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DIRECTIONAL SCALE ELASTICITY CONSIDERING THE MANAGEMENT
PREFERENCE OF DECISION-MAKERS

Tiantian Ren1,2, Zhongbao Zhou1,2,*, Ruiyang Li1,2 and Wenbin Liu1,3,4

Abstract. Most data envelopment analysis (DEA) studies on scale elasticity (SE) and returns to scale
(RTS) of efficient units arise from the traditional definitions of them in economics, which is based on
measuring radial changes in outputs caused by the simultaneous change in all inputs. In actual multiple
inputs/outputs activities, the goals of expanding inputs are not only to obtain increases in outputs,
but also to expect the proportions of such increases consistent with the management preference of
decision-makers. However, the management preference is usually not radial changes in outputs. With
the latter goal into consideration, this paper proposes the directional SE and RTS in a general formula
for multi-output activities, and offers a DEA-based model for the formula of directional SE at any
point on the DEA frontier, which is straightforward and requires no simplifying assumptions. Finally,
the empirical part employs the data of 16 basic research institutions in Chinese Academy of Sciences
(CAS) to illustrate the superiority of the proposed theories and methods.
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1. Introduction

Returns to scale (RTS) is an important issue in the performance analysis of production organizations, which is
concerned with the relationship between efficient vectors of inputs and outputs for a given technology production
function. Scale elasticity (SE) is a quantitative measure of the strength of RTS characterization [11]. It is defined
as the ratio of the proportional change in output to the equal-proportional change in inputs at a (frontier
function) unit. Frisch [14] noted that in classical economics, the analysis of RTS and SE is mainly for the
production function of the single output technology. In actual production, the real production function is often
difficult to obtain, especially in the case of multi-input/multi-output production. Data Envelopment Analysis
(DEA), as a data-driven evaluation method, can effectively estimate the real production function. Banker [3]
and Banker et al. [5] first introduced the definitions of RTS and SE from the classical economics into the DEA
framework. Since then, the issues of RTS and SE in the multi-input/multi-output context have been extensively
studied using DEA (for a review, see [6, 7]).
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Within the existing work in DEA, there are two strands of research to providing RTS information of the
decision-making units (DMUs), including the qualitative and quantitative approaches. The former is to describe
the qualitative characterization of RTS, that is, to distinguish whether DMUs have increasing, constant or
decreasing RTS (see, e.g., [4,5,8,9,22,23], among others). The latter is to measure the numerical value of SE, as
noted, which can be used to offer a stronger quantitative characterization of RTS than the qualitative approach.
Relatively recently, most DEA research efforts in developing the quantitative approach include, e.g., Golany
and Yu [15], Førsund and Hjalmarsson [11, 12], Podinovski et al. [19], Podinovski and Førsund [18], Atici and
Podinovski [1], Zelenyuk [27], Mirjaberi and Matin [16], Podinovski et al. [17, 20, 21]. Our development also
mainly contributes to the quantitative approach as outline below.

In essence, the above studies mostly arise from the definitions of RTS and SE in DEA by Banker [3], which is
based on the idea of measuring the radial change in outputs caused by the radial change in inputs. However, in
practice, the decision-maker usually has a preferred (or desirable) change in outputs due to the constraints of
actual management needs and objective conditions, and it is referred as the management preference of decision-
makers in our paper. Taking the two outputs of banking activities, total loans and total customers served, when
the latter approaches saturation, managers will naturally prefer the growth of total loans rather than the radial
growth of these two outputs. In most cases, the management preference of decision-makers is not radial, so the
results of SE calculated by the traditional approaches with radial measure do not suffice to provide practical
guidance for the management. In fact, our numerical examples also verify that the SE and RTS are different
under different management preference of the decision-makers. Therefore, it is necessary to measure RTS and
SE with respect to the actual management preference of decision-makers. To this end, in the multi-input/multi-
output context, this paper proposes a method to define and measure directional RTS and directional SE with
the consideration of the management preference of decision-makers. In our method, the management preference
of decision-makers is characterized by the specified direction of output changes, and then the amount of output
changes satisfying such management preference can be measured by the projection of actual optimal outputs in
this direction. The detailed definitions of directional SE and RTS will be introduced in Section 2.

Furthermore, it is worth noting that the projection in the specified direction of output changes is usually
related to the direction of input changes, so there is also the problem of optimizing the direction of input changes
for the target DMU. As mentioned above, most of the traditional methods assume that all inputs change in an
equal proportion, although the input-directional SE is introduced and discussed in Yang et al. [26] and Yang
and Liu [25] (abbreviated as Yang’s method hereafter). Obviously, the equal-proportional change in all inputs
may not be the best strategy for decision-makers in the presence of their own management preferences, which is
illustrated via the following empirical example in this paper. Thus, in this work the direction of input changes
is also considered so that one can find out a higher SE along the specific direction of output changes by varying
the direction of input changes.

The purpose of this paper is to develop the analysis of SE and RTS for the target DMU along the direction
satisfying the manager preference. The contributions of our work are threefold. First, we introduce the direction
of output changes to describe the management preference of decision-makers, and extend the concepts of direc-
tional SE and directional RTS on this basis. Second, we propose a general DEA-based method to numerically
calculate the directional SE at any point on the DEA frontier. Instead of several estimation methods for direc-
tional SE (e.g., Yang’s method), we provide a straightforward derivation for the formula of the directional SE,
and accordingly construct two auxiliary linear programs to obtain the exact values of the right- and left-hand
directional SE. This proposed method used for measuring the directional SE not only overcomes the problems
of infeasibility and parameter interference that arises Yang’s method, but also can be easily extended to more
general cases since no simplifying assumptions are imposed. Third, we employ the data from 16 basic research
institutions in CAS as the empirical example to illustrate the advantages of the analyses of directional SE and
directional RTS. The results show that the directional SE and directional RTS provide more precise information
than those of traditional SE and RTS on how to adjust inputs to maximize output increases consistent with the
decision maker’s management preference.



DIRECTIONAL SCALE ELASTICITY CONSIDERING THE MANAGEMENT PREFERENCE OF DECISION-MAKERS 2863

The structures of these contributions are organized as follows. In Section 2, we propose the generalized
definitions of directional RTS and directional SE considering the management preference of decision-makers. In
Section 3, we offer a DEA-based approach to derive the formulae for directional SE of the DMU located at the
DEA frontier. In Section 4, we provide an empirical example consisting of data from 16 basic institutes of CAS
in 2016 to illustrate the proposed theories and models. The last section contains the conclusion and delineates
prospects of further research.

2. Definitions of directional RTS and directional SE

In this section, we propose the generalized definitions RTS and SE with consideration of the management
preference of the decision-makers. Suppose there are 𝑛 observed DMUs. X𝑗 = (𝑥1𝑗 , . . . , 𝑥𝑚𝑗)𝑇 and Y𝑗 =
(𝑦1𝑗 , . . . , 𝑦𝑠𝑗)𝑇 represent the input vector and the output vector that of the 𝑗-th DMU, respectively. Under the
assumption of variable returns to scale (VRS), the production possibility set (PPS) can be formulated as:

𝑇 =

⎧⎨⎩(X,Y)|
𝑛∑︁

𝑗=1

𝜆𝑗X𝑗 ≤ X,

𝑛∑︁
𝑗=1

𝜆𝑗Y𝑗 ≥ Y,

𝑛∑︁
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛

⎫⎬⎭ . (2.1)

Before discussing the scale issues, it should be kept in mind that RTS and SE is a local property and applies
to boundary (frontier) points. This argument is emphasized in most studies: examples include Banker and
Thrall [4], Førsund and Hjalmarsson [11], Yang and Liu [25] and Zelenyuk [27] among others. In the studies,
the definition of SE is only associated to the efficient units on the frontier, and therefore it does not depend
on the efficiency measure. For an inefficient DMU that is a point in the interior of the PPS is first represented
by a benchmark (projection) of the frontier, in which case some explicit efficiency measures are needed, and
thereafter the discussion of the scale issue is targeted at this benchmark. Podinovski et al. [19] extended the
SE to the inefficient DMUs by integrating the input and output radial efficiency measures into the formulae of
SE, which is essentially in line with the idea of the typical literature mentioned above. Such benchmarks for
inefficient DMUs in Podinovski et al. [19] are set as the input and output radial projections.

