Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials
RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 3041-3048

In combining the value function approach and tangential subdifferentials, we establish necessary optimality conditions of a nonsmooth multiobjective bilevel programming problem under a suitable constraint qualification. The upper level objectives and constraint functions are neither assumed to be necessarily locally Lipschitz nor convex.

DOI : 10.1051/ro/2021139
Classification : 49J52, 90C46, 58E35
Keywords: Nonsmooth multiobjective optimization, bilevel programming, optimality conditions, optimal value function, constraint qualifications, tangential subdifferentials
@article{RO_2021__55_5_3041_0,
     author = {Jennane, Mohsine and Kalmoun, El Mostafa and El Fadil, Lhoussain},
     title = {Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials},
     journal = {RAIRO. Operations Research},
     pages = {3041--3048},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/ro/2021139},
     zbl = {1491.90181},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021139/}
}
TY  - JOUR
AU  - Jennane, Mohsine
AU  - Kalmoun, El Mostafa
AU  - El Fadil, Lhoussain
TI  - Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 3041
EP  - 3048
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021139/
DO  - 10.1051/ro/2021139
LA  - en
ID  - RO_2021__55_5_3041_0
ER  - 
%0 Journal Article
%A Jennane, Mohsine
%A Kalmoun, El Mostafa
%A El Fadil, Lhoussain
%T Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials
%J RAIRO. Operations Research
%D 2021
%P 3041-3048
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021139/
%R 10.1051/ro/2021139
%G en
%F RO_2021__55_5_3041_0
Jennane, Mohsine; Kalmoun, El Mostafa; El Fadil, Lhoussain. Optimality conditions for nonsmooth multiobjective bilevel optimization using tangential subdifferentials. RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 3041-3048. doi: 10.1051/ro/2021139

[1] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983). | Zbl

[2] S. Dempe, J. Dutta and B. S. Mordukhovich, New necessary optimality conditions in optimistic bilevel programming. Optimization 56 (2007) 577–604. | Zbl | DOI

[3] N. A. Gadhi, A note on the paper ``Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem’’. J. Ind. Manag. Optim. (2021). DOI: 10.3934/jimo.2021103 .

[4] N. Gadhi and S. Dempe, Necessary optimality conditions and a new approach to multi-objective bilevel optimization problems. J. Optim. Theory Appl. 155 (2012) 100–114. | Zbl | DOI

[5] N. A. Gadhi and L. Lafhim, Optimality conditions for a bilevel optimization problem in terms of KKT multipliers and convexificators. Croatian Oper. Res. Rev. 10 (2019) 329–335. | Zbl | DOI

[6] M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization. Wiley, Chichester (1998). | Zbl

[7] J. B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4 (1979) 79–97. | Zbl | DOI

[8] B. Kohli, Optimality conditions for optimistic bilevel programming problem using convexifactors. J. Optim. Theory Appl. 152 (2012) 632–651. | Zbl | DOI

[9] L. Lafhim, N. Gadhi, K. Hamdaoui and F. Rahou, Necessary optimality conditions for a bilevel multiobjective programming problem via a Ψ -reformulation. Optimization 67 (2018) 2179–2189. | Zbl | DOI

[10] C. Lemaréchal, An introduction to the theory of nonsmooth optimization. optimization 17 (1986) 827–858. | Zbl | DOI

[11] J. E. Martínez-Legaz, Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints. Optim. Lett. 9 (2015) 1017–1023. | Zbl | DOI

[12] F. Mashkoorzadeh, N. Movahedian and S. Nobakhtian, Optimality conditions for nonconvex constrained optimization problems. Num. Funct. Anal. Optim. 40 (2019) 1918–1938. | Zbl | DOI

[13] P. Michel and J.-P. Penot, A generalized derivative for calm and stable functions. Diff. Int. Equ. 5 (1992) 433–454. | Zbl

[14] J. V. Outrata, On the numerical solution of a class of Stackelberg problems. ZOR-Methods Mod. Oper. Res. 34 (1990) 255–277. | Zbl | DOI

[15] B. N. Pshenichnyi, Necessary Conditions for an Extremum. Marcel Dekker Inc., New York, NY (1971). | Zbl

[16] N. Sisarat and R. Wangkeeree, Characterizing the solution set of convex optimization problems without convexity of constraints. Optim. Lett. 14 (2020) 1127–1144. | Zbl | DOI

[17] J. J. Ye, Necessary optimality conditions for multiobjective bilevel programs. Math. Oper. Res. 36 (2011) 165–184. | Zbl | DOI

[18] J. J. Ye and D. L. Zhu, Optimality conditions for bilevel programming problems. Optimization 33 (1995) 9–27. | Zbl | DOI

[19] W. I. Zangwill, Nonlinear Programming: A Unified Approach. Prentice-Hall, Englewood Cliffs, NJ (1969). | Zbl

Cité par Sources :