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INVERSE DATA ENVELOPMENT ANALYSIS WITH STOCHASTIC DATA
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Abstract. The inverse Data Envelopment Analysis (InvDEA) is an exciting and significant topic in the
DEA area. Also, uncertain data in various real-life applications can degrade the efficiency results. The
current work addresses the InvDEA in the presence of stochastic data. Under maintaining the efficiency
score, the inputs/outputs-estimation problem is investigated when some or all of its outputs/inputs
increase. A novel optimality concept for multiple-objective programming problems, stochastic (weak)
Pareto optimality in the level of significance α ∈ [0, 1], is introduced to derive necessary and sufficient
conditions for input/output estimation. Furthermore, the performance of the developed theory in a
banking sector application is verified.
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1. Introduction

Data envelopment analysis (DEA), as an excellent nonparametric efficiency measurement method, has been
employed to determine the efficiency scores of a class of homogeneous decision-making units (DMUs) under
several inputs and outputs [7, 13]. DEA has been first proposed by Charnes et al. [4] and is based on Farrell
[16] studies. DEA has been extensively utilized in several areas and employed in various applications, including
water, energy, power, banking, agriculture, mining, finance, transportation, communication, sport, and education
[33]. It is worth noting that although DEA is one of the most powerful tools used for efficiency evaluation,
some researchers debate on the three main components of the DEA technique as follows [3, 34, 35]: (i) DEA
is a nonparametric technique, so the usual conclusions comparing with a parametric function are impossible.
In other words, formulation for any parametric function related to the production including cost, or profit
function evaluation of marginal products, marginal costs, and partial elasticities is impossible almost. (ii) The
conventional DEA is based on linear programming (LP). One of the important assumptions of these models is
the explicit definition of constraints and the positive Lagrangian coefficients. But regression analysis is a linear
model based on defined probability space with the estimated parameters and without any other constraints on
the multipliers. (iii) According to the concepts of DEA, there is no chance for random noise in nature. In other
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words, when a deviation from the frontier is observed, it is called inefficiency in the traditional DEA. The third
component is the main reason for our study.

The inverse DEA (InvDEA) is a primary and significant problem in the DEA area, where its idea has been
initially introduced by Zhang and Cui [47]. In this work, the DMU’s input increments are determined for its
corresponding output increments in the presence of CCR efficiency-fixed constraints. In InvDEA, an efficiency
level is chosen as a strategic purpose, and the primary purpose is to estimate the necessary input and output
levels to attain this desired efficiency level. In contrast, in conventional DEA models, the DMU’s efficiency score
is usually determined under given input and output levels. Based on Ghobadi and Jahangiri [22] studies, the
multiple-objective programming (MOP) tools have been utilized to estimate inputs (outputs) under growing
outputs (inputs) and maintaining the efficiency score [23, 45]. The previous studies on DEA verified different
theoretical and practical perspectives of the InvDEA, such as merging units [17,46], restructuring units [1], and
preserving efficiency [42].

Data uncertainty is a primary and significant problem in employing the traditional DEA. Although conven-
tional DEA models assess the DMUs with crisp data, the DMUs’ evaluation under imprecise or vague data by
an analytical DEA structure called uncertain DEA (UDEA) has been recently considered. Data reliability in
conventional DEA models cannot be attained in some practical situations. Indeed, a variety of real-life applica-
tions encounter uncertain data, which can affect the efficiency results. Different strategies have been presented
in the literature to deal with these inaccurate and ambiguous data. According to Peykani et al. [38] studies, the
uncertain theory-based approaches in the UDEA could be categorized into the following five classes: (i) The
fuzzy DEA (FDEA) approach; (ii) The bootstrap DEA approach; (iii) The imprecise DEA approach; (iv) The
robust DEA (RDEA) approach; and (v) The stochastic DEA (SDEA) approach. Fuzzy DEA (FDEA) is utilized
under the vague inputs/outputs situation. Namely, the FDEA approach is employed when input/output data
contain fuzzy numbers or linguistic variables [37]. The FDEA literature is divided into six categories, including
the tolerance method, the fuzzy ranking method, the α-level based method, the possibility method, the fuzzy
arithmetic method, and the fuzzy random/type-2 fuzzy set method [12]. Bootstrap DEA strategy is utilized in
cases where the number of DMUs is not adequate, and the estimated efficient frontier is different from the actual
one [41]. The imprecise DEA approach is utilized in situations where inputs/outputs include inaccurate data in
the form of the interval, ratio bounded, and weak and strong ordinals [48]. As a novel strategy in the UDEA
literature, RDEA is based on the RO method, an appropriate and common approach employed to deal with
discrete and continuous optimization problems. This strategy does not require notable historical data and prob-
ability distribution function and ensures the solution feasibility for all feasible amounts of uncertain variables in
the considered convex uncertainty set [38]. Stochastic DEA (SDEA) is the last UDEA method utilized for the
performance evaluation of DMUs under uncertain data. In various realistic situations, managers deal with units
with inaccurate data. In the mentioned cases, analyzers may assume inaccurate data as stochastic parameters.
However, various data features can be discovered while working with stochastic variables assuming the possibil-
ity of unpredicted events. The primary benefit of working with stochastic data in DEA is the ability to predict
the upcoming efficiencies. According to the DEA literature, different theoretical and practical perspectives of
the SDEA models have been investigated by various researchers, such as Huang and Li [25], Jahanshahloo et al.
[26], Li [31] and Sengupta [39]. It should be noted that most of the constructed models are based on nonlinear
programming. In a new and different study, Behzadi and Mirbolouki [2] considered symmetric error structure
for inputs and outputs and presented an envelopment stochastic input-oriented DEA model under constant
returns to scale (CRS) assumption of the production technology. The main advantage of the mentioned model
is its linearity. This model can calculate the relative efficiency of units at a significant specific level and identify
efficient DMUs.

It is notable that the aim of a conventional InvDEA model is to estimate the input and output levels are
deterministic types, which does not take the random errors of data into account in the production process. Due
to the inherent complexity and competition of the real world, InvDEA problems often involve some random
or ordinal variables. However, previous InvDEA studies have been undertaken in a deterministic environment,
which cannot answer such situations. Therefore, it is necessary to incorporate the stochastic data into InvDEA.
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It is worth noting that the stochastic InvDEA estimates inputs and outputs such that production frontiers that
incorporate both inefficiency and stochastic error, which moves the frontiers closer to the bulk of the producing
units. Then, the estimated inputs and outputs of DMUs are improved comparing to the deterministic InvDEA
models. The main contribution of this paper is to provide a theoretical and practical framework of the stochastic
InvDEA with random data.

This study presents a theoretical and practical framework of InvDEA under random data and focuses on the
key thematic areas of resource allocation management, handling investment analysis problems, the implication
of new performance strategies, and the motivations. In other words, InvDEA models are proposed in this study
to manage resource allocation and investment analysis issues. Our proposed models are constructed to estimate
inputs and output changes to keep the decision-making unit’s efficiency score and other DMUs unchanged.
InvDEA models are constructed for the first time to deal with stochastic data. The managers can employ these
models to detect efficient DMUs from inefficient ones and design useful approaches to improve the efficiency
score. These approaches can be considered as new approaches in resource allocation management and handling
investment analysis problems. It is worth noting that these approaches do not change the efficiency scores.
Moreover, a novel optimality principle is presented in this study for stochastic MOP (SMOP) problems, called
stochastic (weak) Pareto optimality in the level of significance α ∈ [0, 1]. The mentioned points can be utilized
to solve the assumed InvDEA problems. A banking sector application is provided to demonstrate the credibility
and capability of the presented approach in a practical situation. The main contributions of the current work
are summarized as follows:

– For the first time, an InvDEA model is constructed under random data.
– For the first time, the inverse input-oriented SDEA model is constructed and employed for resource allocation

problems.
– Similarly, an inverse output-oriented SDEA model is constructed to deal with investment analysis problems.
– A novel optimality principle is presented for SMOP, named stochastic (weak) Pareto optimality in the level

of significance α ∈ [0, 1].
– Stochastic (weak) Pareto optimality in the level of significance α ∈ [0, 1] is utilized in InvDEA.