Analogous to this idea, we employ the Farrell measures of efficiency from input and output orientation [10]
to realize the radial projections for a target DMU(X0,Y0), which have been commonly used as the benchmarks
for inefficient DMUs in the discussion of SE using DEA methods. Such projections can be determined by solving
the following input- and output-oriented BCC models, respectively.
[BCC-I]

min 𝜃 = 𝜃0 − 𝜀
(︀
s−e𝑇 + s+e𝑇

)︀
s.t.

𝑛∑︁
𝑗=1

𝜆𝑗X𝑗 + s− = 𝜃0X0,

𝑛∑︁
𝑗=1

𝜆𝑗Y𝑗 − s+ = Y0,

𝑛∑︁
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛,

s−, s+ ≥ 0. (2.2)

[BCC-O]

min 𝜙 = 𝜙0 − 𝜀
(︀
s−e𝑇 + s+e𝑇

)︀
s.t.

𝑛∑︁
𝑗=1

𝜆𝑗X𝑗 + s− = X0,
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𝑛∑︁
𝑗=1

𝜆𝑗Y𝑗 − s+ = Y0 + 𝜙0𝛿Y0,

𝑛∑︁
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛,

s−, s+ ≥ 0. (2.3)

Here 𝜀 is a non-Archimedean small positive number, and the vectors s− = (𝑠−1 , . . . , 𝑠−𝑚) and s+ = (𝑠+
1 , . . . , 𝑠+

𝑠 )
represent the input slacks and output slacks, respectively. The DMU(X0,Y0) is called “strongly efficient” if
and only if the optimal solution (𝜃*, 𝜆*, s+*, s−*) ((𝜙*, 𝜆*, s+*, s−*)) obtained from model (2.2) ((2.3)) satisfies
𝜃* = 1 (𝜙* = 1) and has no slacks (s+* = 0, s−* = 0). Otherwise, the DMU(X0,Y0) can be brought into the
strongly efficient status by the BCC-I and BCC-O projections as defined by
[BCC-I-P]

X𝐼*
0 ← 𝜃*X0 − s−*,

Y𝐼*
0 = Y0 + s+*. (2.4)

[BCC-O-P]

X𝑂*
0 ← X0 − s−*,

Y𝑂*
0 = 𝜙*𝛿Y0 + s+*. (2.5)

For convenience, we define the projection point of DMU(X0,Y0) derived from different efficiency measures
uniformly as DMU(X*

0,Y
*
0), where if the observation point DMU(X0,Y0) is strongly efficient, then it is consis-

tent with DMU(X*
0,Y

*
0). It is noted that this projection can be also determined by some alternative efficiency

measures (e.g., directional radial measures). In fact, the above efficiency measures only provide a measure of the
distance from the inefficient DMU to the efficient frontier, but do not serve to explain why a DMU is inefficient
[11]. It is not difficult to find that projecting inefficient DMUs to the efficient frontier and exploring the SE and
RTS of their projection points are two different processes. The general definitions of RTS and SE can be treated
as the idea of measuring the change in outputs caused by the change in inputs on the efficient frontier. This
change can be radial or non-radial, depending on the management preferences of decision-makers. This paper
is concerned with how to incorporate the management preferences into the SE and RTS of a strongly efficient
DMU or the strongly efficient projection of an inefficient DMU, and the resulting SE and RTS are called as
the direction SE and directional RTS. To address this problem, in what follows we dwell mainly on both radial
projections under input and output orientations of each DMU in the definition and derivation of directional SE
and directional RTS.

We now propose the definitions of directional SE and directional RTS accounting for the management pref-
erence of decision-makers towards this strongly efficient DMU. As mentioned earlier, when considering the
management preference of decision-makers in the analyses of RTS and SE, we need to generalize the concept of
SE and RTS to accommodate any proportional change of outputs and not only in the proportional change as in
the traditional SE measure. Notionally as Yang and Liu [25], we first introduce the direction of input changes
and the direction of output changes to describe the situation that inputs and outputs change non-proportionally.
For a strongly efficient DMU(X*

0,Y
*
0), let the vector 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑚)𝑇 (𝜔𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚) represents

the direction of input changes, and the vector 𝛿 = (𝛿1, 𝛿2, . . . , 𝛿𝑠)𝑇 (𝛿𝑟 ≥ 0, 𝑟 = 1, . . . , 𝑠) represents the direc-
tion of output changes, which essentially describes the management preference of decision-makers. Now, along
these given directions, increasing inputs X*

0 by proportion 𝑡 in the direction 𝜔, the maximal proportion 𝛽(𝑡) of
increase in outputs Y*

0 possible in the direction 𝛿 is allowed by the function

𝛽(𝑡) = max{𝛽| (Ω𝑡X*
0,Φ𝛽Y*

0) ∈ 𝑇} (2.6)
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where, Ω𝑡 = diag{1 + 𝜔1𝑡, . . . , 1 + 𝜔𝑚𝑡}, Φ𝛽 = diag{1 + 𝛿1𝛽, . . . , 1 + 𝛿𝑠𝛽}, diag{*} denotes the diagonal matrix.
Let ‖𝑇‖ =

∑︀𝑚
𝑖=1 𝜔𝑖𝑡/𝑚 and ‖𝐵‖ =

∑︀𝑠
𝑟=1 𝛿𝑟𝛽(𝑡)/𝑚, where 𝑇 = (𝜔1𝑡, 𝜔2𝑡, . . . , 𝜔𝑚𝑡) and 𝐵 =

(𝛿1𝛽(𝑡), 𝛿2𝛽(𝑡), . . . , 𝛿𝑠𝛽(𝑡)). Similar to the classic definition of SE, at any boundary point let

(X,Y) = (diag {1 + 𝜔1𝑡, . . . , 1 + 𝜔𝑚𝑡}X*
0, diag{1 + 𝛿1𝛽(𝑡), . . . , 1 + 𝛿𝑠𝛽(𝑡)}Y*

0) . (2.7)

At this point, its directional SE can be defined as the ratio of the marginal productivity d‖𝐵‖
d‖𝑇‖ to the average

productivity ‖𝐵‖+1
‖𝑇‖+1 when 𝑡→ 0 (see, e.g., [25]). Then

𝜀 (X,Y) = lim
𝑡→0

d ‖𝐵‖
d ‖𝑇‖

× ‖𝑇‖+ 1
‖𝐵‖+ 1

= lim
𝑡→0

d ‖𝐵‖/d𝑡

d ‖𝑇‖/d𝑡
× ‖𝑇‖+ 1
‖𝐵‖+ 1

= lim
𝑡→0

1
𝑠

∑︀𝑠
𝑟=1 𝛿𝑟

d𝛽(𝑡)
d𝑡

1
𝑚

∑︀𝑚
𝑖=1 𝜔𝑖

× ‖𝑇‖+ 1
‖𝐵‖+ 1

= lim
𝑡→0

1
𝑠

∑︀𝑠
𝑟=1 𝛿𝑟

1
𝑚

∑︀𝑚
𝑖=1 𝜔𝑖

×
1
𝑚

∑︀𝑚
𝑖=1 𝜔𝑖𝑡 + 1

1
𝑠

∑︀𝑠
𝑟=1 𝛿𝑟𝛽(𝑡) + 1

× d𝛽(𝑡)
d𝑡
· (2.8)

At DMU(X*
0,Y

*
0), where 𝑡 = 0 and 𝛽(𝑡) = 0, the directional SE derived from formula (2.8) can be represented

as follows:

𝜀 (X*
0,Y

*
0) =

1
𝑠

∑︀𝑠
𝑟=1 𝛿𝑟

1
𝑚

∑︀𝑚
𝑖=1 𝜔𝑖

× d𝛽(𝑡)
d𝑡
· (2.9)

Further, if we let
∑︀𝑚

𝑖=1 𝜔𝑖 = 𝑝 and
∑︀𝑠

𝑟=1 𝛿𝑟 = 𝑞 (where 𝑝 and 𝑞 are arbitrary positive numbers) be the
completely generalized direction setting (as in [2]), then the proposed directional SE can be rewritten as

𝜀 (X*
0,Y

*
0) =

𝑝𝑠

𝑞𝑚
× d𝛽(𝑡)

d𝑡
· (2.10)

By comparing the proposed directional SE and the classic SE (i.e., d𝛽(𝑡)/d𝑡), we find that the proposed
directional SE is 𝑝𝑠/𝑞𝑚 time of the classic SE. To maintain consistency with the classic SE in the form, we
consider the normalization condition of 𝑝 = 𝑚 and 𝑞 = 𝑠 for standardizing our directional vector. In this setting,
the proposed and classic SEs can be uniformly expressed as

𝜀 (X*
0,Y

*
0) =

d𝛽(𝑡)
d𝑡
· (2.11)

Now, the rationale of the formulae (2.11) is that a marginal increase in the inputs by a scale factor 𝑡 (where
𝑡→ 0) in the direction 𝜔, corresponds to the maximum increase of the outputs by a scale factor 𝑡×𝜀(X*

0,Y
*
0) in

the direction 𝛿 for the DMU(X*
0,Y

*
0). Therefore, the directional SE measure in formula (2.11) has “reciprocal”

interpretation with the classic case, i.e., the value greater than 1 indicates about increasing directional RTS,
equal to 1 indicates about constant directional RTS, and less than 1 indicates decreasing directional RTS.

