Inverse data envelopment analysis with stochastic data
RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2739-2762

The inverse Data Envelopment Analysis (InvDEA) is an exciting and significant topic in the DEA area. Also, uncertain data in various real-life applications can degrade the efficiency results. The current work addresses the InvDEA in the presence of stochastic data. Under maintaining the efficiency score, the inputs/outputs-estimation problem is investigated when some or all of its outputs/inputs increase. A novel optimality concept for multiple-objective programming problems, stochastic (weak) Pareto optimality in the level of significance α ∈[0,1], is introduced to derive necessary and sufficient conditions for input/output estimation. Furthermore, the performance of the developed theory in a banking sector application is verified.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021135
Classification : 90C05, 90C29, 90C39, 90C90, 90B50, 47N10
Keywords: Data envelopment analysis, inverse DEA, stochastic data, efficiency, multiple-objective programming
@article{RO_2021__55_5_2739_0,
     author = {Ghomi, Ali and Ghobadi, Saeid and Behzadi, Mohammad Hassan and Rostamy-Malkhalifeh, Mohsen},
     title = {Inverse data envelopment analysis with stochastic data},
     journal = {RAIRO. Operations Research},
     pages = {2739--2762},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/ro/2021135},
     mrnumber = {4313829},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021135/}
}
TY  - JOUR
AU  - Ghomi, Ali
AU  - Ghobadi, Saeid
AU  - Behzadi, Mohammad Hassan
AU  - Rostamy-Malkhalifeh, Mohsen
TI  - Inverse data envelopment analysis with stochastic data
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2739
EP  - 2762
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021135/
DO  - 10.1051/ro/2021135
LA  - en
ID  - RO_2021__55_5_2739_0
ER  - 
%0 Journal Article
%A Ghomi, Ali
%A Ghobadi, Saeid
%A Behzadi, Mohammad Hassan
%A Rostamy-Malkhalifeh, Mohsen
%T Inverse data envelopment analysis with stochastic data
%J RAIRO. Operations Research
%D 2021
%P 2739-2762
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021135/
%R 10.1051/ro/2021135
%G en
%F RO_2021__55_5_2739_0
Ghomi, Ali; Ghobadi, Saeid; Behzadi, Mohammad Hassan; Rostamy-Malkhalifeh, Mohsen. Inverse data envelopment analysis with stochastic data. RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2739-2762. doi: 10.1051/ro/2021135

[1] G. R. Amin, A. Emrouznejad and S. Gattoufi, Modelling generalized firms’ restructuring using inverse DEA. J. Prod. Anal. 48 (2017) 51–61. | DOI

[2] M. H. Behzadi and M. Mirbolouki, Symmetric error structure in stochastic DEA. Int. J. Ind. Math. 4 (2012) 335–343.

[3] M. H. Behzadi, N. Nematollahi and M. Mirbolouki, Ranking efficient DMUS with stochastic data by considering inefficient frontier. Int. J. Ind. Math. 1 (2009) 219–226.

[4] A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. | MR | Zbl | DOI

[5] W. W. Cooper, Z. Huang and S. Li, Satisficing DEA models under chance constraints. Ann. Oper. Res. 66 (1996) 259–279. | MR | Zbl | DOI

[6] W. W. Cooper, Z. Huang, V. Lelas, S. Li and O. B. Olesen, Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. J. Prod. Anal. 9 (1998) 53–80. | DOI

[7] W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text With Models, Applications. Kluwer Academic Publisher, References and DEA-Solver Software (1999). | Zbl

[8] W. W. Cooper, H. Deng, Z. M. Huang and S. X. Li, Change constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis. J. Oper. Res. Soc. 53 (2002) 1347–1356. | Zbl | DOI

[9] D. Despotis and Y. Smirlis, Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 140 (2002) 24–36. | MR | Zbl | DOI

[10] L. Dong Joon, Inverse DEA with frontier changes for new target setting. Eur. J. Oper. Res. 254 (2016) 510–516. | MR | DOI

[11] M. Ehrgott, Multicriteria Optimization. Springer, Berlin (2005). | MR | Zbl

[12] A. Emrouznejad and M. Tavana, Performance Measurement with Fuzzy Data Envelopment Analysis. Springer (2014). | DOI

[13] A. Emrouznejad and G. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. J. Soc.-Econ. Plan. Sci. 61 (2018) 4–8. | DOI

[14] A. Emrouznejad, G.-L. Yang and G. R. Amin, A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in chinese manufacturing industries. J. Oper. Res. Soc. 70 (2019) 1079–1090. | DOI

[15] T. Entani, Y. Maeda and H. Tanaka, Dual models of interval DEA and its extension to interval data. Eur. J. Oper. Res. 136 (2002) 32–45. | MR | Zbl | DOI

[16] M. J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc.: Ser. A (General) 120 (1957) 253–281.

[17] S. Gattoufi, G. R. Amin and A. Emrouznejad, A new inverse DEA method for merging banks. IMA J. Manage. Math. 25 (2014) 73–87. | Zbl

[18] S. Ghobadi, Inverse DEA using enhanced russell measure in the presence of fuzzy data. Int. J. Ind. Math. 10 (2018) 1–16.

