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OPTIMALITY CONDITIONS FOR NONSMOOTH MULTIOBJECTIVE BILEVEL
OPTIMIZATION USING TANGENTIAL SUBDIFFERENTIALS

Mohsine Jennane1, El Mostafa Kalmoun2,* and Lhoussain El Fadil1

Abstract. In combining the value function approach and tangential subdifferentials, we establish
necessary optimality conditions of a nonsmooth multiobjective bilevel programming problem under
a suitable constraint qualification. The upper level objectives and constraint functions are neither
assumed to be necessarily locally Lipschitz nor convex.
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1. Introduction

Bilevel programming is considered to be one of the important areas in optimization and operations research
due to its many applications in various fields (economics, logistics, transportation, engineering and computer
science, etc). The problem is stated at two levels of hierarchy in which the feasible set of decisions at the upper
level is implicitly related with the solution set at the lower level.

This paper treats the case of bilevel programs in which the upper level decision requires minimizing a vector
function 𝐹 : R𝑛 × R𝑚 → R𝑝, while the lower level involves a single objective 𝑓 : R𝑛 × R𝑚 → R. This program
has the following form

R𝑝
+ −min

𝑥,𝑦
𝐹 (𝑥, 𝑦) = (𝐹1, . . . , 𝐹𝑝)(𝑥, 𝑦)

subject to 𝐺𝑗(𝑥, 𝑦) ≤ 0, for all 𝑗 ∈ J := {1, . . . , 𝑞},
𝑦 ∈ 𝑆(𝑥), (1.1)

with the upper level constraints being written in terms of the leader’s constraint function 𝐺𝑗 : R𝑛 ×R𝑚 → R𝑞,
𝑗 ∈ J, as well as the follower’s region of rational reactions 𝑆(𝑥), which represents the solution set to

min
𝑦

𝑓(𝑥, 𝑦)

subject to 𝑔𝑖(𝑥, 𝑦) ≤ 0, for all 𝑖 ∈ I := {1, . . . , 𝑙}, (1.2)
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with 𝑔𝑖 : R𝑛 × R𝑚 → R𝑙, 𝑖 ∈ I, denote the lower level constraints.
The same problem has been investigated by many authors. In employing both the value function as well as the

KKT conditions of (1.2), necessary optimality conditions were established in [17] under smooth settings. In [4,9],
necessary optimality conditions were derived for Pareto optimal solutions using the Hiriart-Urruty scalariza-
tion [7], under the use of Clarke’s generalized Jacobian with the nonsmooth Mangasarian–Fromovitz constraint
qualification in the first paper [4], and convexificators with a generalized Abadie’s constraint qualification in
the latter paper [9].

In this work, we take up the general concept of local weakly efficiency with respect to Problem (1.1) which
is multiobjective. Letting

𝑆 := {(𝑥, 𝑦) ∈ R𝑛 × R𝑚 : 𝑦 ∈ 𝑆(𝑥), 𝐺𝑗(𝑥, 𝑦) ≤ 0, for all 𝑗 ∈ J}

be the leader’s feasible region, a pair (̂︀𝑥, ̂︀𝑦) ∈ 𝑆 is called a local weakly efficient solution of (1.1) and (1.2) if
there is an open set 𝑈0 × 𝑉0 containing (̂︀𝑥, ̂︀𝑦) such that

𝐹 (𝑥, 𝑦)− 𝐹 (̂︀𝑥, ̂︀𝑦) /∈ −int R𝑛
+ ∀(𝑥, 𝑦) ∈ 𝑆 ∩ (𝑈0 × 𝑉0). (1.3)

Our aim is to apply the value function approach as well as the notion of tangential subdifferentials as
mathematical tools in order to establish the optimality conditions that must hold at any local weakly efficient
solution of the problem (1.1) and (1.2). The latter tool includes many types of subdifferentials like Gâteaux
derivatives or convex subdifferentials and coincides with those of Clarke and Michel-Penot, in the case of locally
Lipschitz functions that are Clarke regular and MP regular, respectively. It coincides also with upper regular
convexificator in the case of tangentially convex functions. Moreover, we employ a specific constraint qualification
which is weaker than the Zangwill constraint qualification [19] and other known constraint qualifications like
Cottle, Mangasarian–Fromovitz, Kuhn–Tucker, etc.