The article’s remainder is organized as follows: Section 2 introduces the literature review on SDEA. Section 3
presents some principles of SDEA. The fundamental results of this work are stated in Section 4. The men-
tioned section offers new inverse models. A banking sector example is provided in Section 5 to demonstrate
the performance of the developed theory. Finally, a short conclusion and future work aspects are presented in
Section 6.

2. Literature review on SDEA

In the conventional DEA models, deterministic data are considered. However, in practical applications, we may
face some stochastic data, including costs, prices, and production, depending on the financial crisis, social and
political features, inflation, and natural components. In other words, due to the intrinsic uncertainties in many
practical applications, stochastic estimations are inevitable in the efficiency evaluation procedure. Therefore,
the expansion of DEA models can be considered a necessity. SDEA contains efficiency analysis strategies based
on production economic principles like convexity or ray unboundedness of the included stochastic inputs and
outputs. Moreover, they employ statistical principles or distributional considerations to estimate stochastic
inefficiency rather than a deterministic or a stochastic production possibility set (PPS).

According to Olesen and Petersen [36] studies, the SDEA theory-based approaches can be classified into
the following two categories: (i) The semi-parametric stochastic frontier analysis (SFDEA) approach; and (ii)
The chance-constrained DEA (CCDEA) approach. The stochastic frontier analysis is a regression analysis-
based method in which econometric models like Cobb–Douglas production functions are utilized to predict the
production frontier [30]. CCDEA approach is usually utilized for stochastic inputs/outputs with a determined
probability distribution function for the uncertain parameters [5]. To deal with stochastic data in DEA, Thore
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[43] developed DEA-based chance-constrained programming. Cooper et al. [6] explicitly modeled a stochastic
PPS to propose an SDEA method. Cooper et al. [5] generalized DEA models with inputs and outputs described
with normal random variables. Moreover, they presented stochastic efficient DMU. Li [31] and Huang and Li
[25] introduced the efficiency dominance of a DMU using probabilistic comparisons of inputs and outputs with
other DMUs, which are evaluated through solving a chance-constrained programming problem. Then, some
DEA models have been constructed with stochastic data by various researchers, such as Khodabakhshi [29],
Behzadi et al. [3], Lotfi et al. [34] and Hosseinzadeh Lotfi et al. [24].

Behzadi and Mirbolouki [2] introduced the symmetric error structure and proposed a linear form of stochastic
CCR model. In the current work, the inverse version of the SDEA model addressed in Behzadi and Mirbolouki
[2] is considered to extract necessary and sufficient conditions for input and output estimation under preserving
efficiency score.

CCDEA and semi-parametric SFDEA seems to be competing methods within the SDEA field. SFDEA’s
proponents may claim that this method is superior to CCDEA due to its consistency with essential principles
in production theory and its strong statistical basis, including a basic data production procedure. In contrast,
CCDEA’s proponents may claim this method’s advantage since DMU-specific distributions of noise and ineffi-
ciency can be easily incorporated, and multiple inputs/outputs can be explicitly handled. Moreover, a recent
study performed by Simar [40] provides a data production procedure for a multivariate, cross-sectional, non-
parametric stochastic frontier model employed in the CCDEA context. According to Olesen and Petersen [36]
studies, although the stochastic PPS estimators in the context of SFDEA and CCDEA have different features
in the modeling of noise and stochastic inefficiency, all have one output and multiple inputs.

3. Stochastic DEA

Consider a set of n DMUs, {DMUj : j ∈ J = {1, 2, . . . , n}}, such that DMUj produces output level Ỹj =
(ỹ1j , ỹ2j , . . . , ỹsj)t by consuming input level X̃j = (x̃1j , x̃2j , . . . , x̃mj)t. Let the input and output levels of DMUj ,
j ∈ J , be normal-stochastic numbers as follows:

x̃ij ∼ N
(
xij , σ

2
ij

)
, ∀i ∈ I = {1, 2, . . . ,m},

ỹrj ∼ N
(
yrj , ψ

2
rj

)
, ∀r ∈ O = {1, 2, . . . , s},

where xij and σ2
ij for all i ∈ I and j ∈ J , are mean and variance of inputs, respectively. Also, yrj and ψ2

rj for all
r ∈ O and j ∈ J , are mean and variance of outputs, respectively. It is worth noting that the mean and variance
of data are rarely unknown. Therefore, we try to estimate these parameters. For this purpose, it is a suitable
estimator, if the estimator is an unbiased and efficient estimator. According to the stochastic DEA literature,
if
{(
x̂tij , ŷ

t
rj

)
| i ∈ I, r ∈ O, t = 1, 2, . . . , p

}
is a random sample with size p for the DMUj , j ∈ J , then

x̄ij =
1
p

p∑
t=1

x̂tij ,

σ̄2
ij =

1
p− 1

p∑
i=1

(
x̂tij − x̄ij

)2
,

are unbiased estimators for “xij” and “σ2
ij”, and

ȳrj =
1
p

p∑
t=1

ŷtrj ,

ψ̄2
rj =

1
p− 1

p∑
t=1

(
ŷtrj − ȳrj

)2
,
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are unbiased estimators for “yrj” and “ψ2
rj”. Clearly, if the sample size is large enough, then x̄ij (ȳrj) and σ̄2

ij

(ψ̄2
rj) are the best estimators for mean and variance of inputs (outputs).
The following input-oriented SDEA problem is considered to estimate the relative efficiency in the level of

significance α of the unit under assessment DMUo, o ∈ J [8]:

θo(α) = min θ (3.1)

s.t. P

∑
j∈J

µjX̃j ≤ θX̃o

 ≥ 1− α,

P

∑
j∈J

µj Ỹj ≥ Ỹo

 ≥ 1− α,

µ ∈ Ω,

where

Ω =

µ|µ = (µ1, . . . , µn) , δ1

∑
j∈J

µj + δ2(−1)δ3ν

 = δ1, ν ≥ 0, µj ≥ 0, j ∈ J

 .

In this model, (µ, θ) ∈ Rn × R is the variables vector. Also, α ∈ [0, 1] is a predefined error level and P means
“Probability”. Moreover, δ1, δ2, δ3 ∈ {0, 1}. Clearly, the production technology is under the following conditions:

(i) Constant returns to scale (CRS) if δ1 = 0;
(ii) Variable returns to scale (VRS) if δ1 = 1, δ2 = 0;
(iii) Non-increasing returns to scale (NIRS) if δ1 = δ2 = 1 and δ3 = 0;
(iv) Non-decreasing returns to scale (NDRS) if δ1 = δ2 = δ3 = 1.

According to the DEA literature [8], if Φ is cumulative standard normal distribution function, then the
stochastic model (3.1) can be simplified to the following non-linear problem:

θo(α) = min θ (3.2)

s.t.
∑
j∈J

µjxij − Φ−1(α)σIi (µ, θ) ≤ θxio, ∀i ∈ I,

∑
j∈J

µjyrj + Φ−1(α)σOr (µ) ≥ yro, ∀r ∈ O,

µ ∈ Ω,

where (
σIi (µ, θ)

)2
=
∑
j∈J

∑
k∈J

µjµkCov (x̃ij , x̃ik) + θ2Var (x̃io)− 2θ
∑
j∈J

µjCov (x̃ij , x̃io) , ∀i ∈ I,

(
σOr (µ)

)2
=
∑
j∈J

∑
k∈J

µjµkCov (ỹrj , ỹrk) + Var (ỹro)− 2
∑
j∈J

µjCov (ỹrj , ỹro) , ∀r ∈ O.

Also, it is clear that if all the input and output levels of the units are uncorrelated, then:

(σIi (µ, θ))
2

=
∑
j∈J

µ2
jVar (x̃ij)

2 + θVar (x̃io)
2 (θ − 2µo) , ∀i ∈ I,

(
σOr (µ)

)2
=
∑
j∈J

µ2
jVar (ỹrj) + Var (ỹro)

2 (1− 2µo) , ∀r ∈ O.
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The output-version of the model (3.1) in the level of significance α is as follows [8]:

ϕo(α) = max ϕ (3.3)

s.t. P

∑
j∈J

µjX̃j ≤ X̃o

 ≥ 1− α,

P

∑
j∈J

µj Ỹj ≥ ϕỸo

 ≥ 1− α,

µ ∈ Ω.