[19] S. Ghobadi, A generalized DEA model for inputs (outputs) estimation under inter-temporal dependence. RAIRO:OR 53 (2019) 1791–1805. | MR | Zbl | Numdam | DOI

[20] S. Ghobadi, A dynamic DEA model for resource allocation. Int. J. Math. Oper. Res. 17 (2020) 50–77. | MR | DOI

[21] S. Ghobadi, Merging decision-making units with interval data. RAIRO:OR 55 (2021) 1605–1630. | MR | DOI

[22] S. Ghobadi and S. Jahangiri, Inverse DEA: review, extension and application. Int. J. Technol. Decis. Making 14 (2015) 805–824. | DOI

[23] A. Hadi-Vencheh, A. A. Foroughi and M. Soleimani-Damaneh, A DEA model for resource allocation. Econ. Model. 25 (2008) 983–993. | DOI

[24] F. Hosseinzadeh Lotfi, N. Nematollahi, M. H. Behzadi, M. Mirbolouki and Zohreh Moghaddas, Centralized resource allocation with stochastic data. J. Comput. Appl. Math. 236 (2012) 1783–1788. | MR | Zbl | DOI

[25] Z. Huang and S. Li, Stochastic DEA models with different types of input-output disturbances. J. Prod. Anal. 15 (2001) 95–113. | DOI

[26] G. R. Jahanshahloo, M. H. Behzadi and M. Mirbolouki, Ranking stochastic efficient dmus based on reliability. Int. J. Ind. Math. 2 (2010) 263–270.

[27] G. R. Jahanshahloo, F. Hoseinzadeh Lotfi, M. Rostami-Malkhalifeh and S. Ghobadi, Using enhanced russell model to solve inverse data envelopment analysis problems. Sci. World J. 2014 (2014) 1–10. | DOI

[28] G. R. Jahanshahloo, M. Soleimani-Damaneh and S. Ghobadi, Inverse DEA under inter-temporal dependence using multiple-objective programming. Eur. J. Oper. Res. 240 (2015) 447–456. | MR | DOI

[29] M. Khodabakhshi, Estimating most productive scale size with stochastic data in data envelopment analysis. Econ. Model. 26 (2009) 968–973. | DOI

[30] T. Kuosmanen and M. Kortelainen, Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints. J. Prod. Anal. 38 (2012) 11–28. | DOI

[31] S. Li, Stochastic models and variable returns to scales in data envelopment analysis. Eur. J. Oper. Res. 104 (1998) 532–548. | Zbl | DOI

[32] H. T. Lin, An efficiency-driven approach for setting revenue target. Decision Support Syst. 49 (2010) 311–317. | DOI

[33] J. S. Liu, L. Y. Lu, W. M. Lu and B. J. Lin, A survey of DEA applications. Omega 41 (2013) 893–902. | DOI

[34] F. H. Lotfi, N. Nematollahi, M. Behzadi and M. Mirbolouki, Ranking decision making units with stochastic data by using coefficient of variation. Math. Comput. App. 15 (2010) 148–155. | Zbl

[35] H. Naseri, S. E. Najafi and A. Saghaei, DEA model considering outputs with stochastic noise and a heavy-tailed (stable) distribution. INFOR: Inf. Syst. Oper. Res. 58 (2020) 87–108. | MR

[36] O. B. Olesen and N. C. Petersen, Stochastic data envelopment analysis – a review. Eur. J. Oper. Res. 251 (2016) 2–21. | MR | DOI

[37] P. Peykani, E. Mohammadi, M. S. Pishvaee, M. Rostamy-Malkhalifeh and A. Jabbarzadeh, A novel fuzzy data envelopment analysis based on robust possibilistic programming: Possibility, necessity and credibility-based approaches. RAIRO:OR 52 (2018) 1445–1463. | MR | Zbl | Numdam | DOI

[38] P. Peykani, E. Mohammadi, R. F. Saen, S. J. Sadjadi and M. Rostamy-Malkhalifeh, Data envelopment analysis and robust optimization: a review. Expert Syst. 37 (2020) e12534. | DOI

[39] J. K. Sengupta, Efficiency analysis by stochastic data envelopment analysis. Appl. Econ. Lett. 7 (2002) 379–383. | DOI

[40] L. Simar, How to improve the performance of DEA/FDH estimators in the presence of noise. J. Prod. Anal. 28 (2007) 1833–201. | DOI

[41] L. Simar and P. W. Wilson, A general methodology for bootstrapping in non-parametric frontier models. J. Appl. Stat. 27 (2000) 779–802. | MR | Zbl | DOI

[42] K. Soleimani-Chamkhorami, F. H. Lotfi, G. R. Jahanshahloo and M. Rostamy-Malkhalifeh, Preserving cost and revenue efficiency through inverse data envelopment analysis models. INFOR: Inf. Syst. Oper. Res. 58 (2020) 561–578. | MR

[43] S. Thore, Chance-constrained activity analysis. Eur. J. Oper. Res. 30 (1987) 267–269. | DOI

[44] M. Wegener and G. R. Amin, Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert Syst. Appl. 122 (2019) 369–375. | DOI

[45] Q. L. Wei, J. Z. Zhang and X. S. Zhang, An inverse DEA model for inputs/outputs estimate. Eur. J. Oper. Res. 121 (2000) 151–163. | MR | Zbl | DOI

[46] E. Zenodin and S. Ghobadi, Merging decision-making units under inter-temporal dependence. IMA J. Manage. Math. 31 (2020) 139–16. | MR

[47] X. Zhang and J. Cui, A project evaluation system in the state economic information system of China: an operation research practice in public sectore. Int. Trans. Oper. 6 (1999) 441–452. | DOI

[48] J. Zhu, Imprecise DEA via standard linear DEA models with a revisit to a Korean mobile telecommunication company. Oper. Res. 52 (2004) 323–329. | Zbl | DOI

Cité par Sources :