.7) has some similarity to the one used in [29]. The right hand side
of the current line search in (2.7) has an additional term, a positive sequence that guaranty the well-definedness
of the inequality. In fact, for sufficiently large k, the inequality (2.7) holds as the stepsize aj, — 0. Thus, ay
can be obtained by some backtracking approach such as Step 3 of Algorithm 1.

3. CONVERGENCE RESULTS

In this section, we prove the global and R-linear convergence of Algorithm 1. First we assume that g(zy) # 0
for any k > 0 except at the solution.
Furthermore, we assume the following:

Assumption 3.1.(i.) The function g : © CR™ — R"™ is continuously differentiable on ©.
(ii.) The Jacobian J of g at x, denoted by J(x), is bounded and uniformly nonsingular on O, i.e., there exist
nonnegative scalars €1,e2 such that

1 < ||J(2)|| <e2, forall xe€0O,

1 1
— <|J() Y <= foral ze€®O.
€2 €1

(iii.) The Jacobian J is Lipschitz continuous with Lipschitz constant v on ©. That is,

17 (z) = JW)l < Alle —yll,  for all z,y €®.
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Assumption 3.1 implies that there is constants M > m > 0 such that
mllz —yll < llg(z) — gl < Mljz —yll, Vz, y €R™ (3.1)

Assumption 3.2. The diagonal matrix Dy approximate the Jacobian matrix J of the function g at xy along
the direction py, therefore, Dy, can be regarded as a good approzimation of J(xy). That is,

1Dk = J(x))pell < rllg(ax)ll, for all k>0, (3.2)
where r € (0, 1) is a very small constant.

Lemma 3.3. Let the sequence {xy} be generated by Algorithm 1, then for all k >0

(a)

@)l < ~ (gl pi) < %ng(xk)nz, (3.3)

(b)
(o(an), Tnpe) < —(1 —)llg(an)] (3.4)

(©)
—d|Ip|1? < (g(=x), pr) < —d|lpr|*- (3.5)

Proof. (a) For k=0,

—(g(x0), po) = —{9(x0), —Dg ' g(0))
= |lg(xo)|[?, since Dy = I.

For k> 1,

—(g(x1), pr) = —(g9(xx), =Dy g(zr))
o), ding (g gpovee ) o))
9(xk), diag (2 é, o ;) 9(mk)>

g (). (3.6)

IN
(S N

On the other hand,

—(g(zr), pr) = —(g(zx), =Dy "g(xk))

st ding (55 L) gl

llg (). (3.7)

vV
Ul — 7~

Combining (3.6) and (3.7), we obtain (3.3).
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(b) For k > 0, equality (2.4) together with inequality (3.2) gives

(9(xk), J(zr)pr) = (9(zk), J(@k)PK — (Dipr + 9(xk)))
= (g(xx), (J(xx) — Di)pr) — llg(z)|”
lg(@i) I (J (zx) — Di)pill = llg(ar)|?
rllg(ar)l? = llg(xr)|?

=—(1 =gzl

The proof of (¢) follows directly from equation (2.4) and the definition of Dy, in (2.5)—(2.6).

<
<

The following Lemma is from [3].
Lemma 3.4. Let {a;} and {ex} be nonnegative sequences such that

ar+1 < (L+ep)ap and Zek < 00,

k=0

then the sequence {ar} has a limit in R.
Lemma 3.5. Let {1} be the sequence generated by Algorithm 1, then we have
(a) {llg(xk)||} s convergent.
(b) Jim —of(g(as). pe) = 0.
Proof. (a) Setting ay = ||g(x1)||? and ej, = @y, in Lemma 3.4, we have

lg(@rrn)lI* < (1 +w)llg (@) .

Since ||g(zx)||* > 0 and Y @y < oo, it holds {||g(x1)||} is convergent.
k=0
(b) Using (2.7), we can get for any k

—dai(g(zx), pr) < 9@ = lg(@rsn)I* + @rllg(ar) |- (3-8)

Summing both sides of (3.8) yields

53" —adlg(en). p) < gl + 3 willglen)ll
k=0 k=0

oo
Since {||g(xx)||} converges for all k, Z wy, is convergent and § is a positive constant, it follows that
k=0

Hence,
klim —ai(g(xy), pp) = 0. (3.9)
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Lemma 3.6. Suppose Assumptions 3.1 and 3.2 hold. Let {xy} be a sequence of iterates generated by Algo-
rithm 1. Then

2pd”(1 —
ay > min{l,p(r)}, (3.10)
dd
for all sufficiently large k.
Proof. By the line search condition (2.7) if oy # 1, then £ does not satisfy (2.7), that is
(052 2 a2
Jo (o %) | > 0 0ltn) P + 6% ),
This gives
0‘% 2 A 2
—57@(%), pi) > lg(x)ll” — ||g | o5 + P (3.11)
Using the right hand side of (3.11), inequalities (2.8), (3.4) and (3.5), we have
2
a a a
oGl = o (a0 + %) | = 2% (a1, TG +o (1l
P p P
! a
> 22 1=t + o (Lo
p p
a a
> 25 0= )l + o (2 )
p p
2 Ok
> —2d*—=(1—7r)(g9(zk), Pr), (3.12)
pd
where o : Ry — R is such that flilré @ =0.
Combining (3.11) and (3.12), we have
2pd”(1 —
o > LA =T)
od
which means that (3.10) holds. O

Theorem 3.7. Suppose Assumptions 3.1 and 3.2 hold. If the sequence {xy} is generated by Algorithm 1, then
J {lg(zg )| = 0. (3.13)
Proof. By Lemma 3.6, there exists a nonnegative scalar say

&= min{1,2d2(1_r)} < o (3.14)

It follows from (3.3) and (3.14) that

Y

—ai(g(er), pr)
Therefore, using (3.9), we have
0= Jim ~a(g(an). pr) >

This gives (3.13). O
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We now present the R-liner convergence of Algorithm 1.

Theorem 3.8. Suppose Assumption 3.1 holds. If the sequence {x} generated by Algorithm 1 converges to x*,
then for sufficiently large k, there exist constants C > 0 and p € (0,1) such that

|lzp — 2| < Cut. (3.15)
Proof. From the line search condition (2.7), it follows that

lg(za)l? < (1 +w@n)llg(zn)l* + 60 (g(zx), pr)

1
< (L+ @) lg(an)* - 5@%3”9(%)\\2

1
< (1+ wp)llg(an) | - 5d2§||9(33k)||2
1
= (1 — 50723 + wzc> llg(zx)I?,

where the second and third inequalities follow from (3.3) and (3.14) respectively. Since @y — 0, without loss of
generality, we assume that w; < 56422—13 for all k so that

ool </ (1= 62 55 ) ot (3.16)

Inequality (3.16) and inductive process yields

(@)l < ¥llg(o)ll, (3.17)

where p = (1 - 60722—13) < 1. Using (3.1) together with (3.17) we have

e gt
e — 2™} < p* ==
Thus, (3.15) holds with C = w- This means that Algorithm 1 converges R-linearly. (]

4. NUMERICAL EXPERIMENTS

In this section we report the results obtained with a preliminary MATLAB implementation of the proposed
algorithm on the solution of some selected test problems. The set of the problems is made of ten almost separable
nonlinear equations and can be found in the Appendix A. The detailed numerical results of this section can be
found in Appendix B. Computations were carried out on an 8.00 GB RAM Intel Core i7 personal computer at
2.30 GHz. A failure is reported (denoted by ‘F’), if the number of iterations is greater than 1000. We used five
different dimension with ten different initial points as follows:

— dimensions: n = 1000, 5000, 10000, 50000, 100 000.

— initial points: z§ = (1,...,1)T, 23 = (0.1,...,0.1)T, 23 = (%,...,%)T, gy =(01-21-2 .07,
T T 1 o T T

x%:(O,%,%,...,”Tl) , xS:(l,%,...,%) , xg:(”Tl,TQ,...,O) , x%:(%,%,...,l) =

(10,10,...,10)T and xéo = rand(n, 1). Here, rand(n, 1) means the initial point is chosen randomly from the

interval (0,1).
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TABLE 1. Winners with respect to #iter, #fval and time.

Method/Metric  dfnwt dfsane msgp

Fiter 329 291 75
F#fval 353 309 30
time 103 366 24

We compared Algorithm 1 (dfnwt) with similar algorithms in the literature, namely, dfsane algorithm by
La Cruz et al. [13] and msgp algorithm by Yu et al. [28]. For all algorithms, we used the stopping criterion

lg ()] < 107°.

We implemented dfnwt algorithm using the following parameters: p = 0.5, § = 0.0001, d = 10710, d =
10'° and w;, = —z
e

and [28], respectively.

In Tables B.1-B.10 of Appendix B, we reported the number of iterations (#iter), the number of function
evaluations (# fval), the CPU time in seconds (time) and the norm of the residual at the termination point
(Fnorm), for all the ten tested problems. In Table B.1, dfnwt has the least #iter and # fval in all the problems.
However, there was a tie between dfnwt and dfsane in Tables B.2-B.5, B.7 and B.8 except for the the initial
point z§ and some some few cases in Tables B.7 and B.8. In Table B.6, dfsane has the best performance in
terms of #iter and # fval except for some few cases where dfnwt performs better. The algorithm dfnwt has
recorded 17 failures in Table B.9, however, it outperforms df sane and msgp algorithms in the remaining cases.
Lastly, in Table B.10, unlike dfsane and msgp, dfnwt managed to solve almost all the problems. However, for
the few cases where msgp solved a problem, it has the least #iter and # fval. In addition, the summary of
Tables B.1-B.10 is reported in Table 1.