(µ, ϕ) ∈ Rn × R is the variables vector in model (3.3). Considering Φ as cumulative standard distribution
function, the stochastic model (3.3) can be simplified to model (3.4).

ϕo(α) = max ϕ (3.4)

s.t.
∑
j∈J

µjxij − Φ−1(α)σIi (µ) ≤ xio, ∀i ∈ I,

∑
j∈J

µjyrj + Φ−1(α)σOr (µ, ϕ) ≥ ϕyro, ∀r ∈ O,

µ ∈ Ω,

where (
σIi (µ)

)2
=
∑
j∈J

∑
k∈J

µjµkCov (x̃ij , x̃ik) + Var (x̃io)− 2
∑
j∈J

µjCov (x̃ij , x̃io) , ∀i ∈ I,

(
σOr (µ, ϕ)

)2
=
∑
j∈J

∑
k∈J

µjµkCov (ỹrj , ỹrk) + ϕ2Var (ỹro)− 2ϕ
∑
j∈J

µjCov (ỹrj , ỹro) , ∀r ∈ O.

If ϕo(α) = 1 (resp. θo(α) = 1), then DMUo is called stochastic output (resp. input-) oriented weakly efficient
in the level of significance α. Also, Cooper et al. [8] established the following theorem.

Theorem 3.1. Consider models (3.2) and (3.4):

(i) These models are feasible for all the levels of significance α.
(ii) If α ≤ 0.5 then 0 < θo(α) ≤ 1 and ϕo(α) ≥ 1.
(iii) If α ≤ α′ then θo(α′) ≤ θo(α) and ϕo(α′) ≥ ϕo(α).

Remark 3.2. Assume that the input and output levels of the DMUs have a symmetric error structure. In fact,
the following structure is considered for the inputs and outputs of DMUj , j ∈ J :

x̃ij = xij + aij ε̃ij , ∀i ∈ I,
ỹrj = yrj + brj ξ̃rj , ∀r ∈ O, (3.5)

where aij ∈ R≥0, brj ∈ R≥0, ε̃ij ∼ N(0, σ̄2), and ξ̃rj ∼ N(0, σ̄2). In fact, ε̃ij and ξ̃rj are errors of input and
output levels in conflict with the mean values, respectively. If the input and output vectors of the units are
uncorrelated and ε̃ij = ε̃i and ξ̃rj = ξ̃r for all i ∈ I and r ∈ O, then models (3.2) and (3.4) can be transformed
to linear programming (LP) models (3.6) and (3.7), respectively [2]:
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θo(α) = min θ (3.6)

s.t.
∑
j∈J

µjxij − Φ−1(α)σ̄(p+
i + p−i ) ≤ θxio, ∀i ∈ I,

∑
j∈J

µjyrj + Φ−1(α)σ̄(q+
r + q−r ) ≥ yro, ∀r ∈ O,

∑
j∈J

µjaij − θaio = p+
i − p

−
i , ∀i ∈ I,

∑
j∈J

µjbrj − bro = q+
r − q−r , ∀r ∈ O,

µ ∈ Ω, p+
i ≥ 0, p−i ≥ 0, q+

r ≥ 0, q−r ≥ 0, ∀i ∈ I, ∀r ∈ O,
ϕo(α) = max ϕ (3.7)

s.t.
∑
j∈J

µjxij − Φ−1(α)σ̄(p+
i + p−i ) ≤ xio, ∀i ∈ I,

∑
j∈J

µjyrj + Φ−1(α)σ̄(q+
r + q−r ) ≥ ϕyro, ∀r ∈ O,

∑
j∈J

µjaij − aio = p+
i − p

−
i , ∀i ∈ I,

∑
j∈J

µjbrj − ϕbro = q+
r − q−r , ∀r ∈ O,

µ ∈ Ω, p+
i ≥ 0, p−i ≥ 0, q+

r ≥ 0, q−r ≥ 0, ∀i ∈ I, ∀r ∈ O.

In the models (3.6) and (3.7), ϕ, θ, µj , p+
i , p

−
i , q

+
r , and q−r are variables for all indices.

4. Stochastic InvDEA

The DMU’s efficiency score is usually determined under given input and output levels in conventional DEA
models. In contrast, in InvDEA, an efficiency target is chosen as a strategic purpose, and the primary purpose
is to find the necessary input and output vectors to attain this desired efficiency target. Initially, the following
significant problem has been studied in the framework of InvDEA [23,45]:

Question. If the efficiency index of DMUo remains unchanged with respect to other DMUs, but the
input/output levels increase, to what extent should the output/input levels of DMUo increase?

This Question was solved using MOP problems by Wei et al. [45] and Hadi-Vencheh et al. [23]. Different
theoretical and practical perspectives of the InvDEA has been studied in the DEA literature, such as setting
revenue target [10], investment analysis [44], and resource allocation [14] under inter-temporal dependence of
data [19,20,28], and fuzzy data [18].

Nevertheless, the constructed models in the mentioned works could not solve the issue of input-estimation
and output-estimation in the presence of stochastic data. Therefore, Sections 4.1 and 4.2 attempt to estimate
the input/output levels in the presence of stochastic data.

4.1. Estimation of input levels

This sub-section extends the following question (proposed by [23]) in a stochastic framework.
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Question 1. If the efficiency index of DMUo remains unchanged with respect to other DMUs, but the output
levels increase, to what extent should the input levels of DMUo increase?

Suppose that the output levels of DMUo are increased from Ỹo to β̃o = Ỹo+∆Ỹo, such that ∆Ỹo ≥ 0, ∆Ỹo 6= 0.
The goal of Question 1 is to find the input levels α̃o = (α̃1o, α̃2o, . . . , α̃mo) on the condition that the efficiency
score of DMUo in the level of significance α is still θo(α). More accurately, α̃o = X̃o + ∆X̃o, where ∆X̃o ≥ 0.

Assume DMUn+1 indicates the entity generated after increasing the input and output levels of DMUo. The
following model estimates the efficiency index of DMUn+1 in the level of significance α:

θn+1(α) = min θ (4.1)

s.t. P

∑
j∈J

µjX̃j + µn+1α̃o ≤ θα̃o

 ≥ 1− α,

P

∑
j∈J

µj Ỹj + µn+1β̃o ≥ β̃o

 ≥ 1− α,

µ ∈ Ω+,

Ω+ =

µ|µ = (µ1, . . . , µn, µn+1) , δ1

∑
j∈J

µj + µn+1 + δ2(−1)δ3ν

 = δ1, ν ≥ 0, µj ≥ 0, j ∈ J ∪ {n+ 1}

 .

If the optimal values of the problems (3.1) and (4.1) are the same in the level of significance α, it is said that
the efficiency index remains unchanged, i.e.

eff
(
α̃o, β̃o

)
(α) = eff

(
X̃o, Ỹo

)
(α)1.

The following SMOP problem is proposed in the level of significance α to answer the above question or find the
input levels.

min (α̃1o, α̃2o, . . . , α̃mo) (4.2)

s.t. P

∑
j∈J

µjX̃j ≤ θo(α)α̃o

 ≥ 1− α,

P

∑
j∈J

µj Ỹj ≥ β̃o

 ≥ 1− α,

P
{
α̃o ≥ X̃o

}
≥ 1− α,

µ ∈ Ω.

In this model, (µ, α̃o) is the variables vector. θo(α) is a constant, which represents the optimal value of variable
θ in the problem (3.1). Additionally, β̃o is known and fixed.

A novel optimality concept is defined for the SMOP (4.2) based on the special structure of this problem.

Definition 4.1. A feasible solution ∆ = (µ∗, α̃∗1o, α̃
∗
2o, . . . , α̃

∗
mo) is called a stochastic Pareto (SP) solution in

the level of significance α to SMOP (4.2) if there is no other feasible solution Γ = (µ, α̃1o, α̃2o, . . . , α̃mo) such
that

P {α̃io − α̃∗io ≤ 0} ≥ 1− α for each i = 1, 2, . . . ,m,

1After this, the notation “eff” is employed instead of “efficiency” for simplicity.
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P {α̃io − α̃∗io ≤ −ε} ≥ 1− α for some i = 1, 2, . . . ,m,

where ε is a non-archimedian infinitesimal.

