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BI-LEVEL OPTIMIZATION APPROACH FOR ROBUST MEAN-VARIANCE
PROBLEMS

Pulak Swain* and Akshay Kumar Ojha

Abstract. Portfolio Optimization is based on the efficient allocation of several assets, which can get
heavily affected by the uncertainty in input parameters. So we must look for such solutions which
can give us steady results in uncertain conditions too. Recently, the uncertainty based optimization
problems are being dealt with robust optimization approach. With this development, the interest of
researchers has been shifted toward the robust portfolio optimization. In this paper, we study the
robust counterparts of the uncertain mean-variance problems under box and ellipsoidal uncertainties.
We convert those uncertain problems into bi-level optimization models and then derive their robust
counterparts. We also solve a problem using this methodology and compared the optimal results of box
and ellipsoidal uncertainty models with the nominal model.
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1. Introduction

Portfolio Optimization deals with the decision making problems of efficient distribution of financial assets.
Markowitz mean-variance model [17,18] is the base for this study which makes investment decisions in terms of
mean and variance of returns. Some other risk models like semivariance, semiabsolute deviation, below target risk,
value at risk, conditional value at risk have also come into picture when the return distribution is asymmetric
[9,10]. In portfolio models we generally estimate the expected returns of individual assets from the past historical
data. However, practically it is very difficult to forecast the accurate return due to several factors. If we ignore
these uncertainties in our portfolio models, then our result could be very much different from the actual result.
As a result, we may end up investing in an inefficient portfolio. So the uncertainty factor needs to be addressed
properly and we should focus on making the solutions free from uncertainty. In the field of Optimization,
such uncertainty based problems have been dealt with several approaches such as Stochastic programming,
Sensitivity analysis, Dynamic programming, Fuzzy Optimization. However, these approaches cannot guarantee
a completely uncertain free solution. In last two decades this problem has been addressed properly with the
help of Robust optimization. It is first introduced by Ben-Tal for solving uncertain linear problems [2] and after
that it is being used in many disciplines of science and engineering [5].

Keywords. Mean-variance model, box uncertainty, ellipsoidal uncertainty, robust optimization, bi-level optimization.

School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, Odisha, India.
*Corresponding author: ps28@iitbbs.ac.in

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021129
https://www.rairo-ro.org
https://orcid.org/0000-0001-9700-6780
mailto:ps28@iitbbs.ac.in
https://creativecommons.org/licenses/by/4.0


2942 P. SWAIN AND A.K. OJHA

In robust optimization, the uncertainty is based on a specific uncertain set. It assumes that the value of
uncertain parameter perturbs around a nominal value and the set of all realizations of the uncertain parameter
form a geometric structure like box, polyhedron, ellipsoid, paraboloid etc. [4]. The optimal solution which is
feasible for any realization of the data uncertainty in the given set is computed through the Robust optimization
approach. El Ghaoui and Lebret first studied the robust solutions to the uncertain least-squares problems [7],
and El Ghaoui et al. studied uncertain semidefinite problems [8]. Later on Ben-Tal and Nemirovski [3] showed
that when the uncertainty sets for a linear constraint are ellipsoids, the robust formulation turns out to be a conic
quadratic problem. One of the first robust approaches to portfolio problems was made by Goldfarb and Iyengar
[13], where they formulate robust portfolio problems as second order cone programs. Tütüncü and Koenig [21]
present robust formulations when the expected return vector and the covariance matrix of asset returns are
defined by lower and upper bounds and also illustrate how to compute the robust efficient frontier. Afterward
Robust approach has been used very often in portfolio problems. Zhu et al. [22] studied the robust portfolio
problems under a downside risk measure based on lower partial moment. The worst-case lower partial moments
of degrees 0, 1, and 2 were formulated in terms of linear programs, second order conic programs and semidefinite
programs. Fabozzi et al. [11] did a survey on robust mean-variance models as well as some robust downside risk
models. They used value at risk and conditional value at risk for their study on downside risk. Lu [15] introduced
a joint ellipsoidal uncertainty set in robust portfolio optimization. The study showed that the robust maximum
risk-adjusted return problem with this uncertainty set can be solved as a conic programming problem. Dai and
Wen [6] proposed a robust optimization method which minimizes the conditional value at risk of a portfolio under
an affine data perturbation set. Fliege and Werner [12] studied the robust multiobjective optimization and they
applied it in portfolio optimization by using a mean-variance problem. Kim et al. [14] analyzed the performance
of robust portfolio for the US equity portfolios during the period of 1980 and 2014. Their research confirms the
effectiveness of robust optimization for controlling uncertainty in efficient investments. Asadujjaman and Zaman
[1] studied the robust portfolio optimization under epistemic uncertainty using moment bounding approach and
likelihood-based approach.

The robust problems are not so easy to solve, as here we have to first choose the worst case realization
of uncertain parameters and then we solve the optimization problem with that worst case parameters. In the
existing literature there is no proper methodology available for solving the robust counterparts of uncertain
portfolio problems. Also a comparison among different uncertainty sets needs to be studied in terms of conser-
vatism and optimality of their robust solutions. So in this paper our main focus is to propose a methodology
for solving robust optimization problems and to compare the box and ellipsoidal uncertainty models. Our pro-
posed methodology includes the transformation of uncertain mean-variance problems into bilevel optimization
form and the use of single level reduction approach for solving this. Bilevel Optimization [19, 20] consists of
two-layered optimization problems where the upper level decision maker has complete knowledge of the lower
level problem, while the lower level decision maker only optimizes its own problem. In this paper, we consider
the uncertain parameters as the lower level decision variables to express the uncertain portfolio problems as
bilevel optimization form. So in future using this approach many more research can be done in the field of robust
optimization.

The organization of this paper is given as: Following the introduction part, a basics of mean-variance portfolio
and its robustness have been discussed in Section 2. Section 3 presents the bilevel robust mean-variance problems
under several uncertainties. We give some numerical illustrations in Section 4. Finally some concluding remarks
have been incorporated in Section 5.