To visualize the numerical behaviour of the algorithms, we plotted three figures using the popular Dolan
and Moré [4] performance profile based on the #iter, # fval and CPU time metrics. In Figure 1, we compare
the performance of the dfnwt algorithm with the dfsane algorithm and the msgp algorithm with respect to
#iter metric. Figure 1 shows that dfnwt performs better than msgp and dfsane having almost 70% success.
In Figure 2, the performance of the three algorithms was tested based on # fval metric. The figure shows that
dfnwt performs better than msgp and dfsane having over 70% success. Figure 3 shows that dfsane is faster
than dfnwt and msgp for the fraction of 7 < 4. However, for 7 > 4, dfnwt is faster than msgp and dfsane. Based
on the performed experiments, we observe that, the good performance of the dfnwt algorithm may be due to the
diagonal approximation of the Jacobian matrix associated with the search direction. Similar argument applies
to the msgp algorithm.

k > 0. For dfsane and msgp algorithms, the parameters chosen are from references [13]

5. CONCLUSIONS

We have presented, analyzed, and implemented a derivative-free quasi-Newton-type algorithm for solving
nonlinear systems of equations with separable functions (dfnwt). Different from the existing algorithms such as
dfsane algorithm that approximate the Jacobian of g using a scalar multiple of identity at each iteration, the
proposed dfnwt algorithm uses a diagonal matrix in a quasi-Newton manner for such approximations. Among
the attractive feature of the presented algorithm is that it does not require gradient or approximation of the
gradient for its implementation, this makes it more suitable for large-scale separable problems. Furthermore,
the global and R-linear convergence of the sequence generated by dfnwt algorithm is obtained. Based on the
numerical results presented, the proposed dfnwt compete with the well-known and efficient algorithm for solving
nonlinear equations, that is, dfsane. This good efficiency of the dfnwt algorithm is due to the additional
information obtained from the diagonal matrix used for the approximation of the Jacobian of the problems.



3302

0.9
0.8
0.7

0.6

vosk

0.4

0.3

0.2

0.1

H. MOHAMMAD ET AL.

r ’_'-i-—-_-_‘—-_--’-_'_" ————— - — - -
,”

= ,"'

- awnmnSe RSN EE NN NN NS EEEEEEEEEEEEED

J’ ‘...---l .

,o

L

¥

¥y
=== dfnwt
= mmummidfsgne
— mSgp

1 2 3 4 5 6 7 8 9 10

T

- ____,-"-_’_'—- —————— e ———— L LY
'/"
/
k&
', .IIIllIIIIlIIIIIIIIIIIIIIIlIllllllllllllllllllllllll
L4
/
L 2
L]
y
k = dfawt
=mmmn dfsane
_msgp
1 2 3 4 5 6 7 8 9 10
.

FIGURE 2. Dolan and Moré performance profile with respect to number of function evaluations.
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Investigation on the better approximation that exploits the structure of the problem and extensive numerical
experiments that will unveil the effectiveness of the approach will be an interesting topic for future research.

APPENDIX A. LIST OF TEST PROBLEMS

We listed below the details of the test problems used in Section 4 where g = (g1,92,-..,9n)7 .

Problem 1: Modified exponential function [12]

Problem 2: Logarithmic function [12]

T
gZ(ml) = IOg((EZ + 1) - 1= 1327 sy T
n

Problem 3: Strictly convex function I [12]

Problem 4: Modified strictly convex function II [12]

gi(z) = (nil)e“—l, 1=1,2,...,n.
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Problem 5: Tridiagonal exponential function [1]
g1(2) = 2y — eosherta2))
9i(x)
gn(2)
h

co%(h("cl 14z +T7+1)) i=9
s

o cos(h(:cn,lJr:rn))
b

1
n+1

Problem 6: Gradient of engval function [15]

g1(z) = w1 (2] +23) — 1
gi(w) = wi(xi_y + 227 +a7;) —1, 2<i<n-1
gn(2) = 2p(x 31—1 +£i)

Problem 7: Chandrasekhar H-equation [9]

gi(x) =x; — Z , ¢=0.9, 51-:270'5, 1=1,2,...,n.

Problem 8: Modified problem 3.34 in [16]

Problem 9: Trigonometric function [30]

gi(z) =2 n—i—i(l—cos:ri)—sinxi—Zcoswj (2sinz; —cosx;), fori=1,2,3,...,n.

i=1
Problem 10: Troesch problem [12]
sinh(10z1)
=2 10— —

91(2) z1+ (n+1)2 Z2
inh(10z; .

gi(x) = 2x; + 1OW —Xi1—Tiy1, 2<1<n—1
sinh(10z,,)

() = 20, + 1050 .

gn() Ty + (n+1)2 Tn-1

APPENDIX B. TABLE OF NUMERICAL EXPERIMENTS

Below is the details of the numerical experiments conducted in Section 4.
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TABLE B.1. Numerical results for dfnwt, dfsane and msgp for Problem 1 with given initial
points and dimensions.

dfnwt dfsane msgp

Dimension zo #iter #fval time Fnorm #iter #fval time Fnorm #iter #fval time Fnorm
:cé 7 7 0.0144 1.76 E-08 11 11 0.0303 1.33E-08 8 25 0.0944 1.16E-07
z% 5 5 0.0072 4.87E-11 6 6 0.0133 1.63E-07 6 19 0.0284 9.53E-09
zg 5 5 0.0046 6.23E-08 8 8 0.0099 1.51E-07 9 28 0.1310 4.04E-08
'Eé 7 7 0.0082 1.38E-08 10 10 0.0079 8.47E-07 11 34 0.0160 1.75E-08
xg 7 7 0.0068 1.44E-09 7 7 0.0262 5.15E-11 10 31 0.0216 1.18E-07
zg 7 7 0.0070 1.43E-08 10 10 0.0075 1.04E-08 12 37 0.0152 8.39E-09
1000 zg 7 7 0.0059 1.38E-08 10 10 0.0066 8.47E-07 11 34 0.0135 1.75E-08
:cg 7 7 0.0049 1.47E-09 7 7 0.0045 5.03E-09 10 31 0.0130 1.22E-07
zg F F F F F F F F 15 46 0.0368 2.17E-07
zéo 7 7 0.0118 1.31E-09 10 10 0.0055 2.13E-08 10 31 0.0123 1.19E-07
z(lj 7 7 0.0332 2.71E-08 11 11 0.0132 6.70E-08 8 25 0.0385 6.68E-07
x% 5 5 0.0188 1.09E-10 6 6 0.0105 8.53E-08 6 19 0.0369 1.05E-08
zg 5 5 0.0153 6.23E-08 8 8 0.0138 1.51E-07 9 28 1.5317 4.04E-08
zé 7 7 0.1608 1.45E-08 10 10 0.0086 5.96E-07 11 34 0.0477 4.05E-07
:cg 7 7 0.0141 3.24E-09 7 7 0.0174 1.16E-10 10 31 0.0569 2.68E-07
zg 7 7 0.0101 1.43E-08 10 10 0.0120 1.04E-08 12 37 0.0471 1.09E-08
5000 1(7) 7 7 0.0129 1.45E-08 10 10 0.0187 5.96E-07 11 34 0.0353 4.05E-07
1(8] 7 7 0.0124 3.26E-09 7 7 0.0102 2.33E-10 10 31 0.0385 2.70E-07
xg F F F F F F F F 15 46 0.0787 1.85E-07
z(l)o 7 7 0.0244 3.14E-09 8 8 0.0114 5.41E-07 10 31 0.0629 2.90E-07
z(l) 7 7 0.0498 3.55E-08 11 11 0.0247 4.37E-08 8 25 0.0614 7.40E-07
:cg 5 5 0.0381 1.54E-10 6 6 0.0108 5.09E-08 6 19 0.0379 1.06E-08
zg 5 5 0.0403 6.23E-08 8 8 0.0133 1.51E-07 9 28 2.6461 4.04E-08
zé 7 7 0.0606 1.49E-08 10 10 0.0124 5.05E-07 11 34 0.0767 8.47E-07
zg 7 7 0.0304 4.59E-09 7 7 0.0084 1.65E-10 10 31 0.0881 3.80E-07
xg 7 7 0.0221 1.43E-08 10 10 0.0103 1.04E-08 12 37 0.0773 1.13E-08
10 000 zg 7 7 0.0315 1.49E-08 10 10 0.0140 5.05E-07 11 34 0.0667 8.47E-07
zg 7 7 0.0513 4.61E-09 7 7 0.0155 1.72E-10 10 31 0.0602 3.81E-07
:cg F F F F F F F F 15 46 0.1247 1.70E-07
z(l,o 7 7 0.0746 4.62E-09 10 10 0.0264 4.76E-07 10 31 0.1081 3.66E-07
z(l) 7 7 0.1347 7.41E-08 11 11 0.0822 2.59E-08 8 25 0.2588 4.02E-07
zg 5 5 0.1261 3.44E-10 6 6 0.0392 2.23E-07 6 19 0.1970 1.26E-08
ch 5 5 0.0542 6.23E-08 8 8 0.0445 1.51E-07 9 28 20.1184 4.04E-08
zé 7 7 0.1977 1.76E-08 11 11 0.0493 8.95E-09 12 37 0.1819 9.92E-09
zg 7 7 0.2008 1.03E-08 7 7 0.0349 3.68E-10 10 31 0.3389 8.50E-07
:cg 7 7 0.1411 1.43E-08 10 10 0.0903 1.04E-08 12 37 0.2629 1.16E-08
50 000 zg 7 7 0.1466 1.76E-08 11 11 0.0644 8.95E-09 12 37 0.3564 9.92E-09
zg 7 7 0.2467 1.03E-08 7 7 0.0452 3.69E-10 10 31 0.3816 8.51E-07
zg F F F F F F F F 18 55 0.6111 2.52E-08
m(l)() 7 7 0.2109 1.02E-08 8 8 0.0685 4.48E-07 10 31 0.2158 8.19E-07
z(l] 7 7 0.3991 1.04E-07 11 11 0.0844 3.33E-08 8 25 0.3365 3.34E-07
zg 5 5 0.1823 4.87E-10 6 6 0.0503 5.42E-07 6 19 0.4366 1.43E-08
:cg 5 5 0.1929 6.23E-08 8 8 0.1260 1.51E-07 9 28 66.4908 4.04E-08
:cé 7 7 0.4219 2.04E-08 11 11 0.1170 1.87E-08 11 34 0.7349 6.45E-07
zg 7 7 0.4051 1.45E-08 7 7 0.1085 5.21E-10 11 34 0.7134 5.98E-09
zg 7 7 0.3407 1.43E-08 10 10 0.0876 1.04E-08 12 37 0.6490 1.16E-08
100 000 x4 7 7 0.3645  2.04E-08 11 11 0.0891  1.87E-08 11 34 0.7292  6.45E-07
zg 7 7 0.3735 1.45E-08 7 7 0.0885 5.21E-10 11 34 0.6609 5.99E-09
zg F F F F F F F F 18 55 1.2723 2.82E-08
xéo 7 7 0.4249 1.46E-08 11 11 0.1426 3.83E-09 11 34 0.7735 5.87E-09
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TABLE B.2. Numerical results for dfnwt, dfsane and msgp for Problem 2 with given initial
points and dimensions.