Definition 4.2. A feasible solution ∆ = (µ∗, α̃∗1o, α̃
∗
2o, . . . , α̃

∗
mo) is called a stochastic weak Pareto (SWP)

solution in the level of significance α to SMOP (4.2) if there is no other feasible solution Γ = (µ, α̃1o, α̃2o, . . . , α̃mo)
such that

P {α̃io − α̃∗io ≤ −ε} ≥ 1− α for each i = 1, 2, . . . ,m,

where ε is a non-Archimedian infinitesimal.

Theorem 4.3 shows how the model SMOP 4.2 can be applied to answer Question 1 in the stochastic framework.

Theorem 4.3. Suppose that ∆ = (µ∗, α̃∗o) is a SP solution in the level of significance α to model (4.2) provided
that one of the following conditions holds:

(i) P
{
|α̃∗o − X̃o| < ε

}
≥ 1− α where ε is a non-Archimedian infinitesimal.

(ii) There exists at least l ∈ I such that P {α̃∗lo − x̃lo ≥ ε} ≥ 1− α where ε is a non-Archimedian infinitesimal.

Then eff
(
α̃∗o, β̃o

)
(α) = eff

(
X̃o, Ỹo

)
(α).

Proof. See Appendix A. �

Theorem 4.4 is a converse version of Theorem 4.3.

Theorem 4.4. Let Π =
(
µ, α̃o =

(
α̃1o, α̃2o, . . . , α̃mo

))
be a feasible solution to SMOP (4.2) such that

eff
(
α̃o, β̃o

)
(α) = eff

(
X̃o, Ỹo

)
(α). Then, Π is a SWP solution in the level of significance α to SMOP (4.2).

Proof. If Π not be a SWP solution in the level of significance α to problem (4.2), then there is another feasible
solution to problem (4.2), ∆ = (µ, α̃o = (α̃1o, α̃2o, . . . , α̃mo)) in which,

P
{
α̃o − α̃o ≤ −ε

}
≥ 1− α, (4.3)

where ε is a non-Archimedian infinitesimal. Feasibility of ∆ for SMOP (4.2), implies

P

∑
j∈J

µjX̃j − θo(α)α̃o ≤ 0

 ≥ 1− α, (4.4)

P

∑
j∈J

µj Ỹj ≥ β̃o

 ≥ 1− α, (4.5)

µ ∈ Ω. (4.6)

By equations (4.3) and (4.4), we get

P

∑
j∈J

µjX̃j − θo(α)
(
α̃o + ε

)
≤ 0

 ≥ 1− α. (4.7)

Therefore, there is a positive scalar 0 < ko < 1 in which

P

∑
j∈J

µjX̃j − (koθo(α)) α̃o ≤ 0

 ≥ 1− α. (4.8)
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According to equations (4.5), (4.6), and (4.8), the vector ((µ, µn+1 = 0), koθo(α)) is a feasible solution to
problem (4.1). The value of the goal function of problem (4.1) in this feasible solution is equal to koθo(α).
Then, θn+1(α) ≤ koθo(α) < θo(α). This contradicts the assumption and therefore completes the proof of the
theorem. �

We close this sub-section by discussing when to start using InvDEA. Suppose that the output levels of DMUo

are increased from Ỹo to β̃o. We consider the following assumption in the level of significance α:{
H0 : θn+1(α) = θo(α),
H1 : θn+1(α) 6= θo(α),

or equivalently, {
H0 : α̃o = X̃o,

H1 : α̃o 6= X̃o.

By referring to the concepts of statistics, a (1 − α)% confidence interval for the mean inputs and the mean
outputs are as follows:

xij ∈
[
x̄ij − t( α

2 )
σ̄ij√
p
, x̄ij − t( α

2 )
σ̄ij√
p

]
, ∀i ∈ I, j ∈ J,

βrj ∈
[
β̄rj − t( α

2 )
ψ̄rj√
p
, β̄rj − t( α

2 )
ψ̄rj√
p

]
, ∀r ∈ O, j ∈ J,

where x̄ij and σ̄2
ij are the mean and variance of inputs, respectively. Also, βrj and ψ2

rj are the mean and variance
of outputs, respectively. Moreover, t( α

2 ) is a random variable with distribution T and degree of freedom p− 1.
Therefore, the lower and upper bounds of inputs and outputs are as follows:

xlij(α) = x̄ij − t( α
2 )
σ̄ij√
p
, xuij(α) = x̄ij − t( α

2 )
σ̄ij√
p
, ∀i ∈ I, j ∈ J,

βlrj(α) = β̄rj − t( α
2 )
ψ̄rj√
p
, βurj(α) = β̄rj − t( α

2 )
ψ̄rj√
p
, ∀r ∈ O, j ∈ J.

According to the pessimistic and optimistic viewpoints [9,15,21], the following models proposed to estimate the
upper and lower bounds of efficiency of DMUn+1 with (1− α)% confidence interval:

θln+1 = min θ (4.9)

s.t.
∑
j∈J

λjx
l
ij(α) + λn+1x

u
in+1(α) ≤ θxuin+1(α), ∀i ∈ I,

∑
j∈J

λjβ
u
rj(α) + λn+1β

l
rn+1(α) ≥ βlrn+1(α), ∀r ∈ O,

λ ∈ Ω+,

θun+1 = min θ (4.10)

s.t.
∑
j∈J

λjx
u
ij(α) + λn+1x

l
in+1(α) ≤ θxlin+1(α), ∀i ∈ I,

∑
j∈J

λjβ
l
rj(α) + λn+1β

u
rn+1(α) ≥ βurn+1(α), ∀r ∈ O,

λ ∈ Ω+.
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It is obvious that θn+1(α) ∈
[
θln+1(α), θun+1(α)

]
. With regard to model (4.1) (setting α̃o = X̃o), if the optimal

value of this model does not belong to
[
θln+1(α), θun+1(α)

]
, then the proposed method in this sub-section can

be applied to estimating of the input levels such that the efficiency score of DMUo remains unchanged in the
level of significance α (θo(α)).

Remark 4.5. According to Remark 3.2, if all input and output levels of the units have a symmetric error
structure, then the same method for converting problem (3.2) to the problem (3.6) can be employed to convert
the stochastic models (4.1) and (4.2) to the LP and MOLP problems, respectively.

4.2. Estimation of output levels

This sub-section is devoted to extending the following question (provided by [45]) in a stochastic framework.

Question 2. If the efficiency index of DMUo remains unchanged with respect to other DMUs, while the input
levels increase, to what extent should the output levels of DMUo increase?

Assume the input levels of DMUo are increased from X̃o to α̃o = X̃o + ∆X̃o, where ∆X̃o ≥ 0, ∆X̃o 6= 0.
The goal of the study is to estimate the output levels β̃o =

(
β̃1o, β̃2o, . . . , β̃so

)
such that the efficiency index of

DMUo in the level of significance α is still ϕo(α). More accurately, β̃o = Ỹo + ∆Ỹo, where ∆Ỹo ≥ 0.
Suppose DMUn+1 indicates the entity obtained after increasing the input and output levels of DMUo. The

following problem estimates the efficiency score of DMUn+1 in the level of significance α:

ϕn+1(α) = max ϕ (4.11)

s.t. P

∑
j∈J

µjX̃j + µn+1α̃o ≤ α̃o

 ≥ 1− α,

P

∑
j∈J

µj Ỹj + µn+1β̃o ≥ ϕβ̃o

 ≥ 1− α,

µ ∈ Ω+.

If the optimal values of models (3.3) and (4.11) are equal, it is said that the efficiency index in the level of
significance α remains unchanged, namely

eff
(
α̃o, β̃o

)
(α) = eff

(
X̃o, Ỹo

)
(α).

To answer Question 2, namely to finding the output levels, the following SMOP model is suggested:

max
(
β̃1o, β̃2o, . . . , β̃so

)
(4.12)

s.t. P

∑
j∈J

µjX̃j ≤ α̃o

 ≥ 1− α,

P

∑
j∈J

µj Ỹj ≥ ϕo(α)β̃o

 ≥ 1− α,

P
{
β̃o ≥ Ỹo

}
≥ 1− α,

µ ∈ Ω,
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where (µ, β̃o) is the variables vector in the above problem. ϕo(α) is a constant value, which describes the
optimal value of variable ϕ in the problem (3.3). Moreover, α̃o is known and fixed.