After this introduction, our paper has the following structure. In Section 2, we give the notations and
definitions needed in the sequel. In Section 3, we reformulate the bilevel program (1.1) and (1.2) and we present
some constraint qualifications in terms of tangential subdifferentials with a statement of the relationship between
them. In Section 4, necessary conditions are derived under a suitable constraint qualification. An example is
given at the end to clarify the main result.

2. Notations and preliminaries

We follow the standard notation employed in nonlinear optimization. First, letting ∅ ̸= 𝒞 ⊆ R𝑛, by the sets
int 𝒞, co 𝒞, 𝒞∘, 𝒞𝑠 we mean the interior, convex hull, negative and strictly negative polar cone of 𝒞, respectively.

The convex cone generated by 𝒞 contains exactly all conic combinations of the elements of 𝒞, it can be
expressed as follows:

cone(𝒞) :=

{︃
𝜉 ∈ R𝑛 : 𝜉 =

𝑟∑︁
𝑖=1

𝛼𝑖𝜉𝑖, 𝛼𝑖 ≥ 0, 𝜉𝑖 ∈ 𝒞, 𝑖 = 1, 2, . . . , 𝑟, 𝑟 ≥ 1

}︃
.

Recall that for any two sets 𝒞1 and 𝒞2 in R𝑛 one has

cone(𝒞1 ∪ 𝒞2) = cone(𝒞1) + cone(𝒞2). (2.1)

We recall also three notions of tangent cones: feasible directions, weak feasible directions and contingent, which
are given with respect to 𝒞 and an element 𝑧 ∈ cl 𝒞 as follows

𝐷(𝒞, 𝑧) := {𝜉 ∈ R𝑛 : ∃𝛿 > 0, ∀𝛼 ∈ (0, 𝛿), 𝑧 + 𝛼𝜉 ∈ 𝒞},
𝑊𝐷(𝒞, 𝑧) := {𝜉 ∈ R𝑛 : ∃𝑡𝑛 ↓ 0, ∀𝑛 ∈ N, 𝑧 + 𝑡𝑛𝜉 ∈ 𝒞},
𝑇 (𝒞, 𝑧) := {𝜉 ∈ R𝑛 : ∃𝑡𝑘 ↓ 0, ∃𝜉𝑘 → 𝜉, 𝑧 + 𝑡𝑘𝜉𝑘 ∈ 𝒞}.
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It is a direct matter to check that 𝐷(𝒞, 𝑧) ⊆ 𝑊𝐷(𝒞, 𝑧) ⊆ 𝑇 (𝒞, 𝑧). Note that the cone 𝐷(𝒞, 𝑧) is in general
not convex nor closed, whereas 𝑇 (𝒞, 𝑧) is closed but not necessarily convex, and when 𝒞 is convex, 𝐷(𝒞, 𝑧) =
𝑊𝐷(𝒞, 𝑧)

Let 𝜙 : R𝑛 → R. The function 𝜙 is said to be tangentially convex at 𝑧 ∈ R𝑛 [15] if its directional derivative
(also known as Dini derivative) at 𝑧,

𝜙′(𝑧, 𝜉) := lim
𝑡↓0

𝜙(𝑧 + 𝑡𝜉)− 𝜙(𝑧)
𝑡

,

is finite for any direction 𝜉 ∈ R𝑛 and convex in this argument. Observe that we have sublinearity of the directional
derivative of any tangentially convex function since it is positive homogeneous. Realize that if 𝜙 is Hadamard
directionally differentiable, then its Hadamard directional derivative reduces to it directional derivative. For the
converse, 𝜙 is Hadamard directionally differentiable at 𝑧 in 𝜉 if 𝜙 is locally Lipschitz at 𝑧 and directionally
differentiable. On the other hand, the tangential subdifferential of 𝜙 : R𝑛 → R at 𝑧 ∈ R𝑛 is given by [10,15]