dfnwt dfsane msgp

Dimension o F#iter #fval time Fnorm Fiter #fval time Fnorm F#iter F#fval time Fnorm
z(l] 6 6 0.0097 2.58E-07 6 6 0.0054 2.58E-07 7 22 0.0172 7.57TE-07
1(2) 4 4 0.0092 2.11E-09 4 4 0.0043 2.11E-09 5 16 0.0098 4.79E-08
:cg 5 5 0.0132 5.77E-09 5 5 0.0062 2.07E-09 9 28 0.0774 4.19E-07
zé 6 6 0.0121 4.29E-08 6 6 0.0038 1.40E-09 11 34 0.0121 2.76E-08
zg 6 6 0.0086 4.29E-08 6 6 0.0042 1.40E-09 11 34 0.0205 2.76E-08
zg 6 6 0.0059 8.17E-09 5 5 0.0025 5.79E-07 11 34 0.0202 1.69E-08
1000 x4 6 6 0.0050 4.29E-08 6 6  0.0027 1.40E-09 11 34 0.0152  2.76E-08
zg 6 6 0.0046 4.37E-08 6 6 0.0057 1.43E-09 11 34 0.0181 2.73E-08
zg F F F F 10 16 0.0144 7.19E-09 F F F F
xcl,o 6 6 0.0075 4.13E-08 6 6 0.0061 1.21E-09 11 34 0.0067 2.35E-08
z(lj 6 6 0.0143 5.60E-07 6 6 0.0098 5.60E-07 8 25 0.0366 1.71E-08
1(2) 4 4 0.0102 4.46E-09 4 4 0.0101 4.46E-09 5 16 0.0246 1.06E-07
zg 5 5 0.0083 5.62E-09 5 5 0.0080 2.02E-09 9 28 1.2953 4.30E-07
Jcé 6 6 0.0362 9.36E-08 6 6 0.0085 3.06E-09 11 34 0.0985 6.33E-08
zg 6 6 0.0373 9.36E-08 6 6 0.0151 3.06E-09 11 34 0.1229 6.33E-08
zg 6 6 0.0327 7.92E-09 5 5 0.0086 5.68E-07 11 34 0.0692 1.68E-08
5000 :cg 6 6 0.0284 9.36E-08 6 6 0.0307 3.06E-09 11 34 0.0748 6.33E-08
:cg 6 6 0.0221 9.40E-08 6 6 0.0109 3.07E-09 11 34 0.0678 6.31E-08
zg F F F F 10 16 0.0236 2.09E-08 9 28 0.0658 9.66E-08
z(lJO 6 6 0.0178 9.61E-08 6 6 0.0079 2.98E-09 11 34 0.0623 6.52E-08
Jcé 6 6 0.0702 7.88E-07 6 6 0.0103 7.88E-07 8 25 0.0613 2.43E-08
z% 4 4 0.0288 6.27E-09 4 4 0.0170 6.27E-09 5 16 0.1003 1.50E-07
zg 5 5 0.0328 5.60E-09 5 5 0.0152 2.02E-09 9 28 2.7424 4.31E-07
:cé 6 6 0.0397 1.32E-07 6 6 0.0131 4.32E-09 11 34 0.1765 8.97E-08
:cg 6 6 0.0270 1.32E-07 6 6 0.0112 4.32E-09 11 34 0.1630 8.97E-08
zg 6 6 0.0333 7.88E-09 5 5 0.0159 5.67TE-07 11 34 0.1345 1.68E-08
10000 x4 6 6  0.0438  1.32E-07 6 6  0.0202  4.32E-09 11 34 0.1521  8.97E-08
ch 6 6 0.0557 1.32E-07 6 6 0.0228 4.32E-09 11 34 0.0949 8.96E-08
zg F F F F 10 16 0.0381 3.04E-08 9 28 0.1200 1.37E-07
I(I)O 6 6 0.0449 1.31E-07 6 6 0.0187 4.16E-09 11 34 0.1252 9.24E-08
:cé 7 7 0.2191 1.08E-11 7 7 0.0473 1.08E-11 8 25 0.4062 5.44E-08
:c% 4 4 0.0869 1.39E-08 4 4 0.0269 1.39E-08 5 16 0.2628 3.34E-07
zg 5 5 0.0856 5.59E-09 5 5 0.0302 2.01E-09 9 28 20.5273 4.32E-07
zg 6 6 0.1248 2.94E-07 6 6 0.0305 9.63E-09 11 34 0.5027 2.01E-07
1'8 6 6 0.2103 2.94E-07 6 6 0.0291 9.63E-09 11 34 0.5402 2.01E-07
zg 6 6 0.1433 7.86E-09 5 5 0.0530 5.66E-07 11 34 0.4141 1.68E-08
50 000 zg 6 6 0.2749 2.94E-07 6 6 0.0964 9.63E-09 11 34 0.5028 2.01E-07
:cg 6 6 0.1795 2.95E-07 6 6 0.0522 9.63E-09 11 34 0.4857 2.01E-07
:cg F F F F 10 16 0.0929 6.97E-08 11 34 0.4943 4.42E-08
zéo 6 6 0.1481 2.95E-07 6 6 0.0569 9.61E-09 11 34 0.5365 1.96E-07
z(l] 7 7 0.2907 1.53E-11 7 7 0.0817 1.53E-11 8 25 0.8299 7.70E-08
x% 4 4 0.1811 1.97E-08 4 4 0.0448 1.97E-08 5 16 0.3797 4.73E-07
z% 5 5 0.1079 5.59E-09 5 5 0.0505 2.01E-09 9 28 73.4300 4.32E-07
zé 6 6 0.1762 4.16E-07 6 6 0.0578 1.36E-08 11 34 1.1085 2.85E-07
:cg 6 6 0.1773 4.16E-07 6 6 0.1194 1.36E-08 11 34 1.1700 2.85E-07
:cg 6 6 0.4746 7.86E-09 5 5 0.0935 5.65E-07 11 34 1.0038 1.68E-08
100 000 zg 6 6 0.5102 4.16E-07 6 6 0.1208 1.36E-08 11 34 0.7507 2.85E-07
zg 6 6 0.2775 4.16E-07 6 6 0.1150 1.36E-08 11 34 1.1527 2.84E-07
.108 F F F F 10 16 0.2552 9.89E-08 11 34 1.4168 6.25E-08
10 6 6 0.1824 4.20E-07 6 6 0.1125 1.39E-08 11 34 1.0825 2.87E-07

Lo
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TABLE B.3. Numerical results for dfnwt, df sane and msgp for Problem 3 with given initial
points and dimensions.