Theorem 4.6 shows how the model SMOP (4.12) can be applied to answer Question 2 in the stochastic
framework.

Theorem 4.6. If ∆ =
(
µ∗, β̃∗o =

(
β̃∗1o, . . . , β̃

∗
so

))
is a SWP solution in the level of significance α to model

(4.12), then eff
(
α̃o, β̃

∗
o

)
(α) = eff

(
X̃o, Ỹo

)
(α).

Proof. See Appendix B. �

Theorem 4.7 is the converse version of Theorem 4.6.

Theorem 4.7. Let Π =
(
µ, β̃o =

(
β̃1o, β̃2o, . . . , β̃so

))
be a feasible solution to SMOP (4.12) such that

eff
(
αo, β̃o

)
= eff

(
X̃o, Ỹo

)
. Then, Π is a SWP solution in the level of significance α to SMOP (4.12).

Proof. If Π not be a SWP solution in the level of significance α to problem (4.12), then there is another feasible
solution to model (4.12), ∆ =

(
µ, β̃o =

(
β̃1o, β̃2o, . . . , β̃so

))
in which,

P
{
β̃o − β̃o ≥ ε

}
≥ 1− α, (4.13)

where ε is a non-Archimedian infinitesimal. Feasibility of ∆ for SMOP (4.12), implies

P

∑
j∈J

µjX̃j ≤ αo

 ≥ 1− α, (4.14)

P

∑
j∈J

µj Ỹj ≥ ϕo(α)β̃o

 ≥ 1− α, (4.15)

µ ∈ Ω. (4.16)

By equations (4.13) and (4.15), we get

P

∑
j∈J

µj Ỹj − ϕo(α)
(
β̃o + ε

)
≥ 0

 ≥ 1− α. (4.17)

Therefore, there is a positive scalar ko > 1 where

P


n∑
j=1

µj Ỹj − (koϕo(α)) β̃o ≥ 0

 ≥ 1− α. (4.18)

According to equations (B.20), (4.16), and (4.18), the vector ((µ, µn+1 = 0), koϕo(α)) is a feasible solution to
model (4.11). The value of the aim function of model (4.11) in this feasible solution is equal to koϕo(α). Hence,
ϕn+1(α) ≥ koϕo(α) > ϕo(α). This contradicts the assumption and so completes the proof of the theorem. �

In a similar discussion to the final part of Section 4.2, assume the input levels of DMUo are increased from
X̃o to α̃o. We consider the following statistical assumption in the level of significance α:{

H0 : ϕn+1(α) = ϕo(α),
H1 : ϕn+1(α) 6= ϕo(α),
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or equivalently, {
H0 : β̃o = Ỹo,

H1 : β̃o 6= Ỹo.

By referring to the concepts of statistics, a (1 − α)% confidence interval for the mean inputs and the mean
outputs are as follows:

αij ∈
[
ᾱij − t( α

2 )
σ̄ij√
p
, x̄ij − t( α

2 )
σ̄ij√
p

]
, ∀i ∈ I, j ∈ J,

yrj ∈
[
ȳrj − t( α

2 )
ψ̄rj√
p
, ȳrj − t( α

2 )
ψ̄rj√
p

]
, ∀r ∈ O, j ∈ J,

where ᾱij and σ̄2
ij are the mean and variance of inputs, respectively. Also, ȳrj and ψ̄2

rj are the mean and variance
of outputs, respectively. Moreover, t( α

2 ) is a random variable with distribution T and degree of freedom p− 1.
Therefore, the lower and upper bounds of inputs and outputs are as follows:

αlij(α) = ᾱij − t( α
2 )
σ̄ij√
p
, αuij(α) = ᾱij − t( α

2 )
σ̄ij√
p
, ∀i ∈ I, j ∈ J,

ylrj(α) = ȳrj − t( α
2 )
ψ̄rj√
p
, yurj(α) = ȳrj − t( α

2 )
ψ̄rj√
p
, ∀r ∈ O, j ∈ J.

According to the pessimistic and optimistic viewpoints [9,15,21], the following models proposed to estimate the
upper and lower bounds of efficiency of DMUn+1 with (1− α)% confidence interval:

ϕun+1 = max ϕ (4.19)

s.t.
∑
j∈J

λjα
l
ij(α) + λn+1α

u
in+1(α) ≤ αuin+1(α), ∀i ∈ I,

∑
j∈J

λjy
u
rj(α) + λn+1y

l
rn+1(α) ≥ ϕylrn+1(α), ∀r ∈ O,

λ ∈ Ω+,

ϕln+1 = max ϕ (4.20)

s.t.
∑
j∈J

λjα
u
ij(α) + λn+1α

l
in+1(α) ≤ αlin+1(α), ∀i ∈ I,

∑
j∈J

λjy
l
rj(α) + λn+1y

u
rn+1(α) ≥ ϕyurn+1(α), ∀r ∈ O,

λ ∈ Ω+.

It is obvious that ϕn+1(α) ∈
[
ϕln+1(α), ϕun+1(α)

]
. Considering model (4.11) (setting β̃o = Ỹo), if the optimal

value of this model does not belong to
[
ϕln+1(α), ϕun+1(α)

]
, then the presented approach in this sub-section

can be used to finding of the outputs under preserving the efficiency index of DMUo in the level of significance
α (ϕo(α)).

Remark 4.8. According to Remark 3.2, if all input and output levels of the units have a symmetric error
structure, then the same method for converting problem (3.4) to the problem (3.7) can be employed to convert
the stochastic models (4.11) and (4.12) to the LP and MOLP problems, respectively.
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Table 1. The efficiency index of 20 bank branches.

DMU α = 0.5 α = 0.2 α = 0.1 α = 0.05 α = 0.01

DMU01 0.58725 0.62227 0.64101 0.65714 0.68820
DMU02 1.00000 1.00000 1.00000 1.00000 1.00000
DMU03 1.00000 1.00000 1.00000 1.00000 1.00000
DMU04 0.27658 0.29342 0.30369 0.31264 0.33123
DMU05 0.48755 0.55616 0.59581 0.62879 0.68847
DMU06 0.91961 0.96016 0.98250 1.00000 1.00000
DMU07 0.48060 0.51515 0.52854 0.53974 0.56020
DMU08 1.00000 1.00000 1.00000 1.00000 1.00000
DMU09 1.00000 1.00000 1.00000 1.00000 1.00000
DMU10 1.00000 1.00000 1.00000 1.00000 1.00000
DMU11 1.00000 1.00000 1.00000 1.00000 1.00000
DMU12 0.80731 0.84684 0.86039 0.87167 0.89264
DMU13 0.90849 0.92999 0.93994 0.94777 0.96112
DMU14 0.69302 0.70699 0.71478 0.72232 0.74068
DMU15 1.00000 1.00000 1.00000 1.00000 1.00000
DMU16 1.00000 1.00000 1.00000 1.00000 1.00000
DMU17 0.93143 0.97501 0.99782 1.00000 1.00000
DMU18 0.56322 0.58407 0.59493 0.60403 0.62068
DMU19 1.00000 1.00000 1.00000 1.00000 1.00000
DMU20 0.47566 0.52995 0.56430 0.59605 0.68959

5. An application

The current section provides an application of the presented method in the banking sector. A dataset contain-
ing 20 branches of an Iranian commercial bank is considered to verify the realization of the research goals. The
dataset containing three inputs and five outputs is reproduced from Behzadi and Mirbolouki [2] and presented
in Appendix C (see Tabs. C.1 and C.2). Nevertheless, the proposed method can be utilized for other fields.