Since the piecewise linear frontier constructed by DEA is not smooth, it is not differentiable everywhere, in
particular at some corner points. According to Podinovski et al. [19], the right-hand and left-hand derivatives
of 𝛽′(0) always exist. Here, we use one-sided derivatives 𝛽′+(0), 𝛽′−(0) instead of 𝛽′(0) to get the definitions of
the right-hand and left-hand directional SE:

𝜀+ (X*
0,Y

*
0) = lim

𝑡↓0

𝛽(𝑡)− 𝛽(0)
𝑡− 0

= 𝛽′+(0) (2.12)

𝜀− (X*
0,Y

*
0) = lim

𝑡↑0

𝛽(𝑡)− 𝛽(0)
𝑡− 0

= 𝛽′−(0). (2.13)

Then, we can define the directional RTS as follows:

(1) The directional RTS to the “right” of DMU(X*
0,Y

*
0)
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(i) if 𝜀+(X*
0,Y

*
0) > 1 holds, then directional RTS to the “right” of DMU(X*

0,Y
*
0) is said increasing in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 ;
(ii) if 𝜀+(X*

0,Y
*
0) = 1 holds, then directional RTS to the “right” of DMU(X*

0,Y
*
0) is said constant in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 ;
(iii) if 𝜀+(X*

0,Y
*
0) < 1 holds, then directional RTS to the “right” of DMU(X*

0,Y
*
0) is said decreasing in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 .
(2) The directional RTS to the “left” of DMU(X*

0,Y
*
0)

(i) if 𝜀−(X*
0,Y

*
0) > 1 holds, then directional RTS to the “left” of DMU(X*

0,Y
*
0) is said increasing in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 ;
(ii) if 𝜀−(X*

0,Y
*
0) = 1 holds, then directional RTS to the “left” of DMU(X*

0,Y
*
0) is said constant in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 ;
(iii) if 𝜀−(X*

0,Y
*
0) < 1 holds, then directional RTS to the “left” of DMU(X*

0,Y
*
0) is said decreasing in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 .

3. Measurement of directional SE

In Section 3, we propose a DEA-based approach to derive the formulae for the directional SE for the target
DMU(X*

0,Y
*
0). In view of both the definitions of traditional SE and directional SE, we assume henceforth that

DMU(X*
0,Y

*
0) is strongly efficient with respect to 𝑇 . If not, we project it onto the strongly frontier of 𝑇 using

model (2.2) (or model (2.3)), and the directional SE can be measured through its strongly efficient projection
((2.4) or (2.5)).

Based on the definition (2.6) for the strongly efficient DMU(X*
0,Y

*
0), the function 𝛽(𝑡) is determined by

solving the following linear program:

𝛽(𝑡) = max 𝛽

s.t.
𝑛∑︁

𝑗=1

𝜆𝑗X*
𝑗 ≤ (1 + 𝑡𝜔) ∘X*

0,

−
𝑛∑︁

𝑗=1

𝜆𝑗Y*
𝑗 + (1 + 𝛽 𝛿) ∘Y*

0 ≤ 0,

𝑛∑︁
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1, . . . 𝑛,

𝛽 sign free (3.1)

where the vectors 𝜔 = (𝜔1, . . . , 𝜔𝑚)𝑇 (𝜔𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚) and 𝛿 = (𝛿1, . . . , 𝛿𝑠)𝑇 (𝛿𝑟 ≥ 0, 𝑟 = 1, . . . , 𝑠) represent
the directions of input changes and output changes, and satisfy

∑︀𝑚
𝑖=1 𝜔𝑖 = 𝑚,

∑︀𝑠
𝑟=1 𝛿𝑟 = 𝑠, where 𝑡 and 𝛽 are

input and output scaling factors, respectively. Our goal is to obtain 𝛽′+(0) and 𝛽′−(0), which can be applied
to calculate the numerical values of the left- and right directional SE of DMU(X*

0,Y
*
0) by formulae (2.12) and

(2.13).

Theorem 3.1. Given the direction of input changes 𝜔 = (𝜔1, . . . , 𝜔𝑚)𝑇 (𝜔𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚,
∑︀𝑚

𝑖=1 𝜔𝑖 = 𝑚)
and the direction of output changes 𝛿 = (𝛿1, . . . , 𝛿𝑠)𝑇 (𝛿𝑟 ≥ 0, 𝑟 = 1, . . . , 𝑠,

∑︀𝑠
𝑟=1 𝛿𝑟 = 𝑠), let v = (𝑣1, . . . , 𝑣𝑚)

represent the dual variables of the input constraint corresponding to the program (3.1) with 𝑡 = 0. Then the
value of 𝛽′+(0) and 𝛽′−(0) can be determined as follow

𝛽′+(0) = min
v0

v (𝜔 ∘X*
0)

𝛽′−(0) = max
v0

v (𝜔 ∘X*
0) .
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To prove Theorem 3.1, we use the concept of the directional derivatives of the optimal value function in linear
programming problems. Podinovski et al. [19] formulated this in the form of Proposition 3.2.

Proposition 3.2. Let function 𝜙(b) of vector b = (b1,b2) be defined as the optimal value in the following
linear program formulated in terms of the vector X ∈ 𝑅𝑛 (assuming it has an optimal solution), where 𝐽 is
some subset of {1, . . . , 𝑛}:

𝜙(b) = max {cX |A1X ≤ b1,A2X = b2, 𝑥𝑗 ≥ 0, 𝑗 ∈ 𝐽 } . (3.2)

Assume a non-zero vector d is a feasible direction at b. (This means (3.2) as an optimal solution with vector
b′ = b + 𝜃d on its right-hand side for all sufficiently small 𝜃 > 0.) Then, the directional derivative 𝜙′(b; d) of
𝜙 at b in the direction d exists and is equal to

𝜙′ (b; d) = min {wd |w optimal in the dual to (3.2)} . (3.3)

Proof of Theorem 3.1. Program (3.1) is a special case of (3.2) and its optimal value can be represented as 𝛽(𝑡) =
𝜙((1 + 𝑡𝜔) ∘X*

0,−Y*
0 , 1), then 𝛽(0) = 𝜙(X*

0,−Y*
0 , 1) with 𝑡 = 0, particularly. According to Proposition 3.2, the

right-hand side of 𝛽(0), that is, 𝛽′+(0), is equal to the directional derivative of the optimal value function 𝜙(b)
with b = (X*

0,−Y*
0 , 1) in the direction of d = (𝜔 ∘X*

0,0, 0):

𝛽′+(0) = lim
𝑡↓0

𝛽(𝑡)− 𝛽(0)
𝑡− 0

= lim
𝑡↓0

𝜙(X*
0 + 𝑡𝜔 ∘X*

0,−Y*
0 , 1)− 𝜙(X*

0,−Y*
0 , 1)

𝑡− 0

= lim
𝜎↓0

𝜙(b + 𝜎d)− 𝜙(b)
𝜎

= 𝜙′ (b; d) = 𝜙′ ((X*
0,−Y*

0 , 1); (𝜔 ∘X*
0,0, 0)) . (3.4)

Similarly, 𝛽′−(0) is equal to the directional derivative of the corresponding optimal value function 𝜙(b) with
b = (X*