dfnwt dfsane msgp

Dimension o F#iter #fval time Fnorm Fiter #fval time Fnorm F#iter F#fval time Fnorm
z(l] 7 7 0.0082 4.51E-07 7 7 0.0056 4.51E-07 6 19 0.0112 6.51E-07
1(2) 4 4 0.0036 2.65E-09 4 4 0.0033 2.65E-09 5 16 0.0050 3.18E-07
:cg 5 5 0.0036 6.22E-08 5 5 0.0041 4.37E-08 8 25 0.0927 1.78E-08
zé 7 7 0.0105 4.87E-08 7 7 0.0027 3.44E-10 13 40 0.0126 2.00E-08
zg 7 7 0.0116 4.87E-08 7 7 0.0035 3.44E-10 13 40 0.0137 2.00E-08
zg 7 7 0.0118 1.43E-08 7 7 0.0021 4.34E-09 9 28 0.0092 2.33E-07
1000 ch 7 7 0.0071 4.87E-08 7 7 0.0021 3.44E-10 13 40 0.0166 2.00E-08
zg 7 7 0.0057 5.07E-08 7 7 0.0019 3.57TE-10 13 40 0.0100 2.14E-08
zg F F F F F F F F 15 46 0.0137 2.26E-08
xcl,o 7 7 0.0105 4.66E-08 7 7 0.0016 3.64E-10 12 37 0.0203 5.01E-08
z(lj 8 8 0.0296 9.18E-12 8 8 0.0083 9.17E-12 7 22 0.0467 1.44E-08
1(2) 4 4 0.0164 5.92E-09 4 4 0.0041 5.92E-09 5 16 0.0186 7.10E-07
zg 5 5 0.0166 6.22E-08 5 5 0.0141 4.37E-08 8 25 1.1229 1.78E-08
Jcé 7 7 0.0275 1.11E-07 7 7 0.0130 7.80E-10 13 40 0.0418 4.61E-08
zg 7 7 0.0302 1.11E-07 7 7 0.0093 7.80E-10 13 40 0.0519 4.61E-08
zg 7 7 0.0140 1.43E-08 7 7 0.0092 4.33E-09 9 28 0.0269 2.40E-07
5000 x4 7 7 0.0301 1.11E-07 7 7 0.0074  7.80E-10 13 40 0.0517  4.61E-08
:cg 7 7 0.0320 1.12E-07 7 7 0.0069 7.86E-10 13 40 0.0652 4.67TE-08
zg F F F F F F F F 15 46 0.0786 5.05E-08
z(lJO 7 7 0.0142 1.07E-07 7 7 0.0084 7.51E-10 13 40 0.0545 4.60E-08
Jcé 8 8 0.0386 1.30E-11 8 8 0.0200 1.30E-11 7 22 0.0311 2.04E-08
z% 4 4 0.0225 8.38E-09 4 4 0.0075 8.38E-09 6 19 0.0614 9.95E-09
zg 5 5 0.0144 6.22E-08 5 5 0.0111 4.37E-08 8 25 2.3826 1.78E-08
:cé 7 7 0.0627 1.57E-07 7 7 0.0159 1.11E-09 13 40 0.1486 6.54E-08
:cg 7 7 0.0520 1.57E-07 7 7 0.0084 1.11E-09 13 40 0.0816 6.54E-08
zg 7 7 0.0199 1.43E-08 7 7 0.0119 4.33E-09 9 28 0.0475 2.40E-07
10000 x4 7 7 0.0483  1.57E-07 7 7 0.0129 1.11E-09 13 40 0.0850  6.54E-08
ch 7 7 0.0311 1.57E-07 7 7 0.0161 1.11E-09 13 40 0.0953 6.58E-08
zg F F F F F F F F 15 46 0.1053 7.14E-08
z(l)o 7 7 0.0425 1.54E-07 7 7 0.0149 1.04E-09 12 37 0.0663 1.07E-07
:cé 8 8 0.2026 2.90E-11 8 8 0.0429 2.90E-11 7 22 0.1691 4.56E-08
:c% 4 4 0.0842 1.87E-08 4 4 0.0256 1.87E-08 6 19 0.1792 2.22E-08
zg 5 5 0.0571 6.22E-08 5 5 0.0446 4.37E-08 8 25 17.8536 1.78E-08
zg 7 7 0.2244 3.51E-07 7 7 0.0427 2.48E-09 13 40 0.3517 1.47E-07
1'8 7 7 0.1762 3.51E-07 7 7 0.0295 2.48E-09 13 40 0.4788 1.47E-07
zg 7 7 0.0896 1.43E-08 7 7 0.0231 4.33E-09 9 28 0.1600 2.41E-07
50 000 zg 7 7 0.0905 3.51E-07 7 7 0.0420 2.48E-09 13 40 0.3265 1.47E-07
:cg 7 7 0.0833 3.51E-07 7 7 0.0430 2.48E-09 13 40 0.2545 1.47E-07
:cg F F F F F F F F 19 58 0.4303 4.58E-08
zéo 7 7 0.2301 3.49E-07 7 7 0.0916 2.30E-09 13 40 0.2770 1.58E-07
ztl] 8 8 0.4108 4.10E-11 8 8 0.0719 4.10E-11 7 22 0.3374 6.45E-08
xg 4 4 0.2424 2.65E-08 4 4 0.0496 2.65E-08 6 19 0.2872 3.14E-08
z% 5 5 0.1244 6.22E-08 5 5 0.0797 4.37E-08 8 25 59.9771 1.78E-08
zé 7 7 0.3881 4.97E-07 7 7 0.0662 3.50E-09 13 40 0.5892 2.07E-07
:cg 7 7 0.3485 4.97E-07 7 7 0.0794 3.50E-09 13 40 0.6391 2.07E-07
:cg 7 7 0.1863 1.43E-08 7 7 0.0733 4.33E-09 9 28 0.4211 2.41E-07
100 000 zg 7 7 0.3593 4.97E-07 7 7 0.0822 3.50E-09 13 40 0.7034 2.07E-07
zg 7 7 0.4207 4.97E-07 7 7 0.0636 3.50E-09 13 40 0.4962 2.07E-07
.108 F F F F F F F F 19 58 1.1126 6.48E-08
10 7 7 0.2652 4.98E-07 7 7 0.0650 3.46E-09 13 40 0.5084 1.99E-07

Lo
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TABLE B.4. Numerical results for dfnwt, dfsane and msgp for Problem 4 with given initial

points and dimensions.

dfnwt dfsane msgp

Dimension zo Fiter #fval time Fnorm Fiter F#fval time Fnorm F#iter #fval time Fnorm
1(1) 2 2 0.0058 5.17E-08 2 2 0.0058 5.18E-08 5 16 0.0118 2.60E-07
zg 2 2 0.0078 9.09E-08 2 2 0.0027 9.10E-08 5 16 0.0114 3.96E-07
958 2 2 0.0045 9.45E-08 2 2 0.0033 9.46E-08 5 16 0.0115 4.11E-07
zé 2 2 0.0059 7.51E-08 2 2 0.0035 7.63E-08 5 16 0.0089 3.39E-07
zg 2 2 0.0144 7.51E-08 2 2 0.0043 7.63E-08 5 16 0.0122 3.39E-07
zg 2 2 0.0045 9.43E-08 2 2 0.0034 9.43E-08 5 16 0.0226 4.10E-07
1000 acg 2 2 0.0053 7.51E-08 2 2 0.0031 7.63E-08 5 16 0.0112 3.39E-07
z(s) 2 2 0.0030 7.51E-08 2 2 0.0023 7.62E-08 5 16 0.0134 3.39E-07
1:8 3 3 0.0034 2.57TE-12 3 3 0.0022 2.82E-12 6 19 0.0135 1.11E-08
gcéo 2 2 0.0048 7.40E-08 2 2 0.0033 7.51E-08 5 16 0.0103 3.39E-07
z(l) 2 2 0.0160 1.86E-10 2 2 0.0068 1.86E-10 5 16 0.0273 5.84E-07
zg 2 2 0.0147 3.27E-10 2 2 0.0058 3.27E-10 5 16 0.0258 8.89E-07
zg 2 2 0.0123 3.40E-10 2 2 0.0097 3.40E-10 5 16 0.0342 9.23E-07
xé 2 2 0.0106 2.70E-10 2 2 0.0046 2.74E-10 5 16 0.0427 7.60E-07
zg 2 2 0.0149 2.70E-10 2 2 0.0092 2.74E-10 5 16 0.0336 7.60E-07
18 2 2 0.0154 3.39E-10 2 2 0.0079 3.39E-10 5 16 0.0328 9.23E-07
5000 z§ 2 2 0.0120 2.70E-10 2 2 0.0069 2.74E-10 5 16 0.0479  7.60E-07
18 2 2 0.0079 2.70E-10 2 2 0.0051 2.74E-10 5 16 0.0384 7.60E-07
zg 2 2 0.0177 1.14E-08 2 2 0.0082 1.14E-08 6 19 0.0347 2.45E-08
=50 2 2 0.0109 2.68E-10 2 2 0.0096  2.74E-10 5 16  0.0346  7.59E-07
xcl) 2 2 0.0115 1.64E-11 2 2 0.0152 1.64E-11 5 16 0.0779 8.26E-07
1(2) 2 2 0.0328 2.89E-11 2 2 0.0094 2.89E-11 6 19 0.0902 1.25E-08
zg 2 2 0.0236 3.01E-11 2 2 0.0107 3.01E-11 6 19 0.1176 1.29E-08
xé 2 2 0.0118 2.39E-11 2 2 0.0103 2.42E-11 6 19 0.0808 1.06E-08
18 2 2 0.0254 2.39E-11 2 2 0.0098 2.42E-11 6 19 0.1006 1.06E-08
18 2 2 0.0230 3.00E-11 2 2 0.0136 3.00E-11 6 19 0.0496 1.29E-08
10000 zd 2 2 0.0222 2.39E-11 2 2 0.0109 2.42E-11 6 19 0.0741  1.06E-08
xcs) 2 2 0.0237 2.39E-11 2 2 0.0114 2.42E-11 6 19 0.0697 1.06E-08
zg 2 2 0.0260 1.01E-09 2 2 0.0122 1.01E-09 6 19 0.0415 3.46E-08
1(1)0 2 2 0.0188 2.36E-11 2 2 0.0126 2.43E-11 6 19 0.1114 1.06E-08
x(l) 2 2 0.0475 9.93E-14 2 2 0.0308 9.93E-14 6 19 0.3162 1.83E-08
.Lg 2 2 0.0895 9.93E-14 2 2 0.0387 9.93E-14 6 19 0.2823 2.79E-08
zg 2 2 0.0783 9.93E-14 2 2 0.0417 9.93E-14 6 19 0.3582 2.89E-08
zg 2 2 0.0897 9.93E-14 2 2 0.0372 9.93E-14 6 19 0.3796 2.38E-08
acg 2 2 0.0850 9.93E-14 2 2 0.0254 9.93E-14 6 19 0.3152 2.38E-08
zg 2 2 0.0633 9.93E-14 2 2 0.0298 9.93E-14 6 19 0.4268 2.89E-08
50000 zg 2 2 0.0886 9.93E-14 2 2 0.0381 9.93E-14 6 19 0.3497 2.38E-08
xg 2 2 0.0712 9.93E-14 2 2 0.0366 9.93E-14 6 19 0.2974 2.38E-08
.Lg 2 2 0.0689 3.57TE-12 2 2 0.0312 3.57E-12 6 19 0.3753 7.75E-08
z(l)o 2 2 0.0927 9.68E-14 2 2 0.0394 9.93E-14 6 19 0.2708 2.38E-08
z(l) 2 2 0.1756 0 2 2 0.0567 0 6 19 0.6949 2.59E-08
acg 2 2 0.1803 0 2 2 0.0532 0 6 19 0.7878 3.94E-08
zg 2 2 0.1982 0 2 2 0.0454 0 6 19 0.5761 4.09E-08
1401 2 2 0.2140 0 2 2 0.0335 0 6 19 0.4159 3.37E-08
xg 2 2 0.1873 0 2 2 0.0722 0 6 19 0.6970 3.37E-08
xg 2 2 0.2016 0 2 2 0.0655 0 6 19 0.6519 4.09E-08
100 000 ) 2 2 0.1380 0 2 2 0.0815 0 6 19 0.7181  3.37E-08
zg 2 2 0.0927 0 2 2 0.0632 0 6 19 0.7006 3.37E-08
acg 2 2 0.1371 4.21E-13 2 2 0.0720 4.21E-13 7 22 0.7717 8.30E-08
30 2 2 0.1736 0 2 2 0.0592 0 6 19 0.6921 3.37TE-08