𝜕𝑇𝜙(𝑧) :=
{︂
𝑦* ∈ R𝑛 : ⟨𝑦*, 𝜉⟩ ≤ 𝜙′(𝑧, 𝜉) ∀𝜉 ∈ R𝑛

}︂
. (2.2)

For a tangentially convex function, this subdifferential is nonempty, compact and convex (see [11]). Furthermore,
tangentially convex functions constitute a large class that contains convex functions on open domains where
the tangential subdifferential falls into the classical Fréchet subdifferential, Gâteaux differentiable functions on
open domains with a tangential subdifferential reduced to the gradient. This class also includes locally Lipschitz
functions that are either Clarke regular [1] or Michel-Penot regular [13], and their tangential subdifferential is
equal to that of Clarke in the first case and Michel-Penot in the second.

Notice that if 𝜙 is tangentially convex at 𝑧, then it follows from the sublinearity of 𝜙′(𝑧, .) that (2.2) is
equivalent to

𝜙′(𝑧, 𝜉) = max
𝑧*∈𝜕𝑇 𝜙(𝑧)

⟨𝑧*, 𝜉⟩,∀ 𝜉 ∈ R𝑛,

which implies that

inf
𝑧*∈𝜕𝑇 𝜙(𝑧)

⟨𝑧*, 𝜉⟩ ≤ 𝜙+
𝑑 (𝑧, 𝜉) = 𝜙′(𝑧, 𝜉) = 𝜙−𝑑 (𝑧, 𝜉) ≤ sup

𝑧*∈𝜕𝑇 𝜙(𝑧)

⟨𝑧*, 𝜉⟩,∀ 𝜉 ∈ R𝑛,

where 𝜙+
𝑑 (𝑧, 𝜉) and 𝜙−𝑑 (𝑧, 𝜉) denote respectively the upper and lower Dini directional derivatives of 𝜙 at 𝑧 in

the direction 𝜉. Then, 𝜕𝑇𝜙(𝑧) is a convexificator of 𝜙 at 𝑧.
Note also that the definition of tangential subdifferential coincides with that of upper regular convexificator

in the case of tangentially convex functions since 𝜙′(𝑧, 𝜉) = 𝜙+
𝑑 (𝑧, 𝜉) = sup𝑧*∈𝜕𝑇 𝜙(𝑧)⟨𝑧*, 𝜉⟩,∀ 𝜉 ∈ R𝑛.

3. Reformulation of the bilevel program and constraint qualifications

In order to convert the bilevel program (1.1) to an equivalent single-level program, we are going to employ
the value function approach [14,18]. Let us first denote the value function of the program (1.2) by

𝜑(𝑥) := inf
𝑦

{︂
𝑓(𝑥, 𝑦) : 𝑔𝑖(𝑥, 𝑦) ≤ 0 for all 𝑖 ∈ I

}︂
, (3.1)

where by convention inf ∅ = +∞. The leader program (1.1) can be restated as follows

R𝑝
+ −min

𝑥,𝑦
𝐹 (𝑥, 𝑦) = (𝐹1, . . . , 𝐹𝑝)(𝑥, 𝑦)

subject to 𝐺𝑗(𝑥, 𝑦) ≤ 0, for all 𝑗 ∈ J,
𝑔𝑖(𝑥, 𝑦) ≤ 0, for all 𝑖 ∈ I,
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𝑓(𝑥, 𝑦)− 𝜑(𝑥) ≤ 0. (3.2)

The feasible set of (3.2) is

Ξ := {(𝑥, 𝑦) ∈ R𝑛 × R𝑚 | 𝐺𝑗(𝑥, 𝑦) ≤ 0, 𝑗 ∈ J, 𝑔𝑖(𝑥, 𝑦) ≤ 0, 𝑖 ∈ I, 𝑓(𝑥, 𝑦)− 𝜑(𝑥) ≤ 0}.

Given a point (̂︀𝑥, ̂︀𝑦) ∈ Ξ, we consider the index sets

I(̂︀𝑥, ̂︀𝑦) := {𝑖 ∈ I : 𝑔𝑖(̂︀𝑥, ̂︀𝑦) = 0} and J(̂︀𝑥, ̂︀𝑦) := {𝑗 ∈ J : 𝐺𝑗(̂︀𝑥, ̂︀𝑦) = 0}.

