In combining the value function approach and tangential subdifferentials, we establish necessary optimality conditions of a nonsmooth multiobjective bilevel programming problem under a suitable constraint qualification. The upper level objectives and constraint functions are neither assumed to be necessarily locally Lipschitz nor convex.
Keywords: Nonsmooth multiobjective optimization, bilevel programming, optimality conditions, optimal value function, constraint qualifications, tangential subdifferentials
@article{RO_2021__55_5_3041_0,
author = {Jennane, Mohsine and Kalmoun, El Mostafa and El Fadil, Lhoussain},
title = {Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials},
journal = {RAIRO. Operations Research},
pages = {3041--3048},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {5},
doi = {10.1051/ro/2021139},
zbl = {1491.90181},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2021139/}
}
TY - JOUR AU - Jennane, Mohsine AU - Kalmoun, El Mostafa AU - El Fadil, Lhoussain TI - Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials JO - RAIRO. Operations Research PY - 2021 SP - 3041 EP - 3048 VL - 55 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2021139/ DO - 10.1051/ro/2021139 LA - en ID - RO_2021__55_5_3041_0 ER -
%0 Journal Article %A Jennane, Mohsine %A Kalmoun, El Mostafa %A El Fadil, Lhoussain %T Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials %J RAIRO. Operations Research %D 2021 %P 3041-3048 %V 55 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro/2021139/ %R 10.1051/ro/2021139 %G en %F RO_2021__55_5_3041_0
Jennane, Mohsine; Kalmoun, El Mostafa; El Fadil, Lhoussain. Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials. RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 3041-3048. doi: 10.1051/ro/2021139
[1] , Optimization and Nonsmooth Analysis. Wiley, New York (1983). | Zbl
[2] , and , New necessary optimality conditions in optimistic bilevel programming. Optimization 56 (2007) 577–604. | Zbl | DOI
[3] , A note on the paper ``Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem’’. J. Ind. Manag. Optim. (2021). DOI: 10.3934/jimo.2021103 .
[4] and , Necessary optimality conditions and a new approach to multi-objective bilevel optimization problems. J. Optim. Theory Appl. 155 (2012) 100–114. | Zbl | DOI
[5] and , Optimality conditions for a bilevel optimization problem in terms of KKT multipliers and convexificators. Croatian Oper. Res. Rev. 10 (2019) 329–335. | Zbl | DOI
[6] and , Linear Semi-Infinite Optimization. Wiley, Chichester (1998). | Zbl
[7] , Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4 (1979) 79–97. | Zbl | DOI
[8] , Optimality conditions for optimistic bilevel programming problem using convexifactors. J. Optim. Theory Appl. 152 (2012) 632–651. | Zbl | DOI
[9] , , and , Necessary optimality conditions for a bilevel multiobjective programming problem via a -reformulation. Optimization 67 (2018) 2179–2189. | Zbl | DOI
[10] , An introduction to the theory of nonsmooth optimization. optimization 17 (1986) 827–858. | Zbl | DOI
[11] , Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints. Optim. Lett. 9 (2015) 1017–1023. | Zbl | DOI
[12] , and , Optimality conditions for nonconvex constrained optimization problems. Num. Funct. Anal. Optim. 40 (2019) 1918–1938. | Zbl | DOI
[13] and , A generalized derivative for calm and stable functions. Diff. Int. Equ. 5 (1992) 433–454. | Zbl
[14] , On the numerical solution of a class of Stackelberg problems. ZOR-Methods Mod. Oper. Res. 34 (1990) 255–277. | Zbl | DOI
[15] , Necessary Conditions for an Extremum. Marcel Dekker Inc., New York, NY (1971). | Zbl
[16] and , Characterizing the solution set of convex optimization problems without convexity of constraints. Optim. Lett. 14 (2020) 1127–1144. | Zbl | DOI
[17] , Necessary optimality conditions for multiobjective bilevel programs. Math. Oper. Res. 36 (2011) 165–184. | Zbl | DOI
[18] and , Optimality conditions for bilevel programming problems. Optimization 33 (1995) 9–27. | Zbl | DOI
[19] , Nonlinear Programming: A Unified Approach. Prentice-Hall, Englewood Cliffs, NJ (1969). | Zbl
Cité par Sources :