8
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TABLE B.5. Numerical results for dfnwt, df sane and msgp for Problem 5 with given initial

points and dimensions.

dfnwt dfsane msgp

Dimension zo Fiter #fval time Fnorm Fiter F#fval time Fnorm F#iter #fval time Fnorm
1(1) 2 2 0.0058 5.17E-08 2 2 0.0058 5.18E-08 5 16 0.0118 2.60E-07
zg 2 2 0.0078 9.09E-08 2 2 0.0027 9.10E-08 5 16 0.0114 3.96E-07
958 2 2 0.0045 9.45E-08 2 2 0.0033 9.46E-08 5 16 0.0115 4.11E-07
zé 2 2 0.0059 7.51E-08 2 2 0.0035 7.63E-08 5 16 0.0089 3.39E-07
zg 2 2 0.0144 7.51E-08 2 2 0.0043 7.63E-08 5 16 0.0122 3.39E-07
zg 2 2 0.0045 9.43E-08 2 2 0.0034 9.43E-08 5 16 0.0226 4.10E-07
1000 acg 2 2 0.0053 7.51E-08 2 2 0.0031 7.63E-08 5 16 0.0112 3.39E-07
z(s) 2 2 0.0030 7.51E-08 2 2 0.0023 7.62E-08 5 16 0.0134 3.39E-07
1:8 3 3 0.0034 2.57TE-12 3 3 0.0022 2.82E-12 6 19 0.0135 1.11E-08
gcéo 2 2 0.0048 7.40E-08 2 2 0.0033 7.51E-08 5 16 0.0103 3.39E-07
z(l) 2 2 0.0160 1.86E-10 2 2 0.0068 1.86E-10 5 16 0.0273 5.84E-07
zg 2 2 0.0147 3.27E-10 2 2 0.0058 3.27E-10 5 16 0.0258 8.89E-07
zg 2 2 0.0123 3.40E-10 2 2 0.0097 3.40E-10 5 16 0.0342 9.23E-07
xé 2 2 0.0106 2.70E-10 2 2 0.0046 2.74E-10 5 16 0.0427 7.60E-07
zg 2 2 0.0149 2.70E-10 2 2 0.0092 2.74E-10 5 16 0.0336 7.60E-07
18 2 2 0.0154 3.39E-10 2 2 0.0079 3.39E-10 5 16 0.0328 9.23E-07
5000 z§ 2 2 0.0120 2.70E-10 2 2 0.0069 2.74E-10 5 16 0.0479  7.60E-07
18 2 2 0.0079 2.70E-10 2 2 0.0051 2.74E-10 5 16 0.0384 7.60E-07
zg 2 2 0.0177 1.14E-08 2 2 0.0082 1.14E-08 6 19 0.0347 2.45E-08
=50 2 2 0.0109 2.68E-10 2 2 0.0096  2.74E-10 5 16  0.0346  7.59E-07
xcl) 2 2 0.0115 1.64E-11 2 2 0.0152 1.64E-11 5 16 0.0779 8.26E-07
1(2) 2 2 0.0328 2.89E-11 2 2 0.0094 2.89E-11 6 19 0.0902 1.25E-08
zg 2 2 0.0236 3.01E-11 2 2 0.0107 3.01E-11 6 19 0.1176 1.29E-08
xé 2 2 0.0118 2.39E-11 2 2 0.0103 2.42E-11 6 19 0.0808 1.06E-08
18 2 2 0.0254 2.39E-11 2 2 0.0098 2.42E-11 6 19 0.1006 1.06E-08
18 2 2 0.0230 3.00E-11 2 2 0.0136 3.00E-11 6 19 0.0496 1.29E-08
10000 zd 2 2 0.0222 2.39E-11 2 2 0.0109 2.42E-11 6 19 0.0741  1.06E-08
xcs) 2 2 0.0237 2.39E-11 2 2 0.0114 2.42E-11 6 19 0.0697 1.06E-08
zg 2 2 0.0260 1.01E-09 2 2 0.0122 1.01E-09 6 19 0.0415 3.46E-08
1(1)0 2 2 0.0188 2.36E-11 2 2 0.0126 2.43E-11 6 19 0.1114 1.06E-08
x(l) 2 2 0.0475 9.93E-14 2 2 0.0308 9.93E-14 6 19 0.3162 1.83E-08
.Lg 2 2 0.0895 9.93E-14 2 2 0.0387 9.93E-14 6 19 0.2823 2.79E-08
zg 2 2 0.0783 9.93E-14 2 2 0.0417 9.93E-14 6 19 0.3582 2.89E-08
zg 2 2 0.0897 9.93E-14 2 2 0.0372 9.93E-14 6 19 0.3796 2.38E-08
acg 2 2 0.0850 9.93E-14 2 2 0.0254 9.93E-14 6 19 0.3152 2.38E-08
zg 2 2 0.0633 9.93E-14 2 2 0.0298 9.93E-14 6 19 0.4268 2.89E-08
50000 zg 2 2 0.0886 9.93E-14 2 2 0.0381 9.93E-14 6 19 0.3497 2.38E-08
xg 2 2 0.0712 9.93E-14 2 2 0.0366 9.93E-14 6 19 0.2974 2.38E-08
.Lg 2 2 0.0689 3.57TE-12 2 2 0.0312 3.57E-12 6 19 0.3753 7.75E-08
z(l)o 2 2 0.0927 9.68E-14 2 2 0.0394 9.93E-14 6 19 0.2708 2.38E-08
z(l) 2 2 0.1756 0 2 2 0.0567 0 6 19 0.6949 2.59E-08
acg 2 2 0.1803 0 2 2 0.0532 0 6 19 0.7878 3.94E-08
zg 2 2 0.1982 0 2 2 0.0454 0 6 19 0.5761 4.09E-08
1401 2 2 0.2140 0 2 2 0.0335 0 6 19 0.4159 3.37E-08
xg 2 2 0.1873 0 2 2 0.0722 0 6 19 0.6970 3.37E-08
xg 2 2 0.2016 0 2 2 0.0655 0 6 19 0.6519 4.09E-08
100 000 ) 2 2 0.1380 0 2 2 0.0815 0 6 19 0.7181  3.37E-08
zg 2 2 0.0927 0 2 2 0.0632 0 6 19 0.7006 3.37E-08
acg 2 2 0.1371 4.21E-13 2 2 0.0720 4.21E-13 7 22 0.7717 8.30E-08
30 2 2 0.1736 0 2 2 0.0592 0 6 19 0.6921 3.37TE-08
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TABLE B.6. Numerical results for dfnwt, df sane and msgp for Problem 6 with given initial
points and dimensions.