2. Preliminaries

2.1. Mean-variance portfolio model

Consider an asset 𝑖 with the return over a period of time 𝑡 be 𝑟𝑖𝑡 (𝑡 = 1, 2, . . . , 𝑇 ). The Markowitz portfolio
model is based on taking expected portfolio return as the reward and the variance of portfolio return as the
risk factor. For that, first we need to calculate the expectation of returns of each individual asset and the
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covariance of returns between each pair of assets. Let 𝜇𝑖 be the expected value of return of 𝑖th asset and 𝜎𝑖𝑗 be
the covariance of return between 𝑖th and 𝑗th asset.

Mathematically we can write,

𝜇𝑖 = 𝐸(𝑟𝑖) =
1
𝑇

𝑇∑︁
𝑡=1

𝑟𝑖𝑡

𝜎𝑖𝑗 = 𝐸[(𝑟𝑖 − 𝜇𝑖)(𝑟𝑗 − 𝜇𝑗)] =
1
𝑇

𝑇∑︁
𝑡=1

(𝑟𝑖𝑡 − 𝜇𝑖)(𝑟𝑗𝑡 − 𝜇𝑗).

The aim is to form a portfolio which will give our desired return with a minimum risk associated with it.
Let the weight given to 𝑖th asset be 𝑥𝑖. Then the expected return and variance of return of the portfolio are
respectively given by,

𝜇𝑃 =
∑︁

𝑖

𝜇𝑖𝑥𝑖, 𝜎2
𝑃 =

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 .

Markowitz Mean-Variance Model minimizes the variance of portfolio return at a given level of expected
portfolio return (say 𝜏). Mathematically it can be formulated as:

min
1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0.
(2.1)

2.2. Uncertainty in optimization problems and the robust counterpart

An optimization problem is said to be uncertain when the coefficients of decision variables in the problem
are not certain. That means their values perturb around a nominal value. Mathematically the general form of
an uncertain optimization problem can be written as:

min
𝑥

𝑓(𝑥, 𝑢)

s.t. 𝑐(𝑥, 𝑢) ≤ 0, ∀𝑢 ∈ U (𝑥) = {𝑢 : 𝑔(𝑥, 𝑢) ≤ 0} .
(2.2)

where 𝑥 ∈ R𝑛 are decision variables, 𝑢 ∈ R𝑝 are the uncertain parameters and U (𝑥) be the uncertainty set.
Since the uncertain parameters perturb around the nominal values, so we can represent the uncertain set in
terms of some geometrical structures such as box, polyhedral, ellipsoid, paraboloid etc. Those sets can be formed
by taking the nominal values as the coordinates of center and the perturbations are represented by the space
between the center and boundaries. Some of those uncertain sets are given as follows:

1. Box uncertainty : Let 𝑢0 be the vector of nominal values of the uncertain parameters. Then the box uncer-
tainty set can be given as:

Ubox =
{︁

𝑢 : ||𝑢− 𝑢0||∞ ≤ 𝛿(𝐵)
}︁

where ||.||∞ is the supremum norm and 𝛿(𝐵) is the maximum perturbation of the uncertain parameters.
2. Ellipsoidal uncertainty : Similarly the ellipsoidal uncertainty set can be represented as:

Uellipsoidal =
{︁

𝑢 : ||𝑢− 𝑢0||2 ≤ 𝛿(𝐸)
}︁

where ||.||2 is the euclidean norm.
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It is quite difficult to solve uncertain optimization problems, specially when the uncertainty set contains
infinite number of elements. The main concern is that if we solve the problem by taking the nominal values,
then the solution might be infeasible for many realization of uncertain parameters. So we cannot just ignore the
uncertainty in the problem. In the last two decades the uncertain problems have been dealt with Robust Opti-
mization approach, for its ability to find the solutions which are completely “immunized against uncertainty”.
Basically in Robust Optimization approach we solve the problem for the worst case realization of the uncertain
parameters, so that the solution will be feasible for any realization of the uncertain parameters. First without
loss of generality the objective function in (2.2) can always be transformed to a certain objective as:

min
𝑡,𝑥

𝑡

s.t. 𝑓(𝑥, 𝑢) ≤ 𝑡.

So by assuming a certain objective function in problem (2.2), we can rewrite the general form of an uncertain
problem as:

min
𝑥

𝑓(𝑥)

s.t. 𝑐(𝑥, 𝑢) ≤ 0, ∀𝑢 ∈ U (𝑥) = {𝑢 : 𝑔(𝑥, 𝑢) ≤ 0} .
(2.3)

Then the robust counterpart of this problem can be written as:

min
𝑥

𝑓(𝑥)

s.t. max
𝑢
{𝑐(𝑥, 𝑢) : 𝑢 ∈ U (𝑥)} ≤ 0.

(2.4)

Since it is a minimization problem, so the worst case scenario can be obtained by taking those parameters
from the uncertainty set which will give maximum values for the constraints. Similarly for a maximization
problem, the worst case realization will be the minimum value of the uncertain parameter.

2.3. Bi-level optimization

Bi-Level optimization [16] consists of two levels of problems, where one problem is nested within the other.
The general formulation of a bi-level optimization problem can be given by,

Upper Level: min
𝑥𝑢∈𝑋𝑈 ,𝑥𝑙∈𝑋𝐿

{𝐹 (𝑥𝑢, 𝑥𝑙) : 𝐺𝑘(𝑥𝑢, 𝑥𝑙) ≤ 0, 𝑘 = 1, 2, . . . ,𝐾}

where 𝑥𝑙 is obtained from
Lower Level: 𝑥𝑙 ∈ argmin

𝑥𝑙∈𝑋𝐿

{𝑓(𝑥𝑢, 𝑥𝑙) : 𝑔𝑗(𝑥𝑢, 𝑥𝑙) ≤ 0, 𝑗 = 1, 2, . . . , 𝐽}

where 𝑥𝑢 and 𝑥𝑙 are respectively the upper and lower level decision variables. The argmin of a function is defined
as the point(s) in the domain at which the function value is minimized.