0,−Y*
0 , 1) in the direction of −d = (−𝜔 ∘X*

0,0, 0):

𝛽′−(0) = lim
𝑡↑0

𝛽(𝑡)− 𝛽(0)
𝑡

= lim
𝑡↑0

𝜙(X*
0 + 𝑡𝜔 ∘X*

0,−Y*
0 , 1)− 𝜙(X*

0,−Y*
0 , 1)

𝑡

= lim
𝜎↓0

𝜙(b + 𝜎(−d))− 𝜙(b)
−𝜎

= −𝜙′ (b;−d) = −𝜙′ ((X*
0,−Y*

0 , 1); (−𝜔 ∘X*
0,0, 0)) . (3.5)

Then, consider the dual model of program (3.1) with 𝑡 = 0 is as follows:

𝛽(0) = min vX*
0 − uY*

0 + 𝑢0

s.t. vX*
𝑗 − uY*

𝑗 + 𝑢0e ≥ 0, 𝑗 = 1, . . . , 𝑛,

u(𝛿 ∘Y*
0) = 1

u ≥ 0,v ≥ 0, 𝑢0 sign free (3.6)

where e is a row vector with all its elements being equal to one. Let Ψ represent the set of all the optimal
solutions of program (3.6). We follow with interest the directional RTS measurement of strongly efficient DMUs
and the strongly efficient projections of inefficient DMUs, and it’s easy to get 𝛽(0) = 0, for each optimal solution
from Ψ, and we have vX*

0−uY*
0+𝑢0 = 0. From the program (3.6), the formulae (3.4) and (3.5) can be expressed

by:

𝛽′+(0) = min
(v,u,𝑢0)∈Ψ

⟨(v,u, 𝑢0) , (𝜔 ∘X*
0,0, 0)⟩ = min

(v,u,𝑢0)∈𝛺
v (𝜔 ∘X*

0)

𝛽′−(0) = − min
(v,u,𝑢0)∈Ψ

⟨(v,u, 𝑢0) , (−𝜔 ∘X*
0,0, 0)⟩ = max

(v,u,𝑢0)∈𝛺
v (𝜔 ∘X*

0) .

�
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Intuitively, Theorem 3.1 provides the formulae for directional SE under VRS assumption. Based on
Theorem 3.1, we further construct the two auxiliary linear programs (3.7) and (3.8) to calculate the mini-
mum and maximum values of v(𝜔 ∘X*

0):

min v(𝜔 ∘X*
0)

s.t. vX*
0 − uY*

0 + 𝑢0 = 0,

vX*
𝑗 − uY*

𝑗 + 𝑢0e ≥ 0, 𝑗 = 1, . . . , 𝑛,

u(𝛿 ∘Y*
0) = 1

u ≥ 0,v ≥ 0, 𝑢0 sign free (3.7)
max v(𝜔 ∘X*

0)
s.t. vX*

0 − uY*
0 + 𝑢0 = 0,

vX*
𝑗 − uY*

𝑗 + 𝑢0e ≥ 0, 𝑗 = 1, . . . , 𝑛,

u(𝛿 ∘Y*
0) = 1

u ≥ 0,v ≥ 0, 𝑢0 sign free. (3.8)

From the objective function of programs (3.7) and (3.8) we can obtain the numerical values of the right- and
left-directional SE in the direction of 𝜔 = (𝜔1, . . . , 𝜔𝑚)𝑇 (inputs) and 𝛿 = (𝛿1, . . . , 𝛿𝑠)𝑇 (outputs). Accordingly,
the directional RTS to the “right” and the “left” of DMU(X*

0,Y
*
0) can be determined as follows:

(1) The directional RTS to the “right” of DMU(X*
0,Y

*
0)

(i) if min {v(𝜔 ∘X*
0)} > 1 holds, then directional RTS to the “right” of DMU(X*

0,Y
*
0) is increasing in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 ;
(ii) if min{v(𝜔 ∘X*

0)} = 1 holds, then directional RTS to the “right” of DMU(X*
0,Y

*
0) is constant in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 ;
(iii) if min{v(𝜔 ∘X*

0)} < 1 holds, then directional RTS to the “right” of DMU(X*
0,Y

*
0) is decreasing in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 .
(2) The directional RTS to the “left” of DMU(X*

0,Y
*
0)

(i) if max {v(𝜔 ∘X*
0)} > 1 holds, then directional RTS to the “right” of DMU(X*

0,Y
*
0) is increasing in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 ;
(ii) if max {v(𝜔 ∘X*

0)} = 1 holds, then directional RTS to the “right” of DMU(X*
0,Y

*
0) is constant in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 ;
(iii) if max {v(𝜔 ∘X*

0)} < 1 holds, then directional RTS to the “right” of DMU(X*
0,Y

*
0) is decreasing in the

direction of (𝜔1, . . . , 𝜔𝑚)𝑇 and (𝛿1, . . . , 𝛿𝑠)𝑇 .

It is worth emphasizing that our formulae of the directional SE should be applied to the strongly efficient
unit with respect to the DEA frontier. For the inefficient DMU, one might not be able to distinguish whether
the output increases resulting from the input increases is due to the improvement of technology inefficiency or
the economies of scale, so it is necessary to analyze the directional SE and directional RTS for the target DMU
under the premise of technology efficiency.

4. Numerical example

4.1. Directional SE and directional RTS analysis

In this section, to illustrate our proposed method, we analyze an empirical dataset consisting of 16 basic
research institutes in the CAS in 2016. The data set consists of two inputs (research staff and research expendi-
tures) and three outputs (external research funding, high SCI publications and granted patents). Table 1 lists
the input and output datasets of these 16 basic research institutes in 2016.

As discussed previously, the analyses of directional SE and directional RTS are aimed at a strongly efficient
DMU of 𝑇 . We start by identifying the scale states with respect to strongly efficient projections under the input
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Table 1. Input-output data of 16 basic CAS research institutes in 2016.

Inputs Outputs

Institutes
Staff
(FTE)

Res. Expen.
(RMB million)

Exter. Fund.
(RMB million)

High Pub.
(Number)

Granted
patents
(Number)

DMU 1 327 296.6066 67.1469 183 10
DMU 2 442 253.1420 295.7381 112 37
DMU 3 2589 1485.7362 922.1845 432 336
DMU 4 1472 1218.8277 424.3740 298 60
DMU 5 1338 780.1315 193.3859 204 49
DMU 6 449 365.3578 77.5895 90 66
DMU 7 609 629.1216 306.1235 783 236
DMU 8 321 376.2365 324.9000 428 153
DMU 9 1105 741.7895 534.8300 253 48
DMU 10 276 257.3831 41.1500 67 2
DMU 11 793 498.1555 141.8561 303 109
DMU 12 327 365.9673 152.7000 74 12
DMU 13 63 58.1003 12.4700 71 0
DMU 14 473 676.5251 967.1305 429 75
DMU 15 476 239.0912 5.5200 4 13
DMU 16 919 559.3781 108.3900 66 38

orientation of these 16 DMUs computed by model (2.2). The results of the inefficiency scores are reported in
the second column of Table 2, and there are six institutes are efficient. As shown in Table 2, the corresponding
projections are reported in columns 3–7.

Then, we apply the auxiliary models (3.7) and (3.8) to calculate the directional SE to the “left” and “right”
for the input-oriented projections of these DMUs. Here, for comparison purposes, we set three different directions
of output changes, which respectively represent different management preferences of decision-makers:

Case 1: 𝛿1 = 0.75, 𝛿2 = 0.75, 𝛿2 = 1.5;
Case 2: 𝛿1 = 1, 𝛿2 = 1, 𝛿2 = 1;
Case 3: 𝛿1 = 1.25, 𝛿2 = 1.25, 𝛿2 = 0.5.

The above three directions can be expressed as different management preferences of decision-makers with
respect to the three outputs: external research funding, high SCI publications, and granted patents. In Case
1, the given direction of output changes represents the management preference that the decision-maker prefers
to prioritize increasing patent quantity compared to the other two outputs; the given direction in Case 2 can
be interpreted that the decision-maker has an equal priority on the increase of all three outputs. Contrary to
the management preference assumed in Case 1, the direction given by Case 3 indicates that the decision-maker
prioritizes the increases in external research funding and high SCI publications over granted patents. Based
on the three sets of output directions, using Theorem 3.1 proposed in this paper, we can calculate the values
of right-hand and left-hand directional SE for 16 institutes. Here, we take the results for the input-oriented
projections of DMU 1 and DMU 2 as an example to conduct an in-depth explanation.