dfnwt dfsane msgp

Dimension zo F#iter #fval time Fnorm Fiter #fval time Fnorm F#iter F#fval time Fnorm
z(l) 40 72 0.0533 8.77TE-07 31 33 0.0146 7.08E-07 92 277 0.3843 8.19E-07
zg 40 67 0.0484 8.53E-07 28 32 0.0090 8.72E-07 67 202 0.1304 8.92E-07
xg 35 64 0.0466 9.95E-07 57 123 0.0349 8.85E-07 51 154 0.1110 8.23E-07
zé 33 62 0.0293 7.65E-07 16 18 0.0076 1.56E-07 85 256 0.1858 5.73E-07
zg 35 66 0.0349 9.71E-07 34 36 0.0091 3.42E-07 120 361 0.2866 8.43E-07
zg 35 56 0.0247 7.43E-07 21 25 0.0055 5.03E-07 73 220 0.1455 6.18E-07
1000 acg 33 62 0.0408 7.65E-07 16 18 0.0068 1.56E-07 78 235 0.1621 6.44E-07
zg 35 65 0.0554 9.05E-07 34 36 0.0108 3.41E-07 127 382 0.2510 9.76E-07
zg 41 60 0.0528 9.95E-07 35 41 0.0148 4.12E-07 118 355 0.5038 9.01E-07
ac(l)o 94 209 0.1801 5.68E-07 30 32 0.0075 6.20E-07 190 571 0.6026 9.74E-07
z(l) 40 69 0.1123 4.83E-07 31 33 0.0210 2.97E-07 86 259 1.0877 7.74E-07
zg 37 58 0.0677 7.05E-07 25 29 0.0354 7.49E-07 80 241 0.8746 8.51E-07
zg 34 59 0.0980 9.35E-07 18 29 0.0317 4.67E-07 61 184 1.7790 5.86E-07
xé 31 53 0.0669 4.43E-07 15 17 0.0178 7.61E-07 129 388 2.3796 8.90E-07
zg 37 70 0.1432 4.84E-07 28 30 0.0445 9.58E-07 136 409 1.9145 6.72E-07
zg 33 54 0.1486 5.96E-07 34 58 0.0457 5.78E-07 s 232 1.0393 8.28E-07
5000 xg 31 53 0.2064 4.36E-07 15 17 0.0130 7.61E-07 122 367 1.9055 8.53E-07
zg 33 60 0.1476 7.02E-07 28 30 0.0182 8.49E-07 132 397 1.6132 9.56E-07
zg 41 60 0.1488 9.95E-07 35 41 0.0207 9.98E-07 105 316 3.8145 9.82E-07
1(1)0 131 316 0.8585 7.63E-07 25 27 0.0278 9.51E-07 220 661 3.7618 9.11E-07
xcl) 41 71 0.2899 9.43E-07 29 31 0.0694 6.35E-07 107 322 3.1690 7.89E-07
zg 32 50 0.2106 8.24E-07 26 30 0.0605 6.56E-07 72 217 0.8598 6.79E-07
zg 30 50 0.1837 3.79E-07 18 29 0.0922 2.44E-07 50 151 3.4084 8.22E-07
xé 31 56 0.2773 4.55E-07 15 17 0.0369 5.32E-07 111 334 4.8736 7.53E-07
zg 31 54 0.2229 4.92E-07 29 31 0.0295 6.38E-07 138 415 3.7130 9.17E-07
zg 29 51 0.0876 8.08E-07 22 33 0.0590 8.30E-07 75 226 2.1067 6.79E-07
10000 zf 31 56 0.3922  4.55E-07 15 17 0.0352  5.32E-07 127 382 3.3177  7.95E-07
ocg 30 56 0.2666 9.34E-07 29 31 0.0633 6.32E-07 122 367 1.8483 9.19E-07
zg 41 60 0.3137 9.95E-07 38 44 0.0887 3.11E-07 107 322 3.5247 9.91E-07
zéo 147 361 1.6474 8.58E-07 30 32 0.0735 1.21E-07 380 1141 11.6596 6.62E-07
xé 39 68 1.1424 8.22E-07 31 33 0.3314 4.59E-07 94 283 84.4116 9.99E-07
lg 34 59 0.8731 9.09E-07 29 33 0.2046 5.68E-07 84 253 2.9527 6.51E-07
zg 29 51 0.8593 8.42E-07 30 65 0.3144 4.92E-07 57 172 48.0228 6.92E-07
zé 35 67 0.6959 4.17E-07 14 16 0.1137 9.98E-07 168 505 30.1035 8.46E-07
acg 37 64 1.2775 8.81E-07 32 34 0.2111 4.66E-07 161 484 27.2321 9.92E-07
zg 28 45 0.4870 9.49E-07 21 38 0.3314 7.15E-07 83 250 50.9847 8.51E-07
50 000 zg 35 67 1.1905 3.27E-07 14 16 0.1393 9.98E-07 151 454 19.1251 7.54E-07
xg 34 68 1.2195 9.84E-07 32 34 0.3719 4.65E-07 188 565 28.1683 8.33E-07
acg 41 60 0.9033 9.95E-07 37 43 0.3274 8.67E-08 122 367 59.6917 7.39E-07
z(l)o 233 602 5.9510 9.72E-07 23 25 0.1350 4.91E-07 542 1627 146.3774 9.65E-07
z(lJ 38 63 2.0318 8.84E-07 31 33 0.3072 5.24E-08 87 262 131.6085 4.84E-07
x% 32 49 1.1158 8.74E-07 30 34 0.4896 6.62E-07 83 250 93.8113 5.67E-07
zg 27 44 0.8171 7.75E-07 31 69 0.9839 5.19E-07 44 133 76.9730 8.42E-07
zé 32 59 2.0740 6.66E-07 15 17 0.1879 2.46E-07 266 799 201.0899 7.64E-07
x‘g 34 64 1.9653 9.22E-07 33 35 0.4335 3.45E-07 317 952 110.9200 7.13E-07
968 29 50 1.5946 9.39E-07 37 84 0.6884 5.85E-07 133 400 157.4404 9.84E-07
100 000 zg 32 59 1.6270 6.66E-07 15 17 0.2700 2.46E-07 288 865 318.6357 6.43E-07
zg 33 56 1.1224 5.06E-07 33 35 0.4357 3.45E-07 264 793 119.2909 9.78E-07
xg 41 60 1.5228 9.95E-07 38 44 0.5275 7.19E-07 123 370 133.8615 9.13E-07
10 269 708 15.3307 8.60E-07 24 26 0.3958 6.27TE-07 962 2887 900.0506 9.47E-07

Lo




ON THE DERIVATIVE-FREE QUASI-NEWTON-TYPE ALGORITHM FOR SEPARABLE SYSTEMS

3311

TABLE B.7. Numerical results for dfnwt, df sane and msgp for Problem 7 with given initial
points and dimensions.

dfnwt dfsane msgp

Dimension o F#iter #fval time Fnorm Fiter #fval time Fnorm F#iter F#fval time Fnorm
z(l] 26 26 0.0389 1.59E-08 26 26 0.0154 1.59E-08 9 28 0.0566 8.99E-10
1(2) 21 21 0.0306 5.41E-08 21 21 0.0126 5.41E-08 13 40 0.0208 9.71E-09
:cg 11 11 0.0157 2.44E-08 10 10 0.0066 1.85E-07 22 67 0.0344 6.38E-07
zé 27 27 0.0317 3.05E-08 24 24 0.0125 3.89E-08 33 100 0.0563 6.83E-07
zg 28 28 0.0408 9.89E-10 24 26 0.0114 3.92E-08 44 133 0.2208 9.78E-07
zg 12 12 0.0126 9.45E-07 14 14 0.0064 2.35E-08 29 88 0.0773 9.07E-07
1000 xg 27 27 0.0261 3.05E-08 24 24 0.0114 3.89E-08 31 94 0.0503 8.13E-07
zg 25 25 0.0186 1.16E-08 24 26 0.0121 3.97E-08 74 223 0.3885 7.70E-07
zg 30 30 0.0441 7.96E-07 30 30 0.0093 7.96E-07 14 43 0.0321 9.88E-09
z30 22 22 0.0326  6.52E-07 24 24  0.0113  7.12E-07 32 97 0.1153  9.79E-07
z(lj 30 30 0.0748 6.63E-07 30 30 0.0572 6.63E-07 14 43 0.1062 8.82E-10
1(2) 26 26 0.0593 2.65E-08 26 26 0.0413 2.65E-08 10 31 0.0967 1.10E-09
18 10 10 0.0648 8.16E-07 11 11 0.0188 2.69E-07 24 73 0.1847 5.44E-07
xé 30 30 0.1344 7.36E-08 29 29 0.0454 1.98E-08 16 49 0.3468 8.43E-07
zg 33 33 0.1106 3.90E-12 29 31 0.0354 1.99E-08 26 79 0.8413 9.03E-07
zg 14 14 0.0428 9.26E-08 15 15 0.0160 2.57E-07 21 64 0.4084 9.31E-07
5000 :cg 30 30 0.0619 7.36E-08 29 29 0.0348 1.98E-08 16 49 0.1925 8.43E-07
zg 29 29 0.1101 5.50E-07 29 31 0.3515 1.99E-08 18 55 0.2942 6.89E-07
zg 35 35 0.1438 3.08E-07 35 35 0.0260 3.08E-07 11 34 0.1426 1.23E-09
Z(IJO 26 26 0.0631 5.90E-07 29 29 0.0413 3.08E-07 22 67 0.1447 7.25E-07
xé 32 32 0.1637 6.64E-07 32 32 0.0851 6.62E-07 15 46 0.1205 5.97E-07
zg 28 28 0.2257 3.70E-08 28 28 0.0747 3.70E-08 11 34 0.2267 8.92E-07
z(s) 11 11 0.1028 4.09E-07 12 12 0.0513 3.01E-08 19 58 0.2064 6.81E-07
:cé 29 29 0.2824 8.92E-07 31 31 0.0483 2.86E-08 30 91 0.7539 7.04E-07
zg 32 32 0.1555 8.92E-07 31 33 0.0601 2.86E-08 24 73 0.9006 6.40E-07
zg 14 14 0.0606 7.62E-07 16 16 0.0196 5.30E-08 25 76 0.4245 7.66E-07
10000 x4 29 29 0.1073  8.92E-07 31 31  0.0554  2.86E-08 26 79 0.7302  7.33E-07
J:g 31 31 0.1736 5.61E-07 31 33 0.0836 2.86E-08 24 73 1.8388 9.30E-07
zg 37 37 0.3976 3.31E-07 37 37 0.0875 2.10E-07 12 37 0.1091 8.83E-07
z(l)o 29 29 0.2560 7.01E-07 31 31 0.0833 3.21E-07 21 64 1.2359 6.93E-07
:cé 37 37 1.0737 1.98E-07 37 37 0.3802 8.31E-07 10 31 0.5562 8.15E-07
z% 32 32 1.0826 3.48E-07 32 32 0.2863 3.36E-07 13 40 0.7298 5.40E-07
zg 11 11 0.3151 6.62E-07 12 12 0.1084 7.29E-07 18 55 0.9958 4.99E-07
zg 33 33 0.7453 1.32E-07 35 35 0.4130 4.31E-07 39 118 9.5604 8.23E-07
1:8 36 36 1.2797 1.84E-07 35 37 0.3255 2.87TE-07 32 97 3.0909 8.94E-07
zg 16 16 0.4167 7.97E-08 17 17 0.1161 1.73E-07 15 46 1.0542 6.70E-07
50 000 zg 33 33 0.5856 1.32E-07 35 35 0.4178 4.31E-07 30 91 7.3606 7.11E-07
:cg 36 36 0.4854 1.69E-07 35 37 0.4059 2.83E-07 26 79 3.5202 7.98E-07
:cg 40 41 0.5997 3.48E-07 43 49 0.3682 3.14E-07 14 43 1.0170 8.14E-07
zéo 34 34 0.4836 3.47E-07 35 35 0.2064 5.06E-07 89 268 25.9117 6.76E-07
1(1] 39 39 1.1127 1.62E-07 40 40 0.5971 1.63E-07 11 34 1.4187 6.09E-07
x% 34 34 2.2214 2.85E-07 34 34 0.6097 4.93E-07 7 22 0.9081 5.90E-07
z% 12 12 0.8829 1.51E-07 13 13 0.3555 1.59E-07 13 40 1.7163 7.90E-07
zé 34 34 2.1487 7.34E-07 38 38 0.8273 1.85E-07 10 31 1.2102 8.40E-07
:L‘g 38 38 2.5596 1.42E-07 37 39 0.8403 8.91E-07 10 31 1.2175 6.88E-07
:cg 16 16 0.8450 3.15E-07 17 17 0.2553 5.37TE-07 20 61 5.9072 8.52E-07
100 000 1(7) 34 34 1.1170 7.34E-07 38 38 0.4467 1.85E-07 10 31 1.2018 8.40E-07
zg 38 38 2.0177 1.39E-07 37 39 0.8196 5.45E-07 10 31 1.2149 6.88E-07
.108 41 43 2.4680 6.24E-07 41 47 0.6785 8.50E-07 8 25 1.0885 6.47E-08
10 36 36 2.2039 2.00E-07 38 38 0.4295 8.77TE-07 10 31 1.2719 7.93E-07