Suppose that 𝐹𝑘, 𝑘 ∈ K := {1, . . . , 𝑝} and 𝐺𝑗 , 𝑗 ∈ J(̂︀𝑥, ̂︀𝑦) are tangentially convex at (̂︀𝑥, ̂︀𝑦), and that 𝑓 and 𝑔𝑖,
𝑖 ∈ I(̂︀𝑥, ̂︀𝑦) are convex. We can easily show the convexity of 𝜑.

In the following definition, we give three constraint qualifications:

Definition 3.1. Let

Γ(̂︀𝑥, ̂︀𝑦) :=
⋃︁

𝑖∈I(̂︀𝑥,̂︀𝑦)

𝜕𝑇 𝑔𝑖(̂︀𝑥, ̂︀𝑦) ∪
⋃︁

𝑗∈J(̂︀𝑥,̂︀𝑦)

𝜕𝑇𝐺𝑗(̂︀𝑥, ̂︀𝑦) ∪ (𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦)− 𝜕𝑇𝜑(̂︀𝑥)× {0}).

We say that:

– Zangwill constraint qualification (𝜕𝑇 -ZCQ) is verified at (̂︀𝑥, ̂︀𝑦) if

(Γ(̂︀𝑥, ̂︀𝑦))∘ ⊆ 𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)).

– Weak Zangwill constraint qualification (𝜕𝑇 -WZCQ) is verified at (̂︀𝑥, ̂︀𝑦) if

(Γ(̂︀𝑥, ̂︀𝑦))∘ ⊆ 𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)).

Remark 3.2. Since 𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)) ⊆𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)), then 𝜕𝑇 -ZCQ ⇒ 𝜕𝑇 -WZCQ.

4. Necessary optimality conditions

Before we proceed to establish our new necessary optimality conditions for local weakly efficient solution of
(1.1) by means of the tangential subdifferential, we recall this lemma from [6].

Lemma 4.1 ([6]). Consider two arbitrary index sets 𝑉 and 𝑊 (possibly infinite), and two maps 𝜙 : 𝑉 → R𝑛

and 𝜓 : 𝑊 → R𝑛.
If the set co{𝜙(𝑣), 𝑣 ∈ 𝑉 }+ cone{𝜓(𝑤), 𝑤 ∈𝑊} is closed, then the following two statements are equivalent:

(i)

{︃
⟨𝜙(𝑣), 𝑑⟩ < 0, 𝑣 ∈ 𝑉, 𝑉 ̸= ∅,
⟨𝜓(𝑤), 𝑑⟩ ≤ 0, 𝑤 ∈𝑊,

has no solution 𝑑 ∈ R𝑛.

(ii) 0 ∈ co{𝜙(𝑣), 𝑣 ∈ 𝑉 }+ cone{𝜓(𝑤), 𝑤 ∈𝑊}.

Theorem 4.2. Assume the point (̂︀𝑥, ̂︀𝑦), a local weakly efficient solution of (1.1), is such that

(1) 𝐹𝑘, 𝑘 ∈ K, and 𝐺𝑗, 𝑗 ∈ J(̂︀𝑥, ̂︀𝑦) are tangentially convex at (̂︀𝑥, ̂︀𝑦), and that 𝑓 and 𝑔𝑖, 𝑖 ∈ I(̂︀𝑥, ̂︀𝑦) are convex.
(2) The 𝜕𝑇 -WZCQ holds at (̂︀𝑥, ̂︀𝑦).
(3) The set

𝐷 := cone

⎛⎝ ⋃︁
𝑖∈I(̂︀𝑥,̂︀𝑦)

𝜕𝑇 𝑔𝑖(̂︀𝑥, ̂︀𝑦) ∪
⋃︁

𝑗∈J(̂︀𝑥,̂︀𝑦)

𝜕𝑇𝐺𝑗(̂︀𝑥, ̂︀𝑦) ∪ (𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦)− 𝜕𝑇𝜑(̂︀𝑥)× {0})