In a similar fashion we can represent the robust counterpart of (2.2) as a bi-level problem given by,

Upper Level: min
𝑥
{𝑓(𝑥, 𝑢) : 𝑐(𝑥, 𝑢) ≤ 0}

s.t.
Lower Level: 𝑢 ∈ argmax

𝑢
{𝑐(𝑥, 𝑢) : 𝑔(𝑥, 𝑢) ≤ 0}

(2.5)

where argmax of a function gives the point(s) in the domain at which function is maximized.
When the lower level problem is convex and sufficiently regular, we can replace the lower level problem

with its KKT conditions [20]. So the bi-level problem will be reduced to a single level constrained optimization
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problem:

min
𝑥

𝑓(𝑥, 𝑢)

s.t. 𝑐(𝑥, 𝑢) ≤ 0

O𝑢𝐿(𝑥, 𝑢, 𝜆) = 0 where 𝐿(𝑥, 𝑢, 𝜆) = 𝑐(𝑥, 𝑢) + 𝜆⊤𝑔(𝑥, 𝑢)
𝑔(𝑥, 𝑢) ≤ 0
𝜆 ⊥ 𝑔(𝑥, 𝑢) (Complementary slackness condition)
𝜆 ≥ 0.

(2.6)

3. Robust mean-variance problems under several uncertainties by bi-level
optimization approach

As in portfolio optimization, we generally use the past historical data for evaluating the future return rates
so there is a high chance of the solution to be influenced by uncertainty. And a small perturbation in data can
mislead the investor to invest in an inefficient portfolio. Finding the robust solutions to the uncertain problems
is not always straightforward. Here we propose a methodology for finding the robust solutions of such problems.
The algorithm of our proposed methodology is as follows:

Algorithm 1. The proposed methodology.
1: Define the uncertain set with its centre as the nominal value 𝑢0 of uncertain parameters 𝑢 and radius as the

perturbation amount 𝛿.
2: Convert the uncertain problem into a bilevel optimization form, where the lower level problem represents the worst

realization of the uncertain parameters (𝑢) in the domain of perturbation and the upper level problem represents
our main problem.

3: Replace the lower level problem with its KKT conditions.
4: Solve the KKT conditions to get the worst case realization of the uncertain parameter 𝑢 in terms of 𝑢0and 𝛿.
5: Use this value of 𝑢 in the upper level problem to get the robust counterpart of our uncertain optimization problem.
6: Solve the robust counterpart problem to get the robust solution.

In mean-variance optimization, the perturbation may occur either in the mean return data or in the covariance
matrix of the asset returns. In the following part we discuss how our methodology works to get the robust
solutions of uncertain mean-variance optimization problems.

3.1. When the expected returns of assets are uncertain

Let us assume that the covariance terms are free from uncertainty and the uncertainty occurs only in expected
return. Then the uncertain mean-variance portfolio problem is defined as:

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

𝜇𝑖 ∈ U𝜇

(3.1)

where U𝜇 is the uncertain set associated with the expected returns respectively.
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Figure 1. Box uncertainty set for a two-dimensional uncertain parameter 𝜇.

The robust counterpart of the problem (3.1) is given by,

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.

{︃
min

𝜇𝑖∈U𝜇

∑︁
𝑖

𝜇𝑖𝑥𝑖

}︃
≥ 𝜏,

∑︁
𝑖

𝑥𝑖 = 1 𝑥𝑖 ≥ 0.

(3.2)

3.1.1. Box uncertainty

Theorem 3.1. Consider the problem (3.1). Let the expected returns 𝜇𝑖 (𝑖 = 1, 2, . . . , 𝑛) are uncertain and they
perturb within an 𝑛-dimensional box with center (𝜇0

1, 𝜇
0
2, . . . , 𝜇

0
𝑛) and radius in 𝑖th dimension 𝛿

(𝐵)
𝑖 .

Then the robust counterpart of the problem (3.1) is given by a quadratic programming problem,

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

(𝜇0
𝑖 − 𝛿

(𝐵)
𝑖 )𝑥𝑖 ≥ 𝜏,

∑︁
𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0.

Proof. Assume that the uncertainty set associated with mean return is given by,

U𝜇 =
{︁

𝜇𝑖 : |𝜇𝑖 − 𝜇0
𝑖 | ≤ 𝛿

(𝐵)
𝑖 , 𝑖 = 1, 2, . . . , 𝑛

}︁
where 𝜇0

𝑖 is the nominal value of expected return for 𝑖th asset and 𝛿
(𝐵)
𝑖 is the maximum perturbation that can

happen.

The above inequality |𝜇𝑖 − 𝜇0
𝑖 | ≤ 𝛿

(𝐵)
𝑖 is equivalent to (𝜇𝑖 − 𝜇0

𝑖 )2 ≤
(︁
𝛿
(𝐵)
𝑖

)︁2

, as both of these give the same
set of solutions. So we can write the uncertainty set as:

U𝜇 = {𝜇𝑖 : (𝜇𝑖 − 𝜇0
𝑖 )2 ≤

(︁
𝛿
(𝐵)
𝑖

)︁2

, 𝑖 = 1, 2, . . . , 𝑛}.

Then if we visualize the uncertain set U𝜇, it will look like a box with its center as the vector of nominal values
(𝜇0

1, 𝜇
0
2, . . . , 𝜇

0
𝑛) and its radius in 𝑖th dimension be 𝛿𝑖(𝐵). And the expected return vector (𝜇1, 𝜇2, . . . , 𝜇𝑛) can

be any arbitrary point within the box.
It can be written in vector form as,

U𝜇 = {𝜇 : ||𝜇− 𝜇0||∞ ≤ 𝛿(𝐵)
𝜇 }

where 𝜇0 =
[︀
𝜇0

1 𝜇0
2 . . . 𝜇0

𝑛

]︀⊤ and 𝛿
(𝐵)
𝜇 =

[︁
𝛿
(𝐵)
1 𝛿

(𝐵)
2 . . . 𝛿

(𝐵)
𝑛

]︁⊤
are respectively the vectors of nominal expected

returns and their perturbations. �
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Now we can transform equation (3.2) into bi-level form by taking the inner minimization problem as the
lower level problem:

Upper Level: min
𝑥𝑖

⎧⎨⎩1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 :
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

⎫⎬⎭
s.t.

Lower Level: 𝜇𝑖 ∈ argmin
𝜇𝑖

{︃∑︁
𝑖

𝜇𝑖𝑥𝑖 : (𝜇𝑖 − 𝜇0
𝑖 )2 ≤

(︁
𝛿
(𝐵)
𝑖

)︁2
}︃

.

