Bi-level optimization approach for robust mean-variance problems
RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2941-2961

Portfolio Optimization is based on the efficient allocation of several assets, which can get heavily affected by the uncertainty in input parameters. So we must look for such solutions which can give us steady results in uncertain conditions too. Recently, the uncertainty based optimization problems are being dealt with robust optimization approach. With this development, the interest of researchers has been shifted toward the robust portfolio optimization. In this paper, we study the robust counterparts of the uncertain mean-variance problems under box and ellipsoidal uncertainties. We convert those uncertain problems into bi-level optimization models and then derive their robust counterparts. We also solve a problem using this methodology and compared the optimal results of box and ellipsoidal uncertainty models with the nominal model.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021129
Classification : 90C17, 91-08, 91G10, 91G15
Keywords: Mean-variance model, Box uncertainty, ellipsoidal uncertainty, robust optimization, bi-level optimization
@article{RO_2021__55_5_2941_0,
     author = {Swain, Pulak and Ojha, Akshay Kumar},
     title = {Bi-level optimization approach for robust mean-variance problems},
     journal = {RAIRO. Operations Research},
     pages = {2941--2961},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/ro/2021129},
     mrnumber = {4323411},
     zbl = {1485.90085},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021129/}
}
TY  - JOUR
AU  - Swain, Pulak
AU  - Ojha, Akshay Kumar
TI  - Bi-level optimization approach for robust mean-variance problems
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2941
EP  - 2961
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021129/
DO  - 10.1051/ro/2021129
LA  - en
ID  - RO_2021__55_5_2941_0
ER  - 
%0 Journal Article
%A Swain, Pulak
%A Ojha, Akshay Kumar
%T Bi-level optimization approach for robust mean-variance problems
%J RAIRO. Operations Research
%D 2021
%P 2941-2961
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021129/
%R 10.1051/ro/2021129
%G en
%F RO_2021__55_5_2941_0
Swain, Pulak; Ojha, Akshay Kumar. Bi-level optimization approach for robust mean-variance problems. RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2941-2961. doi: 10.1051/ro/2021129

[1] M. Asadujjaman and K. Zaman, Robustness-based portfolio optimization under epistemic uncertainty. J. Ind. Eng. Int. 15 (2019) 207–219. | DOI

[2] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs. Oper. Res. Lett. 25 (1999) 1–13. | MR | Zbl | DOI

[3] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88 (2000) 411–424. | MR | Zbl | DOI

[4] A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust optimization (Vol 28) Princeton University Press (2009). | MR | Zbl | DOI

[5] D. Bertsimas, D. B. Brown, and C. Caramanis, Theory and applications of robust optimization. SIAM Rev 53 (2011) 464–501. | MR | Zbl | DOI

[6] Z. Dai and F. Wen, Robust CVaR-based portfolio optimization under a genal affine data perturbation uncertainty set. J. Comput. Anal. Appl. 16 (2014) 93–103. | MR | Zbl

[7] L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18 (1997) 1035–1064. | MR | Zbl | DOI

[8] L. El Ghaoui, F. Oustry and H. Lebret, Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9 (1998) 33–52. | MR | Zbl | DOI

[9] J. Estrada, Systematic risk in emerging markets: the D-CAPM. Emerg. Mark. Rev. 3 (2002) 365–379. | DOI

[10] J. Estrada, Mean-semivariance behavior: downside risk and capital asset pricing. Int. Rev. Econ. Finance 16 (2007) 169–185. | DOI

[11] F. J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: contributions from operations research and finance. Ann. Oper. Res. 176 (2010) 191–220. | MR | Zbl | DOI

[12] J. Fliege and R. Werner, Robust multiobjective optimization & applications in portfolio optimization. Eur. J. Oper. Res. 234 (2014) 422–433. | MR | Zbl | DOI

[13] D. Goldfarb and G. Iyengar, Robust portfolio selection problems. Math. Oper. Res. 28 (2003) 1–38. | MR | Zbl | DOI

[14] J. H. Kim, W. C. Kim, D. G. Kwon and F. J. Fabozzi, Robust equity portfolio performance. Ann. Oper. Res. 2662018 (2018) 293–312. | MR | Zbl | DOI

[15] Z. Lu, Robust portfolio selection based on a joint ellipsoidal uncertainty set. Optim. Methods & Softw. 26 (2011) 89–104. | MR | Zbl | DOI

[16] Z. Lu, K. Deb and A. Sinha, Uncertainty handling in bilevel optimization for robust and reliable solutions. Int. J. Uncertain. Fuzziness Knowlege-Based Syst. 26 (2018) 1–24. | MR | Zbl | DOI

[17] H. Markowitz, Portfolio selection. J. Finance 7 (1952) 77–91.

[18] H. Markowitz, Portfolio selection: efficient diversification of investments. Basil Blackwell, New York (1959). | MR

[19] S. Nayak and A. Ojha, An approach of fuzzy and TOPSIS to bi-level multi-objective nonlinear fractional programming problem. Soft Comput. 23 (2019) 5605–5618. | Zbl | DOI

[20] A. Sinha, P. Malo and K. Deb, A review on bilevel optimization: From classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22 (2017) 276–295. | DOI

[21] R. H. Tütüncü and M. Koenig, Robust asset allocation. Ann. Oper. Res. 132 (2004) 157–187. | MR | Zbl | DOI

[22] S. Zhu, D. Li and S. Wang, Robust portfolio selection under downside risk measures. Quant. Finance 9 (2009) 869–885. | MR | Zbl | DOI

Cité par Sources :