There are two main approaches for selecting input and output factors in the literature: the production
approach and the intermediation approach. In this study, the intermediation approach is employed. The personal
rate (x̃1), payable benefits (x̃2), and delayed requisitions (x̃3) are considered as inputs while the facilities (ỹ1),
amount of deposits (ỹ2), received benefits (ỹ3), received commission (ỹ4), and other resources of deposits (ỹ5)
are considered as the outputs. The weighted combination of personal qualifications, quantity, education, and
other bank branches is considered the cost input. The payable benefits of all deposits to customers in each
branch are considered as the payable benefits. Delays in repaying loans and other facilities in each branch are
considered as delay claims. The sum of business and single loans in each branch is considered as the facilities.
The value of various deposits, including current, and short/long duration accounts in each branch, is considered
the number of deposits. The received benefits from the total loans and facilities are considered as the received
benefits. The sum received commission of all banking actions, issuance guaranty, money transfer, and others in
each branch is considered the received commission.

The model (3.7) under CRS and σ̄ = 1 assumptions is employed to obtain the branches’ efficiency score in
the levels of significance α = 0.01, 0.05, 0.1, 0.2, 0.5 (see Tab. 1).

According to Table 1, for instance, it is evident that DMU02 is efficient in the level of significance α = 0.01
(θ02(0.01) = 1). An InvDEA case is described as follows: Suppose that DMU02 describes targets for some
criteria, which should be realized in the future. Namely, consider that DMU02 should verify this problem:
among all branches, how the input levels, including the personal rate, payable benefits, and delayed requisitions,
can increase if its efficiency index in the level of significance α = 0.01 is kept unchanged, yet the output
levels, including facilities, number of deposits, received benefits, received commission, and other resources of
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Table 2. The percentage of expected increases in the output levels DMU02.

Outputs Facilities Amount of Received Received Other resources

deposits benefits commission of deposits

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

Old output (Ỹ02) 50.772 8.011 73.132 13.11 1.815 0.02 3.035 0.68 5.823 0.689

New output (β̃02) 55.772 9.011 80.132 14.61 2.015 0.03 3.335 0.70 6.323 0.709

The expected increase (∆Ỹ02) 5.00 1.00 7.00 1.50 0.20 0.01 0.300 0.02 0.500 0.04

Percentage changes 9.85% 12.48% 9.57% 11.44% 11.02% 50.00% 9.88% 2.94% 8.59% 2.90%

Table 3. The percentage of necessary increases in the inputs DMU02.

Inputs Personal Payable Delayed
rate (α̃1

02) benefits (α̃2
02) requisitions (α̃3

02)
Mean Variance Mean Variance Mean Variance

Old input (X̃2) 10.59 0.53 44.32 24.1 1121 0.02
The first SP solution (α̃2) 11.20 0.63 44.32 24.6 1122.27 0.03

The expected increase (∆X̃02) 0.61 0.10 0.00 0.50 1.27 0.01
Percentage increases 5.76% 18.87% 0.0% 2.07% 0.11% 50.00%
The second SP solution (α̃2) 11.72 0.73 48.97 24.5 1121.30 0.04

The expected increase (∆X̃02) 1.13 0.20 4.65 0.40 0.30 0.02
Percentage increases 10.67% 37.74% 10.49% 1.66% 0.06% 100.00%

deposits increase from Ỹ02 =
(
ỹ1

02, ỹ
2
02, ỹ

3
02, ỹ

4
02, ỹ

5
02

)
, to β̃02 =

(
β̃1

02, β̃
2
02, β̃

3
02, β̃

4
02, β̃

5
02

)
as shown in Table 2. More

accurately, the percentage of expected increases in the facilities (ỹ1
02), amount of deposits (ỹ2

02), received benefits
(ỹ3

02), received commission (ỹ4
02), and other resources of deposits (ỹ5

02) are given in Table 2.
Considering SMOP (4.2) in the level of significance α = 0.01 corresponding to DMU02 and employing the

weight-sum approach [11], two SP solutions (two scenarios to increase input levels under preserving the efficiency
index) are obtained to estimate the input vector (personal rate, payable benefits, and delayed requisitions) as
presented in Table 3. More accurately, the percentage of the required increase in the input levels in each of
two scenarios increases input levels under preserving the efficiency index in the level of significance α = 0.01
(personal rate, payable benefits, and delayed requisitions) should be similar to Table 3. More accurately, the
percentage of the required increase in the input levels in each of two scenarios increases the input levels under
preserving the efficiency index in the level of significance α = 0.01 (personal rate, payable benefits, and delayed
requisitions), like to Table 3.

Table 3 proposes two patterns to the decision-maker to choose the best decision to generalize DMU02.
This means that the decision-maker can perform necessary operations by selecting an appropriate method for
extending DMU02. Consider that, based on Theorem 4.3 the efficiency score for the two patterns are equal to
one in the level of significance α = 0.01. Table 3 shows that if the output levels of branch DMU02 increase from
Ỹ02 to β̃02, then the following operations should be performed to retain the efficiency score of this bank:

(i) If the first scenario is selected, then the mean and variance of the personal rate input level (input 1) should
increase to 5.76% and 18.87%, respectively. In contrast, if the second scenario is selected, the mean and
variance of this input should increase to 10.67% and 37.74%, respectively.

(ii) If the second scenario is selected, then the mean and variance of the second input factor should increase to
10.49% and 1.66%, respectively, while if the first scenario is selected, without increasing the mean of the
payable benefits level, only the variance of this input should increase to 2.07%.
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Table 4. The percentage of expected increases in the outputs DMU04.

Outputs Facilities Amount of Received Received Other resources

deposits benefits commission of deposits

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

Old output (Ỹ02) 137.51 21.65 44 972 13.78 4923 1.65 4212 3.84 63.61 33.73

New output (β̃02) 152.51 22.85 44 980 14.18 4924 1.75 4213 3.94 70.61 33.93

The expected increase (∆Ỹ02) 15.00 1.20 8.00 0.40 1.00 0.10 1.00 0.10 7.00 0.20

Percentage changes 10.91% 5.54% 0.02% 2.90% 0.02% 6.06% 0.02% 2.60% 11.00% 0.59%

Table 5. The percentage of required increases in the input levels DMU04.

Inputs Personal Payable Delayed
rate (α̃1

04) benefits (α̃2
04) requisitions (α̃3

04)
Mean Variance Mean Variance Mean Variance

Old input (X̃4) 11.91 0.31 17.43 12.2 59.47 5.99
The first SP solution (α̃4) 12.80 0.34 18.97 13.50 59.47 6.59

The expected increase (∆X̃04) 0.89 0.03 1.54 1.20 0.00 0.60
Percentage increases 7.47% 9.68% 8.84% 9.84% 0.00% 10.02%
The second SP solution (α̃2) 12.21 0.41 22.09 12.3 147.88 0.95

The expected increase (∆X̃04) 0.20 0.04 4.66 0.90 88.41 0.40
Percentage increases 1.68% 12.90% 9.67% 7.38% 148.66% 6.68%

(iii) If the first scenario is selected, then the mean and variance of the delayed requisitions input level (input 3)
should increase to 0.11% and 50.00%, respectively, while if the second scenario is selected, then the mean
and variance of this input should increase to 0.06% and 100.00%, respectively.

As another intended performance level, another InvDEA is described as follows: Suppose that DMU04
describes goals for some criteria, which should be attained in the future. Namely, consider that DMU04
should study this problem: among all branches, how the input levels (personal rate, payable benefits, and
delayed requisitions) increase if its efficiency index in the level of significance α = 0.01 remains unchanged
(θ02(0.01) = 0.33122), yet the output levels increase from Ỹ04, to β̃04 as presented in Table 4. More accurately,
the percentage of intended increases in the facilities (ỹ1

04), amount of deposits (ỹ2
04), received benefits (ỹ3

04),
received commission (ỹ4

04), and other resources of deposits (ỹ5
04) are given in Table 4.

Considering SMOP (4.2) in the level of significance α = 0.01 corresponding to DMU04 and adopting the
weight-sum approach [11], two SP solutions are produced to estimate the input levels as presented in Table 5.
More accurately, the percentage of the required increase in the input levels in each of two scenarios to increase
input levels under preserving the efficiency score in the significance level α = 0.01 must be like Table 5.

Table 5 proposes two patterns to the decision-maker to select the optimal decision to extend DMU04. This
means that the decision-maker can perform required operations by selecting appropriate strategies to spread
DMU04. Based on Theorem 4.3 the efficiency score for the two patterns are equal to “0.33122” in the level of
significance α = 0.01.