(3.3)

When the lower level problem is convex and sufficiently regular, we can replace the lower level problem with
its KKT conditions [20].

Clearly the lower level problem in (3.3) is a convex problem, as its objective is linear and each component in
the constraints is convex.

So replacing the lower level problem by its KKT conditions, we get

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.:
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

𝜕

𝜕𝜇𝑖
𝐿(𝑥𝑖, 𝜇𝑖, 𝜆𝑖) = 0 where 𝐿(𝑥𝑖, 𝜇𝑖, 𝜆𝑖) =

∑︁
𝑖

𝜇𝑖𝑥𝑖 +
∑︁

𝑖

𝜆𝑖

[︂
(𝜇𝑖 − 𝜇0

𝑖 )2 −
(︁
𝛿
(𝐵)
𝑖

)︁2
]︂

(𝜇𝑖 − 𝜇0
𝑖 )2 ≤

(︁
𝛿
(𝐵)
𝑖

)︁2

, 𝜆𝑖

[︂
(𝜇𝑖 − 𝜇0

𝑖 )2 −
(︁
𝛿
(𝐵)
𝑖

)︁2
]︂

= 0, 𝜆𝑖 ≥ 0 for 𝑖 = 1, 2, . . . , 𝑛.

(3.4)

Now from the Lagrangian function 𝐿, we get

𝜕𝐿

𝜕𝜇𝑖
= 𝑥𝑖 + 2𝜆𝑖(𝜇𝑖 − 𝜇0

𝑖 ) = 0

=⇒ 𝜇𝑖 − 𝜇0
𝑖 =

−𝑥𝑖

2𝜆𝑖
.

So the single level form (3.4) can be given as:

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 (3.5a)

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0 (3.5b)

𝜇𝑖 − 𝜇0
𝑖 =

−𝑥𝑖

2𝜆𝑖
(3.5c)

(𝜇𝑖 − 𝜇0
𝑖 )2 ≤

(︁
𝛿
(𝐵)
𝑖

)︁2

(3.5d)

𝜆𝑖

[︂
(𝜇𝑖 − 𝜇0

𝑖 )2 −
(︁
𝛿
(𝐵)
𝑖

)︁2
]︂

= 0 (3.5e)

𝜆𝑖 ≥ 0. (3.5f)

Here no 𝜆𝑖 can be zero; otherwise from equation (3.5c) we will get, 𝜇𝑖 − 𝜇0
𝑖 → −∞.

So from equation (3.5e) we get, (𝜇𝑖 − 𝜇0
𝑖 )2 =

(︁
𝛿
(𝐵)
𝑖

)︁2

.
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Figure 2. Ellipsoidal uncertainty set for a two-dimensional uncertain parameter 𝜇.

Using equation (3.5c) we get,
𝑥2

𝑖

4𝜆2
𝑖

=
(︁
𝛿
(𝐵)
𝑖

)︁2

=⇒ 𝜆𝑖 =
𝑥𝑖

2𝛿
(𝐵)
𝑖

.

Then 𝜇𝑖 = 𝜇0
𝑖 −

𝑥𝑖

2𝜆𝑖
= 𝜇0

𝑖 − 𝛿
(𝐵)
𝑖 .

Hence our bilevel problem finally reduces to a quadratic programming problem:

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

(𝜇0
𝑖 − 𝛿

(𝐵)
𝑖 )𝑥𝑖 ≥ 𝜏,

∑︁
𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0.
(3.6)

3.1.2. Ellipsoidal uncertainty

Theorem 3.2. Consider the problem (3.1). Let the expected returns 𝜇𝑖 (𝑖 = 1, 2, . . . , 𝑛) are uncertain and they
perturb within an 𝑛-dimensional ellipsoid with center (𝜇0

1, 𝜇
0
2, . . . , 𝜇

0
𝑛) and radius in 𝑖th dimension be 𝛿

(𝐸)
𝑖 . Then

the robust counterpart of the problem (3.1) is given by a non-linear programming problem,

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇0
𝑖 𝑥𝑖 −

√︃∑︁
𝑖

(︁
𝛿
(𝐸)
𝑖 𝑥𝑖

)︁2

≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0.

Proof. Let the uncertainty set associated with mean return is given by an ellipsoid like structure:

U𝜇 =
{︁

𝜇 : ||𝜇− 𝜇0||2 ≤ 𝛿(𝐸)
𝜇

}︁
.

Equivalently it can be represented as:

U𝜇 =

⎧⎪⎨⎪⎩𝜇𝑖 :
𝑛∑︁

𝑖=1

(𝜇𝑖 − 𝜇0
𝑖 )2(︁

𝛿
(𝐸)
𝑖

)︁2 ≤ 1

⎫⎪⎬⎪⎭ .

�
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We can write equation (3.2) in bi-level form as:

Upper Level: min
𝑥𝑖

⎧⎨⎩1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 :
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

⎫⎬⎭
s.t.

Lower Level: 𝜇𝑖 ∈ argmin
𝜇𝑖

⎧⎪⎨⎪⎩
∑︁

𝑖

𝜇𝑖𝑥𝑖 :
𝑛∑︁

𝑖=1

(𝜇𝑖 − 𝜇0
𝑖 )2(︁

𝛿
(𝐸)
𝑖

)︁2 ≤ 1

⎫⎪⎬⎪⎭ .

(3.7)

Clearly the lower level problem in (3.7) has a convex objective function which is to be solved over the
ellipsoidal set which is also convex itself. So the convexity property of lower level problem is satisfied and thus
it can be replaced by its KKT conditions. That leads us to the following single objective problem:

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

𝜕

𝜕𝜇𝑖
𝐿(𝑥𝑖, 𝜇𝑖, 𝜆𝑖) = 0 where 𝐿(𝑥𝑖, 𝜇𝑖, 𝜌) =

∑︁
𝑖

𝜇𝑖𝑥𝑖 + 𝜌

⎡⎢⎣ 𝑛∑︁
𝑖=1

(𝜇𝑖 − 𝜇0
𝑖 )2(︁

𝛿
(𝐸)
𝑖

)︁2 − 1

⎤⎥⎦
𝑛∑︁

𝑖=1

(𝜇𝑖 − 𝜇0
𝑖 )2(︁

𝛿
(𝐸)
𝑖

)︁2 ≤ 1, 𝜌

⎡⎢⎣ 𝑛∑︁
𝑖=1

(𝜇𝑖 − 𝜇0
𝑖 )2(︁

𝛿
(𝐸)
𝑖

)︁2 − 1

⎤⎥⎦ = 0, 𝜌 ≥ 0.