⎞⎠
is closed.
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Then there exists 𝛼 = (𝛼1, . . . , 𝛼𝑚) ∈ R𝑚
+ with

∑︀𝑝
𝑘=1 𝛼𝑘 = 1, such that

0 ∈
𝑝∑︁

𝑘=1

𝛼𝑖 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦) +
∑︁

𝑖∈I(̂︀𝑥,̂︀𝑦)

cone 𝜕𝑇 𝑔𝑖(̂︀𝑥, ̂︀𝑦) +
∑︁

𝑗∈J(̂︀𝑥,̂︀𝑦)

cone 𝜕𝑇𝐺𝑗(̂︀𝑥, ̂︀𝑦) (4.1)

+ cone(𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦)− 𝜕𝑇𝜑(̂︀𝑥)× {0}). (4.2)

Proof. First, by definition of local weak efficiency, there is an open set 𝑈 × 𝑉 of (̂︀𝑥, ̂︀𝑦) such that there is no
(𝑥, 𝑦) ∈ Ξ ∩ (𝑈 × 𝑉 ) with

𝐹𝑘(𝑥, 𝑦) < 𝐹𝑘(̂︀𝑥, ̂︀𝑦); ∀𝑘 ∈ K.

We claim that (︃⋃︁
𝑘∈K

𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)

)︃𝑠

∩𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)) = ∅. (4.3)

Indeed, contrary to our claim, suppose there exists

𝑧* = (𝑧*1 , 𝑧
*
2) ∈

(︃⋃︁
𝑘∈K

𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)

)︃𝑠

∩𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)),

then we get 𝑧* ∈
(︀⋃︀

𝑘∈K 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)
)︀𝑠 and 𝑧* ∈𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)).

Note first that, from 𝑧* ∈
(︀⋃︀

𝑘∈K 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)
)︀𝑠, it follows that

⟨𝑤*, 𝑧*⟩ < 0, ∀𝑤* ∈ 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦), ∀𝑘 ∈ K. (4.4)

For each 𝑘 ∈ K, define 𝜙𝑘 : 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦) ⊂ R𝑛 × R𝑚 → R as

𝜙𝑘(𝑤*) = ⟨𝑤*, 𝑧*⟩, ∀𝑤* ∈ 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦).

The continuity of 𝜙𝑘 on 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦), which is compact, implies the existence of 𝑤* ∈ 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦) with 𝜙𝑘(𝑤*) =
max𝑤*∈𝜕𝑇 𝐹𝑘(̂︀𝑥,̂︀𝑦)⟨𝑤*, 𝑧*⟩. Hence, according to (4.4), we obtain for every 𝑘 ∈ K

𝐹 ′𝑘(̂︀𝑥, ̂︀𝑦, 𝑧*) = max
𝑤*∈𝜕𝑇 𝐹𝑘(̂︀𝑥,̂︀𝑦)

⟨𝑤*, 𝑧*⟩ = ⟨𝑤*, 𝑧*⟩ < 0. (4.5)

Now, since 𝑧* = (𝑧*1 , 𝑧
*
2) ∈ 𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)), there is 𝑡𝑠 ↓ 0 satisfying (̂︀𝑥, ̂︀𝑦) + 𝑡𝑠(𝑧*1 , 𝑧

*
2) ∈ Ξ for all 𝑠 ∈ N.

Taking into account that the point (̂︀𝑥, ̂︀𝑦) is a local weakly efficient solution of (1.1), we obtain that there is
(̂︀𝑥, ̂︀𝑦) + 𝑡𝑠(𝑧*1 , 𝑧

*
2) ∈ 𝐵((̂︀𝑥, ̂︀𝑦), 𝛿), for some 𝛿 > 0 and for 𝑠 large enough, such that there is 𝑘 ∈ K satisfying

𝐹𝑘((̂︀𝑥, ̂︀𝑦) + 𝑡𝑠(𝑧*1 , 𝑧
*
2)) ≥ 𝐹𝑘(̂︀𝑥, ̂︀𝑦). In combining this with the fact that