Tables 3 and 4 display the directional RTS and directional SE to the “right” and “left” for the input-oriented
projections of DMU 1 and DMU 2 in the three cases, respectively. To present these results intuitively, we offer
Figures 1–6 to show the RTS status for the input-oriented projections of DMU 1 and DMU 2 in different input
change directions under these cases. Figures 1–3 show the results regarding the input-oriented projection of
DMU 1, and Figures 4–6 show the results with respect to the input-oriented projection of DMU 2.

From the results in Figures 1–6 and Tables 3, 4, for the input-oriented projections of DMU 1 and DMU 2, we
can find that the directional SE and directional RTS have obvious differences due to the different management
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Table 2. Efficiency and projections under the input orientation for 16 basic research institutes.

Projections under input orientation

Institutes
Inefficiency
scores
(model 2)

Staff
(FTE)

Res. Expen.
(RMB million)

Exter. Fund.
(RMB million)

High Pub.
(Number)

Granted
patents
(Number)

DMU 1 0.5042 148.0779 149.5583 67.1469 183 38.9042
DMU 2 1 442 253.1420 295.7381 112 37
DMU 3 1 2589 1485.7362 922.1845 432 336
DMU 4 0.2953 277.3486 359.9351 424.3740 298 71.2090
DMU 5 0.2650 174.3362 206.7410 193.3859 204 49.1101
DMU 6 0.5346 174.2941 195.3355 147.2437 225 66
DMU 7 1 609 629.1216 306.1235 783 236
DMU 8 1 321 376.2365 324.9000 428 153
DMU 9 0.5423 364.5208 402.2505 534.8300 253 48
DMU 10 0.2979 75.3173 76.6791 41.1500 81.7551 2.2532
DMU 11 0.5716 246.8039 284.7464 235.0508 325.3333 109
DMU 12 0.4092 133.8116 149.7575 152.7000 121.7450 12
DMU 13 1 63 58.1003 12.4700 71 0
DMU 14 1 473 676.5251 967.1305 429 75
DMU 15 0.3561 84.9216 85.1315 39.0163 101.3333 13
DMU 16 0.2637 155.0074 147.5331 108.3900 155.6677 38

preferences of decision-makers. Several observations can be made regarding the above results on these input-
oriented projections.

Table 3 and Figures 1–3 report the directional SE and directional RTS for the input-oriented projection of
DMU 1. The following conclusions emerge. From the results of the right directional RTS in Figure 1a, it can
be observed intuitively for the input-oriented projection of DMU 1, if the proportion of the increases in Staff
and Res. Expen. locates in Region 2 (including radial proportion), increasing directional RTS prevails. On the
contrary, if the proportion of the inputs’ increases locates in Region 3, decreasing directional RTS prevails. As
mentioned earlier, the management preference indicated in Case 1 is that the decision-maker prefers to increasing
patent quantity versus external research funding and high SCI publications. Considering such management
preference, the DMU 1 which has been realized strongly efficient in PPS under the input orientation is suggested
to increase the two inputs in these proportions that are located in Region 2. From the results of left directional
RTS in Figure 1b, It indicates that increasing directional RTS prevails at the input-oriented projection of DMU 1
for any proportion of the decreases in Staff and Res. Expen. Similar to Case 1, the results with respect to Cases
2 and 3 can be observed intuitively in Figures 2 and 3, which are not discussed in detail here.

Comparing the results of Figures 1, 2 and 3, we can easily find that the SE and RTS for the input-oriented
projection of DMU 1 are different if the decision-maker have different management preference. Cases 1, 2 and 3
represent three different management preferences of decision-makers with respect to the three outputs: external
research funding, high SCI publications, and granted patents, respectively. Here, as an example of the results
of increasing inputs in equal proportions (i.e., 𝜔1 = 𝜔2 = 1), the calculation results of the right directional SE
for the input-oriented projection of DMU 1 in the three cases are 1.23, 1.03 and 0.82, and the corresponding
directional RTS status are increasing, increasing, and decreasing, respectively (see column 4 and column 6 of
Tab. 3). Therefore, the SE and RTS need to consider different management preferences of decision-makers in
practice.

In the meanwhile, looking at the results of Case 1 in Table 3, we can find that the best SE for the input-
oriented projection of DMU 1 is achieved as the proportion of increased in Staff and Res. Expen. is 0.9:1.1
(𝜔1 = 0.9 and 𝜔2 = 1.1), not as the equal-proportion (𝜔1 = 1.0 and 𝜔2 = 1.0) of increases in the two inputs.
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Table 3. Directional SE and directional RTS for the input-oriented projection of DMU 1 in
different directions.

𝜔1 𝜔2
𝛽′+(0)

(right)

𝛽′−(0)

(left)

Directional

RTS (right)

Directional

RTS (left)

Case 1

0.1 1.9 0.97 2.61 Decreasing Increasing

0.2 1.8 1.02 2.47 Increasing Increasing

0.3 1.7 1.07 2.34 Increasing Increasing

0.4 1.6 1.11 2.20 Increasing Increasing

0.5 1.5 1.16 2.06 Increasing Increasing

0.6 1.4 1.21 1.92 Increasing Increasing

0.7 1.3 1.25 1.79 Increasing Increasing

0.8 1.2 1.30 1.65 Increasing Increasing

0.9 1.1 1.34 1.51 Increasing Increasing

1 1 1.23 1.39 Increasing Increasing

1.1 0.9 1.10 1.44 Increasing Increasing

1.2 0.8 0.98 1.48 Decreasing Increasing

1.3 0.7 0.86 1.53 Decreasing Increasing

1.4 0.6 0.74 1.58 Decreasing Increasing

1.5 0.5 0.61 1.62 Decreasing Increasing

1.6 0.4 0.49 1.67 Decreasing Increasing

1.7 0.3 0.37 1.71 Decreasing Increasing

1.8 0.2 0.25 1.76 Decreasing Increasing

1.9 0.1 0.12 1.81 Decreasing Increasing

Case 2

0.1 1.9 0.73 2.24 Decreasing Increasing

0.2 1.8 0.76 2.12 Decreasing Increasing

0.3 1.7 0.80 2.01 Decreasing Increasing

0.4 1.6 0.83 1.89 Decreasing Increasing

0.5 1.5 0.87 1.77 Decreasing Increasing

0.6 1.4 0.90 1.65 Decreasing Increasing

0.7 1.3 0.94 1.53 Decreasing Increasing

0.8 1.2 0.97 1.42 Decreasing Increasing

0.9 1.1 1.01 1.30 Increasing Increasing

1 1 1.03 1.18 Increasing Increasing

1.1 0.9 0.93 1.08 Decreasing Increasing

1.2 0.8 0.82 1.11 Decreasing Increasing

1.3 0.7 0.72 1.15 Decreasing Increasing

1.4 0.6 0.62 1.18 Decreasing Increasing

1.5 0.5 0.52 1.22 Decreasing Increasing

1.6 0.4 0.41 1.25 Decreasing Increasing

1.7 0.3 0.31 1.29 Decreasing Increasing

1.8 0.2 0.21 1.32 Decreasing Increasing

1.9 0.1 0.10 1.36 Decreasing Increasing

Case 3

0.1 1.9 0.58 2.16 Decreasing Increasing

0.2 1.8 0.61 2.04 Decreasing Increasing

0.3 1.7 0.64 1.93 Decreasing Increasing

0.4 1.6 0.67 1.82 Decreasing Increasing

0.5 1.5 0.70 1.70 Decreasing Increasing

0.6 1.4 0.72 1.59 Decreasing Increasing

0.7 1.3 0.75 1.48 Decreasing Increasing

0.8 1.2 0.78 1.36 Decreasing Increasing

0.9 1.1 0.81 1.25 Decreasing Increasing

1 1 0.82 1.14 Decreasing Increasing

1.1 0.9 0.74 1.02 Decreasing Increasing

1.2 0.8 0.66 0.91 Decreasing Decreasing

1.3 0.7 0.58 0.92 Decreasing Decreasing

1.4 0.6 0.49 0.92 Decreasing Decreasing

1.5 0.5 0.41 0.97 Decreasing Decreasing

1.6 0.4 0.33 1.00 Decreasing Constant

1.7 0.3 0.25 1.03 Decreasing Increasing

1.8 0.2 0.16 1.06 Decreasing Increasing

1.9 0.1 0.11 0.14 Decreasing Decreasing
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Table 4. Directional SE and directional RTS for the input-oriented projection of DMU 2 in
different directions.