(3.8)

The Lagrangian function is given by,

𝐿(𝑥𝑖, 𝜇𝑖, 𝜌) =
∑︁

𝑖

𝜇𝑖𝑥𝑖 + 𝜌

⎡⎢⎣ 𝑛∑︁
𝑖=1

(𝜇𝑖 − 𝜇0
𝑖 )2(︁

𝛿
(𝐸)
𝑖

)︁2 − 1

⎤⎥⎦
=⇒ 𝜕𝐿

𝜕𝜇𝑖
= 𝑥𝑖 +

2𝜌(𝜇𝑖 − 𝜇0
𝑖 )(︁

𝛿
(𝐸)
𝑖

)︁2 .

So equation (3.8) can be written as,

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 (3.9a)

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0 (3.9b)

𝑥𝑖 +
2𝜌(𝜇𝑖 − 𝜇0

𝑖 )(︁
𝛿
(𝐸)
𝑖

)︁2 = 0 (3.9c)

𝑛∑︁
𝑖=1

(𝜇𝑖 − 𝜇0
𝑖 )2(︁

𝛿
(𝐸)
𝑖

)︁2 ≤ 1 (3.9d)
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𝜌

⎡⎢⎣ 𝑛∑︁
𝑖=1

(𝜇𝑖 − 𝜇0
𝑖 )2(︁

𝛿
(𝐸)
𝑖

)︁2 − 1

⎤⎥⎦ = 0 (3.9e)

𝜌 ≥ 0. (3.9f)

If 𝜌 = 0, then from equation (3.9c) we get each 𝑥𝑖 = 0, which will contradict the normality condition
∑︀

𝑖 𝑥𝑖 = 1.

Hence 𝜌 > 0. Then from (3.9e) we get,
∑︀𝑛

𝑖=1

(𝜇𝑖 − 𝜇0
𝑖 )2(︁

𝛿
(𝐸)
𝑖

)︁2 = 1.

Now using equation (3.9c) we get,
1

4𝜌2

∑︀
𝑖

(︁
𝛿
(𝐸)
𝑖 𝑥𝑖

)︁2

= 1 =⇒ 𝜌 =

√︂∑︀
𝑖

(︁
𝛿
(𝐸)
𝑖 𝑥𝑖

)︁2

2
.

Hence from equation (3.9c) we get, 𝜇𝑖 = 𝜇0
𝑖 −

(︁
𝛿
(𝐸)
𝑖

)︁2

𝑥𝑖

2𝜌
= 𝜇0

𝑖 −

(︁
𝛿
(𝐸)
𝑖

)︁2

𝑥𝑖√︂∑︀
𝑖

(︁
𝛿
(𝐸)
𝑖 𝑥𝑖

)︁2
.

So the expected return of the portfolio becomes,
∑︀

𝑖 𝜇𝑖𝑥𝑖 =
∑︀

𝑖 𝜇0
𝑖 𝑥𝑖 −

√︂∑︀
𝑖

(︁
𝛿
(𝐸)
𝑖 𝑥𝑖

)︁2

.

Thus our bilevel problem finally reduces to the following second order conic programming problem:

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇0
𝑖 𝑥𝑖 −

√︃∑︁
𝑖

(︁
𝛿
(𝐸)
𝑖 𝑥𝑖

)︁2

≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0.

(3.10)

3.2. When the covariance terms are uncertain

Now assume that the covariance matrix is uncertain and the expected return is free from uncertainty. Then
the uncertain mean-variance portfolio problem is defined as:

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

𝜎𝑖𝑗 ∈ U𝜎.

(3.11)

where U𝜇 is the uncertain set associated with the expected returns respectively.
The robust counterpart of the problem (3.11) is given by,

min
𝑥𝑖

⎧⎨⎩ max
𝜎𝑖𝑗∈U𝜎

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

⎫⎬⎭
s.t.

∑︁
𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1 𝑥𝑖 ≥ 0.

(3.12)

3.2.1. Box uncertainty

Theorem 3.3. Consider the problem (3.11). Let the covariance terms 𝜎𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛) are uncertain
and they perturb around the nominal values 𝜎0

𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛) with a highest possible perturbation of
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𝛥
(𝐵)
𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛), then the robust counterpart of the problem (3.11) is given by a quadratic programming

problem,

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

[︁
𝜎0

𝑖𝑗 + 𝛥
(𝐵)
𝑖𝑗

]︁
𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0.

where the uncertainty set of 𝜎𝑖𝑗’s is a box of dimension 𝑛2.

Proof. When the covariance terms of assets are associated with the box uncertainty set:

U𝜎 =
{︂

𝜎𝑖𝑗 : (𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2 ≤

(︁
𝛥

(𝐵)
𝑖𝑗

)︁2

, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛

}︂
.

We can write the problem (3.11) in bilevel form as:

Upper Level: min
𝑥𝑖

⎧⎨⎩1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 :
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

⎫⎬⎭
s.t.

Lower Level: 𝜎𝑖𝑗 ∈ argmax
𝜎𝑖𝑗

⎧⎨⎩∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 : (𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2 ≤

(︁
𝛥

(𝐵)
𝑖𝑗

)︁2

⎫⎬⎭ .

(3.13)

The lower level problem can be easily converted into a minimization problem:

Upper Level: min
𝑥𝑖

⎧⎨⎩1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 :
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

⎫⎬⎭
s.t.

Lower Level: 𝜎𝑖𝑗 ∈ argmin
𝜎𝑖𝑗

⎧⎨⎩−∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 : (𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2 ≤

(︁
𝛥

(𝐵)
𝑖𝑗

)︁2

⎫⎬⎭ .

