Directional scale elasticity considering the management preference of decision-makers
RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2861-2881

Most data envelopment analysis (DEA) studies on scale elasticity (SE) and returns to scale (RTS) of efficient units arise from the traditional definitions of them in economics, which is based on measuring radial changes in outputs caused by the simultaneous change in all inputs. In actual multiple inputs/outputs activities, the goals of expanding inputs are not only to obtain increases in outputs, but also to expect the proportions of such increases consistent with the management preference of decision-makers. However, the management preference is usually not radial changes in outputs. With the latter goal into consideration, this paper proposes the directional SE and RTS in a general formula for multi-output activities, and offers a DEA-based model for the formula of directional SE at any point on the DEA frontier, which is straightforward and requires no simplifying assumptions. Finally, the empirical part employs the data of 16 basic research institutions in Chinese Academy of Sciences (CAS) to illustrate the superiority of the proposed theories and methods.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021131
Classification : 90B30, 90B50, 90C08, 90C90
Keywords: Data envelopment analysis, returns to scale, management preference, directional scale elasticity
@article{RO_2021__55_5_2861_0,
     author = {Ren, Tiantian and Zhou, Zhongbao and Li, Ruiyang and Liu, Wenbin},
     title = {Directional scale elasticity considering the management preference of decision-makers},
     journal = {RAIRO. Operations Research},
     pages = {2861--2881},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/ro/2021131},
     mrnumber = {4318745},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021131/}
}
TY  - JOUR
AU  - Ren, Tiantian
AU  - Zhou, Zhongbao
AU  - Li, Ruiyang
AU  - Liu, Wenbin
TI  - Directional scale elasticity considering the management preference of decision-makers
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2861
EP  - 2881
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021131/
DO  - 10.1051/ro/2021131
LA  - en
ID  - RO_2021__55_5_2861_0
ER  - 
%0 Journal Article
%A Ren, Tiantian
%A Zhou, Zhongbao
%A Li, Ruiyang
%A Liu, Wenbin
%T Directional scale elasticity considering the management preference of decision-makers
%J RAIRO. Operations Research
%D 2021
%P 2861-2881
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021131/
%R 10.1051/ro/2021131
%G en
%F RO_2021__55_5_2861_0
Ren, Tiantian; Zhou, Zhongbao; Li, Ruiyang; Liu, Wenbin. Directional scale elasticity considering the management preference of decision-makers. RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2861-2881. doi: 10.1051/ro/2021131

[1] K. B. Atici and V. V. Podinovski, Mixed partial elasticities in constant returns-to-scale production technologies. Eur. J. Oper. Res. 220 (2012) 262–269. | MR | Zbl | DOI

[2] B. M. Balk, R. Färe and G. Karagiannis, On directional scale elasticities. J. Prod. Anal. 43 (2015) 99–104. | DOI

[3] R. D. Banker, Estimating most productive scale size using data envelopment analysis. Eur. J. Oper. Res. 17 (1984) 35–44. | Zbl | DOI

[4] R. D. Banker and R. M. Thrall, Estimation of returns to scale using data envelopment analysis. Eur. J. Oper. Res. 62 (1992) 74–84. | Zbl | DOI

[5] R. D. Banker, A. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. | Zbl

[6] R. D. Banker, W. W. Cooper, L. M. Seiford and J. Zhu, Returns to scale in DEA. In: Handbook on Data Envelopment Analysis. Springer, Boston, MA (2011).

[7] A. Emrouznejad and G. L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc.-Econ. Planning Sci. 61 (2018) 4–8. | DOI

[8] R. Färe, S. Grosskopf and C. K. Lovell, The Measurement of Efficiency of Production. Springer, Netherlands (1985).

[9] R. Färe, S. Grosskopf and C. K. Lovell, Production Frontiers. Cambridge University Press (1994).

[10] M. J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc.: Ser. A (General) 120 (1957) 253–281.

[11] F. R. Førsund and L. Hjalmarsson, Calculating scale elasticity in DEA models. J. Oper. Res. Soc. 55 (2004) 1023–1038. | Zbl | DOI

[12] F. R. Førsund, L. Hjalmarsson, V. E. Krivonozhko and O. B. Utkin, Calculation of scale elasticities in DEA models: direct and indirect approaches. J. Prod. Anal. 28 (2007) 45–56. | DOI

[13] F. R. Førsund, S. A. Kittelsen and V. E. Krivonozhko, Farrell revisited–Visualizing properties of DEA production frontiers. J. Oper. Res. Soc. 60 (2009) 1535–1545. | Zbl | DOI

[14] R. Frisch, Theory of Production. D. Reidel Publ. Co, Dordrecht, Holland (1965).

[15] B. Golany and G. Yu, Estimating returns to scale in DEA. Eur. J. Oper. Res. 103 (1997) 28–37. | Zbl | DOI

[16] M. Mirjaberi and R. Kazemi Matin, On the calculation of directional scale elasticity in data envelopment analysis. Asia-Pac. J. Oper. Res. 33 (2016) 1650026. | MR | Zbl | DOI

[17] V. V. Podinovski, Returns to scale in convex production technologies. Eur. J. Oper. Res. 258 (2017) 970–982. | MR | Zbl | DOI

[18] V. V. Podinovski and F. R. Førsund, Differential characteristics of efficient frontiers in data envelopment analysis. Oper. Res. 58 (2010) 1743–1754. | MR | Zbl | DOI

[19] V. V. Podinovski, F. R. Førsund and V. E. Krivonozhko, A simple derivation of scale elasticity in data envelopment analysis. Eur. J. Oper. Res. 197 (2009) 149–153. | MR | Zbl | DOI

[20] V. V. Podinovski, R. G. Chambers, K. B. Atici and I. D. Deineko, Marginal values and returns to scale for nonparametric production frontiers. Oper. Res. 64 (2016) 236–250. | MR | Zbl | DOI

[21] V. V. Podinovski, O. B. Olesen and C. S. Sarrico, Nonparametric production technologies with multiple component processes. Oper. Res. 66 (2017) 282–300. | MR | Zbl

[22] L. M. Seiford and J. Zhu, An investigation of returns to scale in data envelopment analysis. Omega 27 (1999) 1–11. | DOI

[23] K. Tone and B. K. Sahoo, Scale, indivisibilities and production function in data envelopment analysis. Int. J. Prod. Econ. 84 (2003) 165–192. | DOI

[24] M. Tracy, Government and Agriculture in Western Europe. Harvester Wheatsheaf, New York (1989).

[25] G. L. Yang and W. B. Liu, Estimating directional returns to scale in DEA. INFOR: Inf. Syst. Oper. Res. 55 (3) 243–273. | MR | Zbl

[26] G. L. Yang, R. Rousseau, L. Y. Yang and W. B. Liu, A study on directional returns to scale. J. Inf. 8 (2014) 628–641.

[27] V. Zelenyuk, A scale elasticity measure for directional distance function and its dual: theory and DEA estimation. Eur. J. Oper. Res. 228 (2013) 592–600. | MR | Zbl | DOI

Cité par Sources :