𝜔1 𝜔2
𝛽′+(0)

(right)

𝛽′−(0)

(left)

Directional

RTS (right)

Directional

RTS (left)

Case 1

0.1 1.9 2.68 2.77 Increasing Increasing

0.2 1.8 2.54 2.63 Increasing Increasing

0.3 1.7 2.40 2.48 Increasing Increasing

0.4 1.6 2.26 2.33 Increasing Increasing

0.5 1.5 2.12 2.19 Increasing Increasing

0.6 1.4 1.98 2.04 Increasing Increasing

0.7 1.3 1.84 1.90 Increasing Increasing

0.8 1.2 1.70 1.75 Increasing Increasing

0.9 1.1 1.55 1.61 Increasing Increasing

1 1 1.41 1.46 Increasing Increasing

1.1 0.9 1.27 1.31 Increasing Increasing

1.2 0.8 1.13 1.17 Increasing Increasing

1.3 0.7 0.99 1.02 Decreasing Increasing

1.4 0.6 0.85 0.88 Decreasing Decreasing

1.5 0.5 0.71 0.73 Decreasing Decreasing

1.6 0.4 0.57 0.59 Decreasing Decreasing

1.7 0.3 0.42 0.45 Decreasing Decreasing

1.8 0.2 0.28 0.31 Decreasing Decreasing

1.9 0.1 0.14 0.18 Decreasing Decreasing

Case 2

0.1 1.9 2.35 2.38 Increasing Increasing

0.2 1.8 2.22 2.25 Increasing Increasing

0.3 1.7 2.10 2.13 Increasing Increasing

0.4 1.6 1.98 2.00 Increasing Increasing

0.5 1.5 1.85 1.88 Increasing Increasing

0.6 1.4 1.73 1.75 Increasing Increasing

0.7 1.3 1.60 1.63 Increasing Increasing

0.8 1.2 1.48 1.50 Increasing Increasing

0.9 1.1 1.36 1.38 Increasing Increasing

1 1 1.23 1.25 Increasing Increasing

1.1 0.9 1.11 1.13 Increasing Increasing

1.2 0.8 0.99 1.01 Decreasing Increasing

1.3 0.7 0.86 0.88 Decreasing Decreasing

1.4 0.6 0.74 0.76 Decreasing Decreasing

1.5 0.5 0.62 0.64 Decreasing Decreasing

1.6 0.4 0.49 0.52 Decreasing Decreasing

1.7 0.3 0.37 0.40 Decreasing Decreasing

1.8 0.2 0.25 0.27 Decreasing Decreasing

1.9 0.1 0.12 0.15 Decreasing Decreasing

Case 3

0.1 1.9 2.08 2.12 Increasing Increasing

0.2 1.8 1.97 2.01 Increasing Increasing

0.3 1.7 1.86 1.89 Increasing Increasing

0.4 1.6 1.75 1.78 Increasing Increasing

0.5 1.5 1.64 1.67 Increasing Increasing

0.6 1.4 1.53 1.56 Increasing Increasing

0.7 1.3 1.42 1.45 Increasing Increasing

0.8 1.2 1.31 1.34 Increasing Increasing

0.9 1.1 1.20 1.23 Increasing Increasing

1 1 1.09 1.11 Increasing Increasing

1.1 0.9 0.99 1.00 Decreasing Constant

1.2 0.8 0.88 0.89 Decreasing Decreasing

1.3 0.7 0.77 0.78 Decreasing Decreasing

1.4 0.6 0.66 0.68 Decreasing Decreasing

1.5 0.5 0.55 0.57 Decreasing Decreasing

1.6 0.4 0.44 0.46 Decreasing Decreasing

1.7 0.3 0.33 0.35 Decreasing Decreasing

1.8 0.2 0.22 0.24 Decreasing Decreasing

1.9 0.1 0.11 0.14 Decreasing Decreasing
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Figure 1. Right and left directional RTS for the input-oriented projection of DMU 1 in Case 1.

Figure 2. Right and left directional RTS for the input-oriented projection of DMU 1 in Case 2.

This result confirms our supposition above whereby an equal-proportional change in all inputs may not be
the best strategy for practical management. It is possible that an unequal-proportional increase in inputs may
contribute to a lager SE for a strongly efficient DMU, especially concerning the management preferences of
decision-makers.

For DMU 2, since it is a strongly efficient DMU of PPS, that is, we can directly analyze the RTS status in
terms of its current inputs and outputs. According to the results of the right-hand and left-hand directional
RTS (see Figs. 4–6), we can observe that the directional RTS to the “right” and “left” of DMU 2 in the give
directions of inputs and outputs are approximately equal. Thus, it can be summarized briefly that on the basis of
existing inputs, if the proportion of Staff and Res. Expen. increases (or decreases) of DMU 2 locates in Region 1
of Figures 4, 5 and 6 (corresponding to Cases 1, 2, and 3), increasing directional RTS prevails. If the proportion
of increases (or decreases) in the two inputs locates in Region 2, constant directional RTS prevails. If this
proportion locates in Region 3, constant directional RTS prevails. In addition, under the three cases, we note
that the feasible ranges for the proportion of increases (or decreases) in Staff and Res. Expen. corresponding to
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Figure 3. Right and left directional RTS for the input-oriented projection of DMU 1 in Case 3.

Figure 4. Right and left directional RTS for the input-oriented projection of DMU 2 in Case 1.

three directional RTS statuses are different. Combined with Table 4, for example, we can find that in Case 1,
if the proportion of increases in the two inputs is 1.2:0.8 (𝜔1 = 1.2 and 𝜔2 = 0.8), increasing directional RTS
prevails on DMU 2. However, in Case 3, if the two inputs increase in this proportion, decreasing directional
RTS prevails. The results further verify our supposition above that the SE and RTS are different under different
management preference of the decision-makers.

In the following, let us analyze the scale issue of the strongly efficient projections of 16 DMUs under the
output orientation. Table 5 reports the output-oriented inefficiency scores and projections computed by model
(2.3).

Looking at Table 5, it is clear that the six strongly efficient DMUs under the input orientation remain strongly
efficient under the output orientation. While for the inefficient DMUs, a significant difference can be found in
their strongly efficient projections under these two orientations. As we discussed previously, the directional
SE and directional RTS are measured at the strongly efficient DMU or the strongly efficient projections (i.e.,
benchmarks) of inefficient DMUs in this contribution.

By employing models (3.7) and (3.8), the “left” and “right” directional SE and directional RTS are calculated
similarly based on the output-oriented projections of the 16 DMUs. Given that DMU 2 is strongly efficient under
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Figure 5. Right and left directional RTS for the input-oriented projection of DMU 2 in Case 2.

Figure 6. Right and left directional RTS for the input-oriented projection of DMU 2 in Case 3.

both input and output orientations, the same results on the directional SE and directional RTS (as in Tab. 4)
are not repeatedly presented. Also taking the output-oriented projection of DMU 1 as example for a detailed
explanation, the results are shown in Table 6.

According to results in Table 6, we can find that in these given directions of input change and output change,
the values of the directional SE (see columns 4 and 5 of Tab. 6) at the output-oriented projection of DMU 1 are
little different from the results at its input-oriented projection (see columns 4 and 5 of Tab. 3), and naturally
the resulting directional RTS at these two projections are similar. Therefore, we make no repeat explanation.

Consequently, according to the analyses of directional SE and RTS proposed in this paper, research institu-
tions can identify the status of increasing, constant and decreasing directional RTS with respect to their own
management preference, and then adjust the proportion of inputs based on this. From a management point of
view, the directional SE and directional RTS parameter is of particular importance to develop a feasible strategy
for input adjustment and effectively avoid blind investment and resource waste.
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Table 5. Efficiency and projections under the output orientation for 16 basic research institutes.