(3.14)

�

Now here also we have a convex lower level problem. So we can transform the problem into the following
single level problem,

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

𝜕

𝜕𝜎𝑖𝑗
𝐿(𝑥𝑖, 𝑥𝑗 , 𝜎𝑖𝑗 , 𝜆𝑖𝑗) = 0 where 𝐿(𝑥𝑖, 𝑥𝑗 , 𝜎𝑖𝑗 , 𝜆𝑖𝑗) = −

∑︁
𝑖𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 +
∑︁
𝑖𝑗

𝜆𝑖𝑗

[︂
(𝜎𝑖𝑗 − 𝜎0

𝑖𝑗)2 −
(︁
𝛥

(𝐵)
𝑖𝑗

)︁2
]︂

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2 ≤

(︁
𝛥

(𝐵)
𝑖𝑗

)︁2

, 𝜆𝑖𝑗

[︂
(𝜎𝑖𝑗 − 𝜎0

𝑖𝑗)2 −
(︁
𝛥

(𝐵)
𝑖𝑗

)︁2
]︂

= 0, 𝜆𝑖𝑗 ≥ 0 for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛.

(3.15)
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Now from the Lagrangian function 𝐿, we get

𝜕𝐿

𝜕𝜎𝑖𝑗
= −𝑥𝑖𝑥𝑗 + 2𝜆𝑖𝑗(𝜎𝑖𝑗 − 𝜎0

𝑖𝑗) = 0

=⇒ 𝜎𝑖𝑗 − 𝜎0
𝑖𝑗 =

𝑥𝑖𝑥𝑗

2𝜆𝑖𝑗
.

So the single level form (3.15) can be written as:

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 (3.16a)

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0 (3.16b)

𝜎𝑖𝑗 − 𝜎0
𝑖𝑗 =

𝑥𝑖𝑥𝑗

2𝜆𝑖𝑗
(3.16c)

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2 ≤

(︁
𝛥

(𝐵)
𝑖𝑗

)︁2

(3.16d)

𝜆𝑖𝑗

[︂
(𝜎𝑖𝑗 − 𝜎0

𝑖𝑗)2 −
(︁
𝛥

(𝐵)
𝑖𝑗

)︁2
]︂

= 0 (3.16e)

𝜆𝑖𝑗 ≥ 0. (3.16f)

Here no 𝜆𝑖𝑗 can be zero; otherwise from equation (3.16c) we will get, 𝜎𝑖𝑗 −𝜎0
𝑖𝑗 → −∞. So from equation (3.16e)

we get, (𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2 =

(︁
𝛥

(𝐵)
𝑖𝑗

)︁2

.

Using equation (3.16c) we get,
(𝑥𝑖𝑥𝑗)2

4𝜆2
𝑖𝑗

=
(︁
𝛥

(𝐵)
𝑖𝑗

)︁2

=⇒ 𝜆𝑖𝑗 =
𝑥𝑖𝑥𝑗

2𝛥
(𝐵)
𝑖𝑗

, as 𝜆𝑖𝑗 is non-negative so we take the

positive square root.
Then from equation(3.16c) we get, 𝜎𝑖𝑗 = 𝜎0

𝑖𝑗 + 𝛥
(𝐵)
𝑖𝑗 .

Hence our bilevel problem finally reduces to a quadratic programming problem:

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

[︁
𝜎0

𝑖𝑗 + 𝛥
(𝐵)
𝑖𝑗

]︁
𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0.
(3.17)

3.2.2. Ellipsoidal uncertainty

Theorem 3.4. Consider the problem (3.11). Let the covariance terms 𝜎𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛) are uncertain
and they perturb around the nominal values 𝜎0

𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛) with a highest possible perturbation of

𝛥
(𝐸)
𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑛), then the robust counterpart of the problem (3.11) is given by the following non-linear

programming,

min
𝑥𝑖

1
2

⎡⎣∑︁
𝑖,𝑗

𝜎0
𝑖𝑗𝑥𝑖𝑥𝑗 +

√︃∑︁
𝑖,𝑗

(︁
𝛥

(𝐸)
𝑖𝑗 𝑥𝑖𝑥𝑗

)︁2

⎤⎦
s.t.

∑︁
𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0.

where the uncertainty set of 𝜎𝑖𝑗’s is an ellipsoid of dimension 𝑛2.
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Proof. When the covariance terms of assets are associated with the ellipsoidal uncertainty set:

U𝜎 =
{︂

𝜎𝑖𝑗 : (𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2 ≤

(︁
𝛥

(𝐸)
𝑖𝑗

)︁2

, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛

}︂
.

We can write the problem (3.12) in bilevel form as:

Upper Level: min
𝑥𝑖

⎧⎨⎩1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 :
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

⎫⎬⎭
s.t.

Lower Level: 𝜎𝑖𝑗 ∈ argmax
𝜎𝑖𝑗

⎧⎪⎨⎪⎩
∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 :
∑︁
𝑖,𝑗

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2(︁

𝛥
(𝐸)
𝑖𝑗

)︁2 ≤ 1

⎫⎪⎬⎪⎭
(3.18)

Again converting the lower level problem into a minimization problem and replacing it by its KKT conditions
we have,

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0

𝜕

𝜕𝜎𝑖𝑗
𝐿(𝑥𝑖, 𝑥𝑗 , 𝜎𝑖𝑗 , 𝜌) = 0 where 𝐿(𝑥𝑖, 𝑥𝑗 , 𝜎𝑖𝑗 , 𝜌) = −

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜌

⎡⎢⎣∑︁
𝑖,𝑗

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2(︁

𝛥
(𝐸)
𝑖𝑗

)︁2 − 1

⎤⎥⎦
∑︁
𝑖,𝑗

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2(︁

𝛥
(𝐸)
𝑖𝑗

)︁2 ≤ 1, 𝜌

⎡⎢⎣∑︁
𝑖,𝑗

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2(︁

𝛥
(𝐸)
𝑖𝑗

)︁2 − 1

⎤⎥⎦ = 0, 𝜌 ≥ 0 for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(3.19)

�

Now from the Lagrangian function 𝐿, we get

𝜕𝐿

𝜕𝜎𝑖𝑗
= −𝑥𝑖𝑥𝑗 + 2𝜌

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)(︁

𝛥
(𝐸)
𝑖𝑗

)︁2 = 0

=⇒ 𝜎𝑖𝑗 − 𝜎0
𝑖𝑗 =

𝑥𝑖𝑥𝑗

(︁
𝛥

(𝐸)
𝑖𝑗

)︁2

2𝜌
.