At first, under maintaining the efficiency score, the inputs (outputs)-estimation problem is solved by
Hadi-Vencheh et al. [23] and Wei et al. [45] when some or all of its outputs/inputs increase. Afterward, dif-
ferent theoretical and practical perspectives of the InvDEA have been verified in the previous studies, such as
Lin [32], Dong Joon [10], Hadi-Vencheh et al. [23], Ghobadi [20], Emrouznejad et al. [14], Jahanshahloo et al.
[27], Wegener and Amin [44], Jahanshahloo et al. [28], Gattoufi et al. [17], Ghobadi [21] and Amin et al. [1].
Nevertheless, the constructed models in the mentioned works could not solve the issue of input-estimation and
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output-estimation in the presence of stochastic data. Thus, there is no available approach to compare our results
with that.

6. Conclusions

In the current work, the InvDEA problems are generalized for input/output estimation in the presence
of stochastic data. We used MOP problems to derive the necessary and sufficient conditions for input/output
estimation. A novel optimality concept (stochastic (weak) Pareto optimality in the level of significance α ∈ [0, 1])
for MOP problems was introduced to attain this goal. Its performance in attaining the desired efficiency in a
banking sector application is investigated to describe the presented InvDEA strategy.

The obtained results give novel relationships among DEA and MOP problems. Besides, the mentioned results
can be utilized in real applications, such as resource allocation, sensitivity analysis, preserving (or improving)
efficiency values, determining revenue targets, merging the banks, and firm restructuring. Identification of the
type of distribution of the efficiency random variable and also obtaining similar models in dynamic and network
DEA frameworks can be considered as future research aspects.

Appendix A.

Proof of Theorem 4.3. To prove the theorem, θo(α) = θn+1(α) should be shown, considering α̃∗o =
(α̃∗1o, α̃

∗
2o, . . . , α̃

∗
mo) in model (4.1). Because ∆ is a feasible solution for SMOP (4.2), we get

P

∑
j∈J

µ∗j X̃j ≤ θo(α)α̃∗o

 ≥ 1− α, (A.1)

P

∑
j∈J

µ∗j Ỹj ≥ β̃o

 ≥ 1− α, (A.2)

P
{
α̃∗o ≥ X̃o

}
≥ 1− α, (A.3)

µ∗ ∈ Ω. (A.4)

According to (A.1)–(A.4), the vector (µ = (µ∗, 0) , θ = θo(α)) is a feasible solution to model (4.1) (setting α̃∗o in
stead of α̃o). Therefore, θn+1(α) ≤ θo(α).

Suppose that (µ∗∗, µ∗∗n+1, θn+1(α) = θ∗∗) is an optimal solution of model (4.1), we have

P

∑
j∈J

µ∗∗j X̃j + µ∗∗n+1α̃
∗
o ≤ θ∗∗α̃∗o

 ≥ 1− α, (A.5)

P

∑
j∈J

µ∗∗j Ỹj + µ∗∗n+1β̃o ≥ β̃o

 ≥ 1− α, (A.6)

µ∗∗ ∈ Ω+. (A.7)

Since 0 < θo(α) ≤ 1, by equation (A.1) we get

P

∑
j∈J

µ∗j X̃j ≤ α̃∗o

 ≥ 1− α. (A.8)
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Considering (A.5) and (A.8), we have

P

∑
j∈J

µ∗∗j X̃j + µ∗∗n+1

∑
j∈J

µ∗j X̃j

 ≤ θ∗∗α̃∗o
 ≥ 1− α, (A.9)

then,

P

∑
j∈J

(
µ∗∗j + µ∗∗n+1µ

∗
j

)
X̃j ≤ θ∗∗α̃∗o

 ≥ 1− α. (A.10)

Let µj = µ∗∗j + µ∗∗n+1µ
∗
j , and write (A.10) as

P

∑
j∈J

µjX̃j − θ∗∗α̃∗o ≤ 0

 ≥ 1− α. (A.11)

Using a similar method (by Eqs. (A.2) and (A.6)) we obtain

P

∑
j∈J

µj Ỹj − β̃o ≥ 0

 ≥ 1− α. (A.12)

Also, it is obvious that
µ = (µ1, . . . , µn) ∈ Ω. (A.13)

If condition (i) holds, then by (A.11), we get

P

∑
j∈J

µjX̃j − θ∗∗X̃∗o ≤ 0

 ≥ 1− α. (A.14)

Also, by definition of β̃o and (A.12), we have

P

∑
j∈J

µj Ỹj − Ỹo ≥ 0

 ≥ 1− α. (A.15)

Therefore, equations (A.13)–(A.15) imply that (µ, θ∗∗) is a feasible solution to model (3.1). This implies θo(α) ≤
θ∗∗ = θn+1(α). Hence, with regard to inequality θn+1(α) ≤ θo(α), we have θo(α) = θn+1(α) and completes the
proof under condition (i).

If condition (ii) holds, then P{x̃lo − α̃∗lo ≤ −ε} ≥ 1 − α. There exists non-negative scalar ε ≥ 0 such that
P{x̃lo − α̃∗lo ≤ −ε} = 1− α+ ε. Then, there exists positive scalar κ > 0 such that

P {x̃lo − α̃∗lo ≤ −κ} = 1− α. (A.16)

Now, by contradiction assume that θn+1(α) = θ∗∗ < θo(α). By equation (A.11) and contradiction assume
(θn+1(α) = θ∗∗ < θo(α)), we obtain

P

∑
j∈J

µjX̃j < θo(α)α̃∗o

 ≥ 1− α. (A.17)
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Then

P

∑
j∈J

µjX̃j − θo(α)α̃∗o < 0

 ≥ 1− α. (A.18)

There exists non-negative vector εo = (ε1o, ε2o, . . . , εmo) such that

P


n∑
j=1

µjX̃j − θo(α)α̃∗o < 0

 = 1− α+ εo. (A.19)

Therefore, there exists positive vector So = (s1o, s2o, . . . , smo) such that

P

∑
j∈J

µjX̃j − θo(α)α̃∗o ≤ −So

 = 1− α. (A.20)

Clearly, there exists positive vector So = (s1o, s2o, . . . , smo) such that So = θo(α)So. Then, by equation (A.20),
we get

P

∑
j∈J

µjX̃j − θo(α)α̃∗o ≤ −θo(α)So

 = 1− α. (A.21)

Therefore,

P

∑
j∈J

µjX̃j − θo(α)(α̃∗o − So) ≤ 0

 = 1− α. (A.22)

Defining
−k = max {−κ,max {−sio, i = 1, 2, . . . ,m}} , (A.23)

we have k > 0. Now, for each i ∈ I, define

α̃io :=

 α̃∗io if i 6= l,

α̃∗io − k if i = l.
(A.24)

By (A.16) and (A.22)–(A.24) we have

P

∑
j∈J

µj x̃ij − θo(α)α̃io ≤ 0

 ≥ 1− α, ∀i ∈ I, (A.25)

P
{
x̃lo − α̃lo ≤ 0

}
≥ 1− α. (A.26)

Also,

P
{
x̃io − α̃io ≤ 0

}
≥ 1− α ∀i ∈ I, i 6∈ l. (A.27)

Since µ ∈ Ω, because of (A.12) and (A.25)–(A.27), (µ, α̃o) is a feasible solution to problem (4.2), where
P
{
α̃io − α̃∗io ≤ 0

}
≥ 1− α for all i ∈ I − {l}, and P

{
α̃lo − α̃∗lo ≤ −k

}
≥ 1− α. But this is impossible because

∆ is a SP solution in the level of significance α to SMOP (4.2). �
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Appendix B.

Proof of Theorem 4.6. To prove the theorem, ϕo(α) = ϕn+1(α) should be shown, setting β̃∗o =(
β̃∗1o, β̃

∗
2o, . . . , β̃

∗
so

)
in model (4.11). Because ∆ is a feasible solution for SMOP (4.12), we have

P

∑
j∈J

µ∗j X̃j ≤ α̃o

 ≥ 1− α, (B.1)

P

∑
j∈J

µ∗j Ỹj ≥ ϕo(α)β̃∗o

 ≥ 1− α, (B.2)

P
{
β̃∗o ≥ Ỹo

}
≥ 1− α, (B.3)

µ∗ ∈ Ω. (B.4)

According to (B.1)–(B.4), the vector (µ = (µ∗, 0) , ϕ = ϕo(α)) is a feasible solution to model (4.11) (setting β̃∗o
in stead of β̃o). Therefore, ϕn+1(α) ≥ ϕo(α).