𝐹 ′
𝑘
((̂︀𝑥, ̂︀𝑦), (𝑧*1 , 𝑧

*
2)) = lim

𝑠→∞

𝐹𝑘((̂︀𝑥, ̂︀𝑦) + 𝑡𝑠(𝑧*1 , 𝑧
*
2))− 𝐹𝑘(̂︀𝑥, ̂︀𝑦)

𝑡𝑠
,

we obtain 𝐹 ′
𝑘
((̂︀𝑥, ̂︀𝑦), (𝑧*1 , 𝑧

*
2)) ≥ 0 for 𝑘 ∈ K, which contradicts (4.5), and consequently, (4.3) is fulfilled. Thus,

int

(︃⋃︁
𝑘∈K

𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)

)︃𝑠

∩ cl(𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦))) =

(︃⋃︁
𝑘∈K

𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)

)︃𝑠

∩ cl(𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦))) = ∅.

On the basis of 𝜕𝑇 -WZCQ, we have(︃⋃︁
𝑘∈K

𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)

)︃𝑠

∩

⎛⎝ ⋃︁
𝑖∈I(̂︀𝑥,̂︀𝑦)

𝜕𝑇 𝑔𝑖(̂︀𝑥, ̂︀𝑦)

⎞⎠∘ ∩
⎛⎝ ⋃︁

𝑗∈J(̂︀𝑥,̂︀𝑦)

𝜕𝑇𝐺𝑗(̂︀𝑥, ̂︀𝑦)

⎞⎠∘ ∩ (𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦)− 𝜕𝑇𝜑(̂︀𝑥)× {0})∘ = ∅.

(4.6)
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Then, from (4.6), we see that the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨𝜁𝑘, 𝑧*⟩ < 0, ∀ 𝑘 ∈ K, ∀𝜁𝑘 ∈ 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦),
⟨𝜗𝑗 , 𝑧

*⟩ ≤ 0, ∀ 𝑗 ∈ J, ∀𝜗𝑗 ∈ 𝜕𝑇𝐺𝑗(̂︀𝑥, ̂︀𝑦),
⟨𝜃𝑖, 𝑧

*⟩ ≤ 0, ∀ 𝑖 ∈ I, ∀𝜁𝑖 ∈ 𝜕𝑇 𝑔𝑖(̂︀𝑥, ̂︀𝑦),
⟨𝜂, 𝑧*⟩ ≤ 0, ∀𝜂𝑘 ∈ 𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦)− 𝜕𝑇𝜑(̂︀𝑥)× {0},

has no solution 𝑧* ∈ R𝑛 × R𝑚. On the other hand, since 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦) is compact for each 𝑘 ∈ K, the set⋃︀𝑝
𝑘=1(𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)) is also compact, and hence

⋃︀𝑝
𝑘=1(𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)) +𝐷 is closed because so is 𝐷. Thus, by virtue

of Lemma 4.1, we are led to

(0, 0) ∈ co

(︃
𝑝⋃︁

𝑘=1

𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦)

)︃
+ cone

⎛⎝ ⋃︁
𝑖∈I(̂︀𝑥,̂︀𝑦)

𝜕𝑇 𝑔𝑖(̂︀𝑥, ̂︀𝑦) ∪
⋃︁

𝑗∈J(̂︀𝑥,̂︀𝑦)

𝜕𝑇𝐺𝑗(̂︀𝑥, ̂︀𝑦) ∪ (𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦)− 𝜕𝑇𝜑(̂︀𝑥)× {0})

⎞⎠.
Taking into account that tangential subdifferentials are convex, there exist nonnegative scalars 𝛼𝑘, 𝑘 ∈ K with∑︀𝑝

𝑘=1𝛼𝑘 = 1 such that

(0, 0) ∈
𝑝∑︁

𝑘=1

𝛼𝑘 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦) + cone

⎛⎝ ⋃︁
𝑖∈I(̂︀𝑥,̂︀𝑦)

𝜕𝑇 𝑔𝑖(̂︀𝑥, ̂︀𝑦) ∪
⋃︁

𝑗∈J(̂︀𝑥,̂︀𝑦)

𝜕𝑇𝐺𝑗(̂︀𝑥, ̂︀𝑦) ∪ (𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦)− 𝜕𝑇𝜑(̂︀𝑥)× {0})