So the single level form (3.19) can be given as:

min
𝑥𝑖

1
2

∑︁
𝑖,𝑗

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 (3.20a)

s.t.
∑︁

𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0 (3.20b)

𝜎𝑖𝑗 − 𝜎0
𝑖𝑗 =

𝑥𝑖𝑥𝑗

(︁
𝛥

(𝐸)
𝑖𝑗

)︁2

2𝜌
(3.20c)
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∑︁
𝑖,𝑗

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2(︁

𝛥
(𝐸)
𝑖𝑗

)︁2 ≤ 1 (3.20d)

𝜌

⎡⎢⎣∑︁
𝑖,𝑗

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2(︁

𝛥
(𝐸)
𝑖𝑗

)︁2 − 1

⎤⎥⎦ = 0 (3.20e)

𝜌 ≥ 0. (3.20f)

Here 𝜌 cannot be zero; otherwise from equation (3.20c) we will get, 𝜎𝑖𝑗 − 𝜎0
𝑖𝑗 → −∞.

So from equation (3.20e) we get,
∑︀

𝑖,𝑗

(𝜎𝑖𝑗 − 𝜎0
𝑖𝑗)2(︁

𝛥
(𝐸)
𝑖𝑗

)︁2 = 1.

Using equation (3.20c) we get,
1

4𝜌2

[︂∑︀
𝑖,𝑗

(︁
𝛥

(𝐸)
𝑖𝑗 𝑥𝑖𝑥𝑗

)︁2
]︂

= 1 =⇒ 𝜌 =

√︂∑︀
𝑖,𝑗

(︁
𝛥

(𝐸)
𝑖𝑗 𝑥𝑖𝑥𝑗

)︁2

2
.

Then from (3.20c) we get, 𝜎𝑖𝑗 = 𝜎0
𝑖𝑗 +

𝑥𝑖𝑥𝑗

(︁
𝛥

(𝐸)
𝑖𝑗

)︁2

√︂∑︀
𝑖,𝑗

(︁
𝛥

(𝐸)
𝑖𝑗 𝑥𝑖𝑥𝑗

)︁2
.

Hence our bilevel problem finally reduces to:

min
𝑥𝑖

1
2

⎡⎣∑︁
𝑖,𝑗

𝜎0
𝑖𝑗𝑥𝑖𝑥𝑗 +

√︃∑︁
𝑖,𝑗

(︁
𝛥

(𝐸)
𝑖𝑗 𝑥𝑖𝑥𝑗

)︁2

⎤⎦
s.t.

∑︁
𝑖

𝜇𝑖𝑥𝑖 ≥ 𝜏,
∑︁

𝑖

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0.

(3.21)

4. Illustrative example

4.1. Data description

For our problem we have considered the monthly return data of four stocks (i) Bajaj Finance, (ii) Reliance
Industries Ltd., (iii) Britannia, (iv) Amazon.com Inc. The data are collected from the website https://finance.
yahoo.com for the time interval November 2014 to November 2019.

4.2. Portfolio problem

We calculate the input parameters like expected return and covariance of return for each asset. Since those
values only represent the last 5 years data, so the values for the actual return distribution may vary from our
calculated value. That is why we consider the calculated values as the nominal values and we assume some
perturbations associated with all those nominal values.

Now the nominal values of the input parameters are calculated as given in Table 1.

4.2.1. When uncertainty occurs in expected return terms

Let the perturbation vector corresponding to the expected return vector is given by,

𝛿𝜇 =

⎡⎢⎣0.03%
0.04%
0.05%
0.06%

⎤⎥⎦ .

https://finance.yahoo.com
https://finance.yahoo.com
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Table 1. Nominal values of input parameters.

Assets Expected returns Covariance of returns
Bajaj Reliance Britannia Amazon

Bajaj 4.57% 8.622% 1.842% 2.075% 0.039%
Reliance 3.97% 1.842% 4.150% 1.442% −0.071%
Britannia 3.11% 2.075% 1.442% 2.092% 0.034%
Amazon 4.22% 0.039% −0.071% 0.034% 0.890%

Then the robust counterpart of our problem is given by,

min
𝑥𝑖

𝜎2
𝑃 =

1
2

[8.622𝑥2
1 + 4.150𝑥2

2 + 2.092𝑥2
3 + 0.890𝑥2

4 + 2 · 1.842𝑥1𝑥2 + 2 · 2.075𝑥1𝑥3

+ 2 · 0.039𝑥1𝑥4 + 2 · 1.442𝑥2𝑥3 + 2 · (−0.071)𝑥2𝑥4 + 2 · 0.034𝑥3𝑥4]

s.t.

{︃
min

𝜇∈U𝜇

4∑︁
𝑖=1

𝜇𝑖𝑥𝑖

}︃
≥ 𝜏,

4∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

(4.1)

(i) Box uncertainty: The robust counterpart problem (4.1) for box uncertainty can be given in bilevel form
as:

Upper Level: min
𝑥𝑖

{︃

𝜎2
𝑃 :

4∑︁

𝑖=1

𝜇𝑖𝑥𝑖 ≥ 𝜏,

4∑︁

𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0

}︃

s.t.

Lower Level: 𝜇𝑖 ∈ argmin
𝜇𝑖

{︃
4∑︁

𝑖=1

𝜇𝑖𝑥𝑖 : |𝜇1 − 4.57| ≤ 0.03, |𝜇2 − 3.97| ≤ 0.04, |𝜇3 − 3.11| ≤ 0.05, |𝜇4 − 4.22| ≤ 0.06

}︃

.