Suppose that
(
µ∗∗, µ∗∗n+1, ϕn+1(α) = ϕ∗∗

)
is an optimal solution of model (4.11), we have

P

∑
j∈J

µ∗∗j X̃j + µ∗∗n+1α̃o ≤ α̃o

 ≥ 1− α, (B.5)

P

∑
j∈J

µ∗∗j Ỹj + µ∗∗n+1β̃
∗
o ≥ ϕ∗∗β̃∗o

 ≥ 1− α, (B.6)

µ∗∗ ∈ Ω+. (B.7)

Considering (B.1) and (B.5), we have

P

∑
j∈J

µ∗∗j X̃j + µ∗∗n+1

 n∑
j=1

µ∗j X̃j

 ≤ α̃o
 ≥ 1− α, (B.8)

then,

P

∑
j∈J

(
µ∗∗j + µ∗∗n+1µ

∗
j

)
X̃j ≤ α̃o

 ≥ 1− α. (B.9)

Let µj = µ∗∗j + µ∗∗n+1µ
∗
j , and write (B.9) as

P

∑
j∈J

µjX̃j ≤ α̃o

 ≥ 1− α. (B.10)

Also, it is obvious that
µ = (µ1, . . . , µn) ∈ Ω. (B.11)

Since ϕo(α) ≥ 1 and equation (B.2), we have

P

∑
j∈J

µ∗j Ỹj ≥ β̃∗o

 ≥ 1− α. (B.12)
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By contradiction assume that ϕn+1(α) = ϕ∗∗ > ϕo(α). By (B.6), we get

P

∑
j∈J

µ∗∗j Ỹj + µ∗∗n+1β̃
∗
o > ϕo(α)β̃∗o

 ≥ 1− α. (B.13)

By (B.12) and (B.13), we have

P


n∑
j=1

µ∗∗j Ỹj + µ∗∗n+1

 n∑
j=1

µ∗j Ỹj

 > ϕo(α)β̃∗o

 ≥ 1− α. (B.14)

Then

P

∑
j∈J

µ∗∗j + µ∗∗n+1

 n∑
j=1

µ∗j

 Ỹj > ϕo(α)β̃∗o

 ≥ 1− α. (B.15)

According to definition of µj for j = j = 1, 2, . . . , n, and equation (B.15), we have

P


n∑
j=1

µj Ỹj > ϕo(α)β̃∗o

 ≥ 1− α. (B.16)

Therefore,

P

ϕo(α)β̃∗o −

∑
j∈J

µj Ỹj

 < 0

 ≥ 1− α. (B.17)

There exists non-negative vector εo = (ε1o, ε2o, . . . , εso) such that

P

ϕoβ̃∗o −
∑
j∈J

µj Ỹj

 < 0

 = 1− α+ εo. (B.18)

Therefore, there exists positive vector So = (s1o, s2o, . . . , sso) such that

P

ϕo(α)β̃∗o −

∑
j∈J

µj Ỹj

 ≤ −So
 = 1− α. (B.19)

Clearly, there exists positive vector S̄o = (s̄1o, s̄2o, . . . , s̄so) such that So = ϕo(α)S̄o. Defining

−k = max {−s̄ro, r = 1, 2, . . . , s} , (B.20)

we have k > 0. Now, for each r ∈ O, define β̃ro := β̃∗ro + k. By equation (B.19), we get

P

∑
j∈J

µj Ỹj ≥ ϕoβ̃o

 ≥ 1− α. (B.21)

Also, according to equation (B.3), we have

P
{
β̃o ≥ Ỹo

}
≥ 1− α. (B.22)

According to equations (B.10), (B.11), (B.21), and (B.22),
(
µ, β̃o

)
is a feasible solution to problem (4.12)

where P
{
β̃ro − β̃∗ro ≥ k

}
≥ 1 − α for each r ∈ O. But this is impossible because ∆ is a SWP solution in the

level of significance α to SMOP (4.12). �
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Appendix C.

See Tables C.1 and C.2.
Table C.1. The inputs of 20 bank branches.

Input 1 Input 2 Input 3

DMU Mean Variance Mean Variance Mean Variance

DMU01 9.131 0.05 18.79 8.81 7.228 0.58

DMU02 10.59 0.53 44.32 24.1 1.121 0.02
DMU03 6.712 0.86 19.73 27.7 19.21 0.47

DMU04 11.91 0.31 17.43 12.2 59.47 5.99

DMU05 7.012 0.02 10.38 2.12 12.23 0.85
DMU06 18.99 0.88 16.67 10.8 568.6 28.1

DMU07 11.16 0.01 25.46 18.6 552.8 43.2

DMU08 15.05 0.48 123.1 42.6 14.78 0.06
DMU09 8.787 0.38 36.16 38.4 361.8 23.2

DMU10 19.88 0.25 46.41 53.1 12.81 0.38

DMU11 18.92 0.17 36.88 54.5 24.43 0.01
DMU12 20.45 0.42 100.8 31.8 115.2 19.4

DMU13 12.41 0.12 20.19 10.6 78.02 24.1

DMU14 8.051 0.79 33.21 24.3 115.3 15.6
DMU15 18.48 0.92 45.36 92.6 57.52 12.8

DMU16 10.35 0.27 11.16 3.32 43.32 36.1
DMU17 9.511 0.01 31.49 38.5 173.3 3.13

DMU18 13.71 0.18 40.32 51.4 10.88 0.12

DMU19 11.69 0.26 26.44 26.2 31.22 0.05
DMU20 7.823 0.58 17.74 10.1 13.06 8.88

Table C.2. The outputs of 20 bank branches.

Output 1 Output 2 Output 3 Output 4 Output 5

DMU Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

DMU01 149.85 48.51 49.621 18.01 4.701 0.41 4.748 0.41 30.09 24.34

DMU02 50.772 8.011 73.132 13.11 1.815 0.02 3.035 0.68 5.823 0.689
DMU03 259.91 29.59 108.04 22.56 6.016 0.01 10.06 2.98 2.721 0.4392

DMU04 137.51 21.65 44.972 13.78 4.923 1.65 4.212 3.84 63.61 33.73

DMU05 95.901 2.521 31.633 18.94 2.718 0.44 9.024 7.23 64.55 31.25
DMU06 112.58 3.562 71.958 17.05 13.19 9.15 41.89 13.2 291.3 92.52

DMU07 192.97 14.56 78.015 19.56 7.791 3.56 15.89 2.34 7.499 1.268

DMU08 724.38 66.02 219.69 37.56 35.32 15.3 23.98 10.4 361.6 48.35
DMU09 548.15 41.86 86.225 28.31 17.64 3.67 86.23 17.2 565.2 175.1

DMU10 1229.1 69.02 194.58 17.35 25.91 12.3 86.76 22.1 600.6 86.34
DMU11 11557 718.1 155.32 49.13 166.6 14.1 8.142 3.11 119.9 14.89
DMU12 1132.1 35.35 248.16 23.89 46.88 26.3 31.85 4..1 96.21 44.47

DMU13 438.39 17.41 104.41 25.71 10.68 1.04 30.22 3.77 331.9 17.16

DMU14 260.82 15.32 87.369 23.44 8.415 3.52 6.101 2.86 36.93 5.777
DMU15 11190 1214 166.44 10.69 65.12 16.1 132.7 13.9 919.1 133.1

DMU16 709.85 42.19 159.48 32.78 36.89 6.28 12.15 2.51 79.66 10.52
DMU17 308.11 43.72 107.03 29.39 11.87 1.76 13.63 1.57 342.3 134.9

DMU18 259.21 34.21 81.779 21.65 5.212 1.94 8.021 3.52 107.9 13.07

DMU19 381.33 57.38 72.993 29.26 5.165 1.79 50.32 7.47 577.2 113.4
DMU20 399.25 10.41 40.985 15.93 11.51 0.99 6.432 3.25 82.13 9.891
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