Lo




3312

H. MOHAMMAD ET AL.

TABLE B.8. Numerical results for dfnwt, df sane and msgp for Problem 8 with given initial
points and dimensions.

dfnwt dfsane msgp

Dimension o F#iter F#fval time Fnorm Fiter #fval time Fnorm F#iter #fval time Fnorm
z(l] 3 3 0.0231 3.19E-09 3 3 0.0124 3.19E-09 5 16 0.0869 1.53E-07
1(2] 2 2 0.0092 3.16E-08 2 2 0.0049 3.16E-08 3 10 0.1150 3.07E-08
:cg 3 3 0.0083 3.81E-14 2 2 0.0039 3.09E-07 7 22 0.1342 2.18E-08
zé 3 3 0.0096 1.12E-08 3 3 0.0174 3.81E-10 12 37 0.0488 6.98E-08
zg 3 3 0.0096 6.61E-10 3 3 0.0050 3.84E-10 10 31 0.0377 1.35E-07
zg 3 3 0.0070 5.40E-09 3 3 0.0355 1.70E-14 8 25 0.0297 7.01E-07
1000 mg 3 3 0.0093 1.12E-08 3 3 0.0054 3.81E-10 12 37 0.0247 6.98E-08
zg 3 3 0.0083 6.69E-10 3 3 0.0053 3.88E-10 11 34 0.0220 1.98E-08
zg 0 0 0.0037 0.00E+00 0 0 0.0052 0.00E+00 0 1 0.0073 0
:ccl,o 3 3 0.0084 2.71E-07 3 3 0.0055 8.22E-11 13 40 0.0611 2.00E-07
z(lj 3 3 0.0227 7.14E-09 3 3 0.0118 7.14E-09 5 16 0.0703 3.43E-07
1(2) 2 2 0.0363 7.07E-08 2 2 0.0109 7.07E-08 3 10 0.0319 6.86E-08
zg 3 3 0.0213 1.04E-11 2 2 0.0076 3.09E-07 7 22 1.2670 2.18E-08
mé 3 3 0.0570 1.14E-08 3 3 0.0131 8.64E-10 12 37 0.1550 5.00E-08
zg 3 3 0.0265 1.49E-09 3 3 0.0105 8.66E-10 11 34 0.1191 5.55E-08
zg 3 3 0.0502 5.34E-09 3 3 0.0121 1.69E-14 9 28 0.1539 4.39E-08
5000 :cg 3 3 0.0259 1.14E-08 3 3 0.0142 8.64E-10 12 37 0.1566 5.00E-08
zg 3 3 0.0363 1.49E-09 3 3 0.0121 8.68E-10 14 43 0.1882 2.47E-08
a:g 0 0 0.0049 0.00E4-00 0 0 0.0048 0.00E+00 0 1 0.0042 0
1(1)0 4 4 0.0673 6.66E-07 3 3 0.0131 1.65E-10 17 52 0.1649 1.52E-08
xé 3 3 0.0462 1.01E-08 3 3 0.0193 1.01E-08 5 16 0.0914 4.85E-07
z% 2 2 0.0514 1.00E-07 2 2 0.0140 1.00E-07 3 10 0.0408 9.71E-08
zg 3 3 0.0266 1.04E-11 2 2 0.0109 3.09E-07 7 22 2.2349 2.18E-08
:cé 3 3 0.0475 1.15E-08 3 3 0.0228 1.22E-09 11 34 0.1849 1.56E-07
:cg 3 3 0.0480 2.10E-09 3 3 0.0266 1.23E-09 11 34 0.1429 3.78E-08
938 3 3 0.0370 5.34E-09 3 3 0.0178 1.69E-14 8 25 0.1062 2.83E-07
10000 zf 3 3 0.0385 1.15E-08 3 3 0.0189 1.22E-09 11 34 0.2799  1.56E-07
xg 3 3 0.0336 2.11E-09 3 3 0.0226 1.23E-09 12 37 0.2799 1.41E-07
zg 0 0 0.0071 0.00E4-00 0 0 0.0252 0.00E+00 0 1 0.0051 0
zéo 4 4 0.0496 7.93E-07 3 3 0.0226 2.49E-10 21 64 0.4556 3.40E-08
:cé 3 3 0.1813 2.26E-08 3 3 0.1080 2.26E-08 6 19 0.6770 1.07E-08
:cg 2 2 0.1506 2.24E-07 2 2 0.0714 2.24E-07 3 10 0.3081 2.17E-07
a:g 3 3 0.0920 1.04E-11 2 2 0.0277 3.09E-07 7 22 18.6093 2.18E-08
zé 3 3 0.2179 1.23E-08 3 3 0.0886 2.74E-09 9 28 0.9879 1.77E-08
xg 3 3 0.1760 4.70E-09 3 3 0.0909 2.74E-09 12 37 1.1029 4.07E-07
zg 3 3 0.2484 5.33E-09 3 3 0.0776 1.69E-14 9 28 0.6215 2.54E-08
50000 x4 3 3 0.1713 1.23E-08 3 3 0.0720 2.74E-09 9 28 0.5934  1.77E-08
:c(gj 3 3 0.2158 4.71E-09 3 3 0.0599 2.74E-09 12 37 1.4156 2.86E-07
:cg 0 0 0.0291 0.00E4-00 0 0 0.0240 0.00E+00 0 1 0.0431 0
z(l)o 5 5 0.2753 1.33E-15 3 3 0.0717 5.65E-10 24 73 2.6680 1.63E-07
:c(lJ 3 3 0.4324 3.19E-08 3 3 0.1471 3.19E-08 6 19 1.2671 1.52E-08
:cg 2 2 0.2843 3.16E-07 2 2 0.1322 3.16E-07 3 10 0.7252 3.07E-07
z% 3 3 0.1546 1.04E-11 2 2 0.0826 3.09E-07 7 22 65.3287 2.18E-08
zé 3 3 0.3276 1.31E-08 3 3 0.1850 3.88E-09 7 22 1.4817 9.87E-07
:cg 3 3 0.4586 6.65E-09 3 3 0.1809 3.88E-09 12 37 2.3369 4.44E-07
:cg 3 3 0.3022 5.33E-09 3 3 0.1835 1.69E-14 9 28 1.9256 1.53E-08
100 000 1(7) 3 3 0.4076 1.31E-08 3 3 0.1899 3.88E-09 7 22 1.1533 9.87E-07
zg 3 3 0.3245 6.65E-09 3 3 0.1790 3.88E-09 12 37 2.1227 4.47E-07
ocg 0 0 0.0423 0.00E+-00 0 0 0.0398 0.00E+00 0 1 0.0820 0
z(l]O 5 5 0.6733 2.11E-18 3 3 0.1744 7.91E-10 20 61 4.9333 2.03E-07
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TABLE B.9. Numerical results for dfnwt, df sane and msgp for Problem 9 with given initial
points and dimensions.