⎞⎠.
Consequently by (2.1) that yields

(0, 0) ∈
𝑝∑︁

𝑘=1

𝛼𝑖 𝜕𝑇𝐹𝑘(̂︀𝑥, ̂︀𝑦) +
∑︁

𝑖∈I(̂︀𝑥,̂︀𝑦)

cone 𝜕𝑇 𝑔𝑖(̂︀𝑥, ̂︀𝑦) +
∑︁

𝑗∈J(̂︀𝑥,̂︀𝑦)

cone 𝜕𝑇𝐺𝑗(̂︀𝑥, ̂︀𝑦) + cone(𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦)− 𝜕𝑇𝜑(̂︀𝑥)× {0}).

�

Remark 4.3. From Remark 3.2, our main result remains true if we replace 𝜕𝑇 -WZCQ with 𝜕𝑇 -ZCQ.

Remark 4.4. In (3.2), without the two last inequalities, we obtain the same problem studied in many papers
as [11,12,16] with different constraint qualifications. In the future, it is possible to consider finding new results
related to bilevel problems based on these studies.

Next, following [3, 8] we present an upper estimate for the subdifferential of the value function 𝜑 (which
coincides with 𝜕𝑇𝜑(𝑥) since 𝜑 is convex) in terms of the initial data of (1.2).

Proposition 4.5. Suppose that

(i) 𝑓 is a convex and continuous function.
(ii) The argminimum map 𝑆 is inner semicontinuous at (̂︀𝑥, ̂︀𝑦); that is, for any sequence (𝑥𝑘) ∈ 𝑑𝑜𝑚𝑆 that

converges to ̂︀𝑥 there exists a sequence (𝑦𝑘) ∈ 𝑆(𝑥𝑘) that converges to ̂︀𝑦.
(iii) (̂︀𝑥, ̂︀𝑦) is lower-level regular; that is, the following implication holds⎡⎣ ∑︁

𝑖∈I(̂︀𝑥,̂︀𝑦)

𝛽𝑖̃︀𝑦𝑖 = 0, 𝛽𝑖 ≥ 0

⎤⎦⇒ [𝛽𝑖 = 0 for each 𝑖 ∈ I(̂︀𝑥, ̂︀𝑦)]

when (̃︀𝑥𝑖, ̃︀𝑦𝑖) ∈ co(𝜕𝑇 𝑔𝑖(̂︀𝑥, ̂︀𝑦)) with some ̃︀𝑥𝑖 ∈ R𝑛 as 𝑖 ∈ I(̂︀𝑥, ̂︀𝑦).

Then, an efficient upper estimate of the subdifferential of the value function can be determined as follows:

𝜕𝜑(̂︀𝑥) ⊆
⋃︁

(𝜃1,𝜃2,...,𝜃𝑞)∈Θ(̂︀𝑥,̂︀𝑦)

(︂
𝜕𝑥𝑓(̂︀𝑥, ̂︀𝑦) +

∑︁
𝑖∈I

𝜃𝑖𝜕𝑥𝑔𝑖(̂︀𝑥, ̂︀𝑦)
)︂
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where

Θ(̂︀𝑥, ̂︀𝑦) :=

{︃
(𝜃1, 𝜃2, . . . , 𝜃𝑞) ∈ R𝑞 |0 ∈ 𝜕𝑦𝑓(̂︀𝑥, ̂︀𝑦) +

∑︁
𝑖∈I

𝜃𝑖𝜕𝑦𝑔𝑖(̂︀𝑥, ̂︀𝑦), 𝜃𝑖 ≥ 0, 𝜃𝑖𝑔𝑖(̂︀𝑥, ̂︀𝑦) = 0, 𝑖 ∈ I

}︃
.

Now, we present an example illustrating the main result.

Example 4.6. Consider 𝑛 = 𝑚 = 1, 𝑝 = 𝑞 = 𝑙 = 2 and let the leader’s objectives and constraints be given by

𝐹1(𝑥, 𝑦) =
{︂

𝑥3

𝑦 − 𝑥, 𝑦 ̸= 0,
−𝑥, 𝑦 = 0,

𝐹2(𝑥, 𝑦) = max{𝑥, 𝑦}

𝐺1(𝑥, 𝑦) = −𝑥, 𝐺2(𝑥, 𝑦) = 𝑥3 − 4𝑥.