Projections under output orientation

Institutes
Inefficiency
scores
(model (3))

Staff
(FTE)

Res. Expen.
(RMB million)

Exter. Fund.
(RMB million)

High Pub.
(Number)

Granted
patents
(Number)

DMU 1 0.4968 291.0421 296.6066 135.1669 368.3795 98.5795
DMU 2 1 442 253.142 295.7381 112 37
DMU3 1 2589 1485.7362 922.1845 432 336
DMU4 0.5547 514.5779 662.0329 765.0477 537.2247 124.2209
DMU5 0.3248 549.4823 649.8668 595.4001 628.0789 165.5416
DMU6 0.4466 312.1777 365.3578 314.2164 415.7923 147.7681
DMU7 1 609 629.1216 306.1235 783 236
DMU8 1 321 376.2365 324.9 428 153
DMU9 0.5697 498.3625 682.0083 938.6812 444.0408 84.2449
DMU 10 0.2227 231.8745 257.3831 184.7848 300.8647 92.4582
DMU 11 0.5647 459.8483 498.1555 315.8476 599.1498 193.0153
DMU 12 0.3139 283.8904 365.9673 486.5258 244.3881 38.2339
DMU 13 1 63 58.1003 12.47 71 0
DMU 14 1 473 676.5251 967.1305 429 75
DMU 15 0.1493 209.7788 239.0912 190.2146 274.1009 87.0432
DMU 16 0.2258 481.3389 559.3781 480.0108 578.3269 168.2850

4.2. Comparison analysis with Yang’s method

Furthermore, we have also provided a comparison analysis on the directional SE and RTS computed by the
proposed method and Yang’s method (see [25]). As introduced previously, the underlying idea of our method is
to derive the formulate of the directional SE based on the directional derivatives of the optimal value function
in linear programming programs, and present two auxiliary linear programs (models (3.7) and (3.8)) to obtain
the exact values of the right- and left-hand directional SE. Yang’s method mainly adopts the basic idea of the
finite difference method (FDM) to provide an approximate estimate for the directional SE by testing the ratio
of the amount of change of outputs on the efficient frontier in a specified direction caused by a change in a small
enough amount 𝑡0 of inputs in a specified direction.

For comparison, we use Yang’s method to estimate the directional SE and directional RTS for the input-
oriented and output-oriented projections of DMU 1, respectively. Following Yang and Liu [25], this small enough
amount for the input change is set to 𝑡0 = 1𝐸−6. Table 7 lists these estimated directional SE and directional
RTS for the input-oriented projections of DMU 1, and Table 8 reports the results regarding the output-oriented
projections of DMU 1.

As we can see from Tables 7 and 8, we notice that Yang’s method used for estimating the directional SE
suffers from the infeasibility problems in some directions, and clearly the corresponding RTS status in these
directions cannot be identified using their method. Specifically, for the input-oriented projection of DMU 1, the
incidences of the infeasibility problem are 21.05% and 29.82% when using Yang’s method to estimate the left-
and right-hand directional SE, respectively. For the output-oriented projection of DMU 1, the incidences of the
infeasibility problem for estimating the left- and right-hand SE are 15.79% and 5.26%, respectively. Compared
to the results computed by our method (see the results listed Tabs. 3 and 6), the exact values of the directional
SE are obtained explicitly in all the above directions without any infeasibility problem.

Furthermore, the proposed method used for calculating the directional SE is not subject to any simplifying
assumptions, such as the setting on the small enough quantity of the input change in FDM methods, and actually
the setting on this quantity may perturb the estimations of directional SE and directional RTS. Finally, the
proposed method provides a straightforward derivation for the directional scale elasticity, where all calculations
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Table 6. Directional SE and directional RTS for the output-oriented projection of DMU 1 in
different directions.

𝜔1 𝜔2
𝛽′+(0)

(right)

𝛽′−(0)

(left)

Directional

RTS (right)

Directional

RTS (left)

0.1 1.9 0.96 2.57 Decreasing Increasing

0.2 1.8 1.00 2.44 Constant Increasing

0.3 1.7 1.05 2.30 Increasing Increasing

0.4 1.6 1.09 2.17 Increasing Increasing

0.5 1.5 1.14 2.03 Increasing Increasing

0.6 1.4 1.18 1.89 Increasing Increasing

0.7 1.3 1.23 1.76 Increasing Increasing

0.8 1.2 1.27 1.62 Increasing Increasing

0.9 1.1 1.19 1.49 Increasing Increasing

Case 1 1 1 1.09 1.36 Increasing Increasing

1.1 0.9 0.98 1.41 Decreasing Increasing

1.2 0.8 0.87 1.45 Decreasing Increasing

1.3 0.7 0.76 1.50 Decreasing Increasing

1.4 0.6 0.65 1.54 Decreasing Increasing

1.5 0.5 0.54 1.59 Decreasing Increasing

1.6 0.4 0.43 1.63 Decreasing Increasing

1.7 0.3 0.33 1.68 Decreasing Increasing

1.8 0.2 0.22 1.72 Decreasing Increasing

1.9 0.1 0.11 1.76 Decreasing Increasing

0.1 1.9 0.72 2.06 Decreasing Increasing

0.2 1.8 0.75 1.95 Decreasing Increasing

0.3 1.7 0.79 1.84 Decreasing Increasing

0.4 1.6 0.82 1.73 Decreasing Increasing

0.5 1.5 0.85 1.62 Decreasing Increasing

0.6 1.4 0.89 1.52 Decreasing Increasing

0.7 1.3 0.92 1.41 Decreasing Increasing

0.8 1.2 0.95 1.30 Decreasing Increasing

0.9 1.1 0.99 1.19 Decreasing Increasing

Case 2 1 1 1.02 1.08 Increasing Increasing

1.1 0.9 0.91 1.05 Decreasing Increasing

1.2 0.8 0.81 1.09 Decreasing Increasing

1.3 0.7 0.71 1.12 Decreasing Increasing

1.4 0.6 0.61 1.16 Decreasing Increasing

1.5 0.5 0.51 1.19 Decreasing Increasing

1.6 0.4 0.41 1.22 Decreasing Increasing

1.7 0.3 0.30 1.26 Decreasing Increasing

1.8 0.2 0.20 1.29 Decreasing Increasing

1.9 0.1 0.10 1.32 Decreasing Increasing

0.1 1.9 0.58 2.05 Decreasing Increasing

0.2 1.8 0.60 1.95 Decreasing Increasing

0.3 1.7 0.63 1.84 Decreasing Increasing

0.4 1.6 0.66 1.73 Decreasing Increasing

0.5 1.5 0.68 1.62 Decreasing Increasing

0.6 1.4 0.71 1.51 Decreasing Increasing

0.7 1.3 0.74 1.41 Decreasing Increasing

0.8 1.2 0.76 1.30 Decreasing Increasing

0.9 1.1 0.79 1.19 Decreasing Increasing

Case 3 1 1 0.81 1.08 Decreasing Increasing

1.1 0.9 0.73 0.97 Decreasing Decreasing

1.2 0.8 0.65 0.87 Decreasing Decreasing

1.3 0.7 0.57 0.90 Decreasing Decreasing

1.4 0.6 0.49 0.92 Decreasing Decreasing

1.5 0.5 0.41 0.95 Decreasing Decreasing

1.6 0.4 0.32 0.98 Decreasing Decreasing

1.7 0.3 0.24 1.01 Decreasing Increasing

1.8 0.2 0.16 1.03 Decreasing Increasing

1.9 0.1 0.08 1.06 Decreasing Increasing
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Table 7. Directional SE and directional RTS for the input-oriented projection of DMU 1 in
different directions estimated by Yang’s method: Infeasibilities (Inf).