dfnwt dfsane msgp
Dimension zo F#iter #fval time Fnorm Fiter F#fval time Fnorm F#iter #fval time Fnorm
z% F F F F 9 19 0.0711 7.69E-08 50 151 0.5026 9.73E-07
zg F F F F 21 30 0.0436 3.77E-07 67 202 0.4269 9.80E-07
x% 6 10 0.1611 3.92E-11 27 41 0.0285 1.31E-07 32 97 0.3032 5.63E-07
zé 6 10 0.0222 1.14E-07 8 16 0.0115 5.39E-07 35 106 0.1123 7.46E-07
18 7 11 0.0375 4.57TE-12 8 16 0.0230 4.30E-07 31 94 0.0933 5.80E-07
Ig 6 10 0.0293 9.34E-10 12 22 0.0118 4.28E-08 48 145 0.3150 8.87E-07
1000 ocg 6 10 0.0291 1.14E-07 8 16 0.0138 5.39E-07 37 112 0.1361 7.37TE-07
zg 7 11 0.0135 4.70E-12 8 16 0.0138 4.22E-07 33 100 0.0804 7.52E-07
zg F F F F 20 29 0.0235 7.35E-07 46 139 0.2161 7.70E-07
39(1)0 7 11 0.0390 3.08E-12 9 17 0.0116 6.06E-08 38 115 0.0732 7.30E-07
z(l) F F F F 10 22 0.0625 7.30E-08 60 181 1.1448 6.36E-07
zg F F F F 9 19 0.0457 9.03E-07 73 220 1.4328 5.90E-07
zg F F F F 27 37 0.0764 9.75E-07 79 238 1.1495 8.51E-07
océ 6 10 0.0250 7.43E-08 9 19 0.0694 2.80E-07 65 196 1.7019 8.20E-07
zg 6 10 0.0506 4.53E-11 10 20 0.0729 2.75E-08 51 154 1.0233 8.90E-07
zg F F F F 24 39 0.0990 1.22E-07 112 337 1.1675 8.92E-07
5000 acg 6 10 0.0195 7.43E-08 9 19 0.0353 2.80E-07 59 178 0.3586 7.84E-07
zg 6 10 0.0593 1.08E-10 9 19 0.0447 9.85E-07 43 130 0.4362 7.49E-07
18 F F F F 23 34 0.0804 1.46E-07 63 190 2.0268 7.53E-07
z(l)O 6 10 0.0904 3.06E-09 10 20 0.0817 1.35E-08 50 151 1.0678 6.00E-07
xcl) 37 88 0.8243 6.05E-07 10 22 0.0858 1.15E-08 60 181 1.1993 9.89E-07
z% 7 11 0.1119 1.27E-10 10 20 0.0582 9.55E-09 102 307 4.8826 9.01E-07
zg F F F F 23 33 0.1650 1.17E-07 113 340 3.3422 5.45E-07
acé 5 9 0.1246 9.26E-07 10 20 0.0896 1.09E-08 73 220 3.1656 6.60E-07
18 7 11 0.1311 1.77E-09 9 19 0.0787 3.11E-07 69 208 3.2133 7.06E-07
18 7 12 0.0808 1.37E-10 88 107 0.4210 6.62E-07 107 322 3.6785 8.99E-07
10 000 zg 5 9 0.0664 9.26E-07 10 20 0.0770 1.09E-08 58 175 2.1563 6.59E-07
acg 7 11 0.1071 1.75E-09 9 19 0.1426 3.15E-07 54 163 1.8405 9.31E-07
zg F F F F 24 35 0.3383 5.25E-07 98 295 4.9775 6.22E-07
zéo 7 11 0.0529 6.64E-11 10 20 0.0679 2.14E-07 56 169 1.1605 9.42E-07
x(l) F F F F 11 25 0.3264 6.24E-08 62 187 10.0833 7.58E-07
‘Lg 7 12 0.1846 1.46E-09 12 26 0.8253 6.72E-07 51 154 9.2918 7.31E-07
zg 7 12 0.3246 6.38E-08 F F F F 53 160 9.7014 8.61E-07
zg 7 12 0.4709 9.22E-10 10 22 0.1655 6.93E-07 56 169 6.7278 5.70E-07
acg 7 12 0.3799 1.37E-08 10 22 0.2751 8.16E-07 F F F F
zg F F F F 31 44 1.2958 4.08E-07 F F F F
50000 al 7 12 0.1788  9.22E-10 10 22 0.3327  6.93E-07 87 262 7.5469  7.97E-07
acg 7 12 0.4917 1.38E-08 10 22 0.6035 8.08E-07 58 175 12.0776 8.32E-07
Lg F F F F 25 38 0.9191 8.68E-07 515 1546 201.1150 5.91E-07
zéo 7 12 0.4765 3.41E-09 10 22 0.2823 4.48E-07 60 181 9.4425 5.33E-07
z(l’ F F F F 10 24 1.1012 3.35E-07 59 178 29.5893 5.30E-07
x% 7 12 0.3711 4.11E-09 10 22 0.8940 3.07E-07 57 172 22.1624 8.46E-07
z% F F F F F F F F 49 148 23.8793 5.04E-07
zé 7 12 0.9437 2.61E-09 10 22 0.4221 3.38E-07 58 175 25.5587 7.92E-07
J,‘g 7 12 1.0413 2.45E-08 10 22 0.3702 9.44E-07 52 157 21.8180 5.14E-07
acg F F F F 17 31 0.6667 9.47E-07 50 151 23.8697 5.05E-07
100 000 zg 7 12 0.4419 2.61E-09 10 22 0.3764 3.38E-07 58 175 22.9366 7.86E-07
zg 7 12 0.9948 2.45E-08 10 22 1.0433 9.54E-07 52 157 22.3546 5.16E-07
xg F F F F 26 39 1.1405 4.99E-07 1001 3004 1333.5561 98731745
30 7 12 0.9773 7.27E-09 11 23 0.8366 2.26E-08 59 178 20.6743 9.16E-07

8
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TABLE B.10. Numerical results for dfnwt, df sane and msgp for Problem 10 with given initial
points and dimensions.

dfnwt dfsane msgp
Dimension o #iter #fval time Fnorm #iter #fval time Fnorm #iter #fval time Fnorm
z} 141 222 0.2429  6.95E-07 F F F F 81 244 0.3434  9.92E-07
z3 133 209 0.1519  9.33E-07 F F F F 79 238 0.2446  9.83E-07
z3 159 261 0.1427  9.99E-07 F F F F 47 142 0.2845  9.72E-07
z3 107 174 0.1232  8.65E-07 F F F F 113 340 0.2719  9.60E-07
z 87 143 0.1853  6.61E-07 F F F F e 232 0.1107  6.66E-07
x5 146 216 0.2215  9.74E-07 F F F F 79 238 0.1403  9.26E-07
1000 x4 111 191 0.2251  7.69E-07 F F F F 92 277 0.2784  8.53E-07
z5 118 185 0.2335  9.00E-07 F F F F 90 271 0.2394  9.00E-07
z) F F F F F F F F F F F F
z30 249 500 0.1952  8.82E-07 F F F F 883 2650 4.4959  9.96E-07
z} 121 195 0.4829  9.72E-07 F F F F F F F F
z 156 250 0.5675  9.87E-07 F F F F 81 244 0.6790  8.94E-07
z3 161 261 0.6929  7.20E-07 F F F F 67 202 7.1707  9.81E-07
x5 113 187 0.5143  9.20E-07 F F F F F F F F
z 143 227 0.9067  9.37E-07 F F F F F F F F
z§ 138 221 0.5314  9.33E-07 F F F F 81 244 0.8107  1.00E-06
5000 x4 101 172 0.3722  7.60E-07 F F F F F F F F
z$ 109 176 0.3498  8.90E-07 F F F F F F F F
z 990 9850  23.4897  9.91E-07 F F F F F F F F
z3? 460 951 2.6919  8.48E-07 F F F F F F F F
z} 138 222 0.5810  9.38E-07 F F F F F F F F
x5 127 214 0.9605  7.21E-07 F F F F 86 259 1.6437  6.98E-07
z3 99 167 0.6457  9.66E-07 F F F F 65 196 15.7560  9.66E-07
zg 135 214 1.6665  6.63E-07 F F F F F F F F
*3 126 200 1.5207  9.93E-07 F F F F F F F F
z§ 153 249 1.1652  9.36E-07 F F F F 87 262 2.6951  9.99E-07
10000 x4 172 278 1.9711  8.48E-07 F F F F F F F F
z$ 132 211 1.2663  8.70E-07 F F F F F F F F
z 961 9498  23.2381  8.65E-07 F F F F F F F F
z}0 670 1534 5.9113  7.96E-07 F F F F F F F F
z} 124 198 3.1203  9.92E-07 F F F F F F F F
x5 119 194 2.6387  6.32E-07 F F F F 198 595 8.5793  9.11E-07
z 104 173 2.0316  9.36E-07 F F F F 58 175  126.7026  8.39E-07
zg 127 205 3.0142  6.67E-07 F F F F F F F F
*3 129 193 4.3183  9.49E-07 F F F F F F F F
z§ 139 233 6.2279  8.72E-07 F F F F 70 211 4.1423  9.76E-07
50 000 z§ 94 143 3.5436  7.93E-07 F F F F F F F F
z$ 125 188 4.0646  8.06E-07 F F F F F F F F
z) 245 1090  12.9963  8.50E-07 F F F F F F F F
z3? F F F F F F F F F F F F
z} 150 244 5.8961  8.89E-07 F F F F F F F F
x5 133 213 5.2076  9.94E-07 F F F F F F F F
z3 101 168 3.8083  8.27E-07 F F F F F F F F
x5 112 185 8.3720  8.91E-07 F F F F F F F F
x3 123 179 7.3988  9.91E-07 F F F F F F F F
z§ 132 220 8.7011  7.23E-07 F F F F F F F F
100 000 x4 131 212 8.6776  7.57E-07 F F F F F F F F
x5 151 234 9.5741  8.54E-07 F F F F F F F F
x 392 2982  68.1927  9.25E-07 F F F F F F F F
x}0 F F F F F F F F F F F F
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