The follower’s objective and constraints are as follows

𝑓(𝑥, 𝑦) = |𝑥|+ |𝑦|, 𝑔1(𝑥, 𝑦) = 𝑦 − 1 𝑔2(𝑥, 𝑦) = −𝑦.

Then, after straightforward calculations, one has Ξ = [0, 2] × {0}. The convexity of 𝑓 and 𝑔1 can be easily
checked as well as the tangential convexity of 𝐹1, 𝐺1 and 𝐺2 at the local weakly efficient point (̂︀𝑥, ̂︀𝑦) := (0, 0).

In this example, the follower’s region of rational reactions 𝑆 and the function 𝜑 are

𝑆(𝑥) = {0}, 𝜑(𝑥) = |𝑥|.

Let us show that I(̂︀𝑥, ̂︀𝑦) = {2} and J(̂︀𝑥, ̂︀𝑦) = {1, 2}. Moreover, the tangential subdifferentials of 𝐹1, 𝐹2, 𝑓 , 𝜑,
𝐺1, 𝐺2 and 𝑔2, are given by

𝜕𝑇𝐹1(̂︀𝑥, ̂︀𝑦) = {(−1, 0)}, 𝜕𝑇𝐹2(̂︀𝑥, ̂︀𝑦) = co{(0, 1); (1, 0)},
𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦) = [−1, 1]× [−1, 1], 𝜕𝑇𝜑(̂︀𝑥) = [−1, 1],
𝜕𝑇𝐺1(̂︀𝑥, ̂︀𝑦) = {(−1, 0)}, 𝜕𝑇𝐺2(̂︀𝑥, ̂︀𝑦) = {(−4, 0)}, 𝜕𝑇 𝑔2(̂︀𝑥, ̂︀𝑦) = {(0,−1)}.

The weak feasible directions cone w.r.t. Ξ and (̂︀𝑥, ̂︀𝑦) is given as follows Ξ = 𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)) = R+×{0}. A simple
calculation can lead to

(Γ(̂︀𝑥, ̂︀𝑦))∘ ⊆𝑊𝐷(Ξ, (̂︀𝑥, ̂︀𝑦)),

which mean our constraint qualification 𝜕𝑇 -WZCQ holds at (̂︀𝑥, ̂︀𝑦).
We conclude that all assumptions of Theorem 4.2 are fulfilled. Taking 𝛼1 = 𝛼2 = 1

2 , we can easily verify the
optimality condition given in this theorem:

(0, 0) ∈ 𝛼1 𝜕𝑇𝐹1(̂︀𝑥, ̂︀𝑦) + 𝛼2 𝜕𝑇𝐹2(̂︀𝑥, ̂︀𝑦) + cone 𝜕𝑇𝐺1(̂︀𝑥, ̂︀𝑦) + cone 𝜕𝑇𝐺2(̂︀𝑥, ̂︀𝑦)

+ cone 𝜕𝑇 𝑔2(̂︀𝑥, ̂︀𝑦) + cone
(︂
𝜕𝑇 𝑓(̂︀𝑥, ̂︀𝑦)− 𝜕𝑇𝜑(̂︀𝑥)× {0}

)︂
.

In the above example, we can obtain a similar result if we have only 𝐹 = 𝐹1. In this case, it’s worth noting that
Theorem 5.1 of [8] and Theorem 1 of [5] cannot be employed because 𝐹1 is not locally Lipschitz at the local
weakly efficient (̂︀𝑥, ̂︀𝑦) = (0, 0). It follows that our main result is more general since the leader’s objective can
be multiobjective and not necessarily locally Lipschitz. On the other hand, since the functions 𝐹1 and 𝐺2 are
not convex, we cannot apply the results that require the convexity of the functions in the upper level such as
Theorem 4.1 of [2].

Acknowledgements. We would like to express our sincere thanks to the two anonymous reviewers referees for their helpful
comments and suggestions.
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