𝜔1 𝜔2
𝛽′+(0)

(right)

𝛽′−(0)

(left)

Directional

RTS (right)

Directional

RTS (left)

0.1 1.9 13.17 0.39 Inf Inf

0.2 1.8 1.30 2.10 Increasing Inf

0.3 1.7 1.38 2.33 Increasing Increasing

0.4 1.6 1.37 2.67 Increasing Inf

0.5 1.5 1.37 4.18 Increasing Inf

0.6 1.4 1.36 1.93 Increasing Increasing

0.7 1.3 3.08 1.80 Inf Increasing

0.8 1.2 1.33 4.73 Increasing Inf

0.9 1.1 1.39 1.33 Increasing Increasing

Case 1 1 1 1.39 1.48 Increasing Increasing

1.1 0.9 1.36 1.37 Inf Increasing

1.2 0.8 0.98 1.35 Decreasing Increasing

1.3 0.7 0.86 1.34 Decreasing Increasing

1.4 0.6 0.74 1.33 Decreasing Increasing

1.5 0.5 0.62 −1.92 Decreasing Inf

1.6 0.4 0.57 1.34 Decreasing Increasing

1.7 0.3 0.40 1.30 Decreasing Increasing

1.8 0.2 −1.07 1.30 Inf Increasing

1.9 0.1 0.15 −1.48 Decreasing Inf

0.1 1.9 1.07 1.19 Increasing Inf

0.2 1.8 1.12 3.73 Increasing Inf

0.3 1.7 12.66 2.00 Inf Increasing

0.4 1.6 1.10 1.88 Increasing Increasing

0.5 1.5 1.05 1.77 Increasing Increasing

0.6 1.4 1.01 2.74 Increasing Inf

0.7 1.3 1.09 0.82 Increasing Inf

0.8 1.2 1.05 2.10 Increasing Inf

0.9 1.1 1.44 1.13 Inf Increasing

Case 2 1 1 1.06 1.25 Increasing Increasing

1.1 0.9 1.02 0.96 Increasing Inf

1.2 0.8 −5.19 1.12 Inf Increasing

1.3 0.7 0.72 1.16 Decreasing Increasing

1.4 0.6 1.45 1.10 Inf Increasing

1.5 0.5 0.52 1.41 Decreasing Increasing

1.6 0.4 2.52 0.96 Inf Decreasing

1.7 0.3 0.75 −9.37 Inf Inf

1.8 0.2 0.19 1.88 Decreasing Inf

1.9 0.1 0.12 0.94 Decreasing Decreasing

0.1 1.9 0.94 2.22 Decreasing Increasing

0.2 1.8 0.93 2.04 Decreasing Increasing

0.3 1.7 0.00 1.96 Inf Increasing

0.4 1.6 0.88 1.28 Decreasing Increasing

0.5 1.5 0.93 1.74 Decreasing Increasing

0.6 1.4 0.83 0.61 Decreasing Inf

0.7 1.3 0.86 1.53 Decreasing Increasing

0.8 1.2 0.83 1.36 Decreasing Increasing

0.9 1.1 0.84 2.65 Decreasing Inf

Case 3 1 1 0.81 1.01 Decreasing Increasing

1.1 0.9 0.83 1.01 Decreasing Increasing

1.2 0.8 0.71 0.92 Inf Decreasing

1.3 0.7 0.58 0.76 Decreasing Decreasing

1.4 0.6 0.46 0.97 Decreasing Decreasing

1.5 0.5 0.35 0.91 Decreasing Decreasing

1.6 0.4 0.37 0.89 Decreasing Decreasing

1.7 0.3 0.27 0.91 Decreasing Decreasing

1.8 0.2 0.13 0.86 Decreasing Decreasing

1.9 0.1 0.04 0.87 Decreasing Decreasing
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Table 8. Directional SE and directional RTS for the output-oriented projection of DMU 1 in
different directions estimated by Yang’s method: Infeasibilities (Inf).

𝜔1 𝜔2
𝛽′+(0)

(right)

𝛽′−(0)

(left)

Directional

RTS (right)

Directional

RTS (left)

0.1 1.9 0.96 2.62 Decreasing Increasing

0.2 1.8 1.00 2.40 Constant Increasing

0.3 1.7 1.04 2.30 Increasing Increasing

0.4 1.6 1.08 2.17 Increasing Increasing

0.5 1.5 1.14 2.09 Increasing Increasing

0.6 1.4 4.77 1.90 Inf Increasing

0.7 1.3 1.32 3.04 Increasing Inf

0.8 1.2 1.23 1.69 Increasing Increasing

0.9 1.1 1.18 1.56 Increasing Increasing

Case 1 1 1 1.08 1.37 Increasing Increasing

1.1 0.9 0.97 1.41 Decreasing Increasing

1.2 0.8 0.91 1.45 Decreasing Increasing

1.3 0.7 1.63 1.50 Inf Increasing

1.4 0.6 0.65 1.54 Decreasing Increasing

1.5 0.5 −1.52 1.60 Inf Increasing

1.6 0.4 −2.09 1.61 Inf Increasing

1.7 0.3 0.32 1.67 Decreasing Increasing

1.8 0.2 0.22 1.72 Decreasing Increasing

1.9 0.1 0.10 1.73 Decreasing Increasing

0.1 1.9 0.77 2.11 Decreasing Increasing

0.2 1.8 −9.54 1.95 Inf Increasing

0.3 1.7 0.79 1.93 Decreasing Increasing

0.4 1.6 0.81 1.60 Decreasing Increasing

0.5 1.5 0.87 1.59 Decreasing Increasing

0.6 1.4 0.89 1.40 Decreasing Increasing

0.7 1.3 0.00 1.30 Inf Increasing

0.8 1.2 0.98 1.20 Decreasing Increasing

0.9 1.1 1.01 1.11 Increasing Increasing

Case 2 1 1 1.01 1.00 Increasing Constant

1.1 0.9 0.91 1.08 Decreasing Increasing

1.2 0.8 0.14 1.17 Decreasing Increasing

1.3 0.7 0.69 1.14 Decreasing Increasing

1.4 0.6 0.63 1.15 Decreasing Increasing

1.5 0.5 −1.14 1.20 Inf Increasing

1.6 0.4 0.46 −1.57 Decreasing Inf

1.7 0.3 0.28 1.26 Decreasing Increasing

1.8 0.2 0.20 1.29 Decreasing Increasing

1.9 0.1 0.10 1.32 Decreasing Increasing

0.1 1.9 0.55 2.05 Decreasing Increasing

0.2 1.8 0.87 1.91 Inf Increasing

0.3 1.7 0.63 1.89 Decreasing Increasing

0.4 1.6 0.64 1.72 Decreasing Increasing

0.5 1.5 0.78 1.61 Decreasing Increasing

0.6 1.4 0.73 1.40 Decreasing Increasing

0.7 1.3 0.74 1.39 Decreasing Increasing

0.8 1.2 0.76 1.48 Decreasing Inf

0.9 1.1 0.77 1.18 Decreasing Increasing

Case 3 1 1 0.80 1.05 Inf Increasing

1.1 0.9 0.74 1.02 Decreasing Increasing

1.2 0.8 0.65 0.92 Decreasing Decreasing

1.3 0.7 0.56 0.82 Decreasing Decreasing

1.4 0.6 0.41 0.92 Decreasing Decreasing

1.5 0.5 0.39 0.94 Decreasing Decreasing

1.6 0.4 0.31 0.98 Decreasing Decreasing

1.7 0.3 0.21 1.00 Decreasing Constant

1.8 0.2 0.16 1.03 Decreasing Increasing

1.9 0.1 0.08 1.06 Decreasing Increasing
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are based on the simple linear programming. Hence, this method can be easily extended to a more generalized
case and has a low computational cost.

5. Concluding remarks

The most existing approaches for quantitative analysis of RTS follow the concepts of the traditional RTS
and SE in economics, i.e., the radial change in outputs resulting from the radial changes of all inputs. In actual
multiple-input and multiple-output activities, due to the constraints of actual management needs and objective
conditions, the goals of expanding inputs are not only to obtain increases in outputs, but also to expect the
proportions of such increases consistent with the management preference of the decision-makers, which is usually
not radial changes in outputs.

This paper introduces the direction of output changes to describe the management preference of decision-
makers, and extends the concepts of directional SE and directional RTS in multi-output activities. Then, we
propose a general DEA-based approach to numerically calculate the directional SE at any point on the DEA
frontier. In this approach, the formula derivation of the directional SE requires no simplifying assumptions and
can be easily extended to more general cases. Through the proposed definitions and measures of directional
SE, one can identify the status of RTS in any given directions of input changes and output changes. Finally,
we employ the data from 16 basic research institutions in CAS as the empirical example to illustrate the
advantages of the analyses of directional SE and directional RTS. The results show that the proposed directional
SE and directional RTS provide more precise information on how to adjust inputs to maximize output increases
consistent with the decision maker’s management preference.
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