(4.2)

Reducing the above bilevel problem into a single level problem we get the robust counterpart problem as:

min
𝑥𝑖

𝜎2
𝑃 =

1
2

[8.622𝑥2
1 + 4.150𝑥2

2 + 2.092𝑥2
3 + 0.890𝑥2

4 + 2 · 1.842𝑥1𝑥2 + 2 · 2.075𝑥1𝑥3

+ 2 · 0.039𝑥1𝑥4 + 2 · 1.442𝑥2𝑥3 + 2 · (−0.071)𝑥2𝑥4 + 2 · 0.034𝑥3𝑥4]

s.t. 4.54𝑥1 + 3.93𝑥2 + 3.06𝑥3 + 4.16𝑥4 ≥ 𝜏,
4∑︁

𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

(ii) Ellipsoidal uncertainty: The robust counterpart problem (4.1) for ellipsoidal uncertainty can be given
in bilevel form as:

Upper Level: min
𝑥𝑖

{︃
𝜎2

𝑃 :
4∑︁

𝑖=1

𝜇𝑖𝑥𝑖 ≥ 𝜏,

4∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0

}︃
s.t.

Lower Level: 𝜇𝑖 ∈ argmin
𝜇𝑖

{︃
4∑︁

𝑖=1

𝜇𝑖𝑥𝑖 :
(𝜇1 − 4.57)2

(0.03)2
+

(𝜇2 − 3.97)2

(0.04)2
+

(𝜇3 − 3.11)2

(0.05)2
+

(𝜇4 − 4.22)2

(0.06)2
≤ 1

}︃
.

(4.3)

On reducing the above bilevel problem into a single level problem we get the robust counterpart problem as:
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Table 2. Optimal portfolio results for several expected returns when uncertainty affects the
expected returns.

Expected
return (𝜏)

Optimal attribute Nominal data Box uncertainty Ellipsoidal uncertainty

3.8

𝑥1 0.000001 0.000001 0.000012
𝑥2 0.081416 0.081416 0.081416
𝑥3 0.227565 0.227564 0.227552
𝑥4 0.691019 0.691019 0.691020

Risk 0.308482 0.308482 0.308482

3.9

𝑥1 0.000000 0.000000 0.000012
𝑥2 0.081416 0.082486 0.081436
𝑥3 0.227565 0.224661 0.227501
𝑥4 0.691019 0.692853 0.691051

Risk 0.308482 0.308490 0.308482

4.0

𝑥1 0.009983 0.024240 0.021764
𝑥2 0.094371 0.106278 0.104523
𝑥3 0.180091 0.131607 0.141235
𝑥4 0.715555 0.737876 0.732479

Risk 0.310521 0.316337 0.314889

4.1

𝑥1 0.034971 0.049415 0.047926
𝑥2 0.115018 0.127189 0.126380
𝑥3 0.093230 0.045022 0.052633
𝑥4 0.756782 0.778375 0.773060

Risk 0.323562 0.335938 0.333758

4.2

𝑥1 0.059958 0.134762 0.128960
𝑥2 0.135664 0.048738 0.066552
𝑥3 0.006369 0.000000 0.000000
𝑥4 0.798008 0.816500 0.804488

Risk 0.348488 0.393454 0.384943

4.3

𝑥1 0.228571 0.368421 0.344728
𝑥2 0.000000 0.000000 0.000002
𝑥3 0.000000 0.000000 0.000001
𝑥4 0.771429 0.631579 0.655270

Risk 0.496925 0.771731 0.712192

4.4

𝑥1 0.514286 0.631579 0.600001
𝑥2 0.000000 0.000000 0.000000
𝑥3 0.000000 0.000000 0.000001
𝑥4 0.485714 0.368421 0.400000

Risk 1.254941 1.789100 1.632526

min
𝑥𝑖

𝜎2
𝑃 =

1
2

[8.622𝑥2
1 + 4.150𝑥2

2 + 2.092𝑥2
3 + 0.890𝑥2

4 + 2 · 1.842𝑥1𝑥2 + 2 · 2.075𝑥1𝑥3

+ 2 · 0.039𝑥1𝑥4 + 2 · 1.442𝑥2𝑥3 + 2 · (−0.071)𝑥2𝑥4 + 2 · 0.034𝑥3𝑥4]

s.t. (4.57𝑥1 + 3.97𝑥2 + 3.11𝑥3 + 4.22𝑥4)−
√︁

(0.03)2𝑥2
1 + (0.04)2𝑥2

2 + (0.05)2𝑥2
3 + (0.06)2𝑥2

4 ≥ 𝜏

4∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

Since the portfolio return is somewhere around all the individual asset returns, so we have considered some
values in the range from 3.8 to 4.4. For these values of 𝜏 , the above two robust counterpart problems are solved
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Figure 3. Comparison of efficient frontiers for nominal problem and robust problems when
uncertainty affects expected returns.

and the results are given in Table 2. From the results, we plot the risk values for different levels of expected
returns. This curve is called as the efficient frontier and we plot the efficient frontiers for nominal model as well
as box and ellipsoidal uncertainty models, which is shown in Figure 3.

In Figure 3, we can observe that the efficient frontier for the nominal model is at the bottom. This is because
in nominal model we ignore uncertainty, so to achieve a certain level of return, less risk is required as compared
to the risk required in any uncertain model. Now on comparing efficient frontiers of the two uncertain models,
we can observe that the efficient frontier of ellipsoidal model lies below that of box model. That means the
investor can achieve a given expected return by taking less risk if the uncertain set is an ellipsoidal one. This
confirms that ellipsoidal uncertainty model is less conservative than the box uncertainty model.

4.2.2. When uncertainty occurs in covariance terms

Let the perturbation matrix corresponding to the covariance matrix is given by,

𝛿𝛴 =

⎡⎢⎣0.06% 0.00% 0.00% 0.00%
0.00% 0.05% 0.00% 0.00%
0.00% 0.00% 0.04% 0.00%
0.00% 0.00% 0.00% 0.03%

⎤⎥⎦ .

Then the robust counterpart of our problem is given by,

min
𝑥𝑖

⎧⎨⎩ max
𝛴∈U𝜎

1
2

4∑︁
𝑖=1

4∑︁
𝑗=1

𝜎𝑖𝑗𝑥𝑖𝑥𝑗

⎫⎬⎭
s.t. 4.57𝑥1 + 3.97𝑥2 + 3.11𝑥3 + 4.22𝑥4 ≥ 𝜏,

4∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

(4.4)
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(i) Box uncertainty: The robust counterpart problem (4.4) for box uncertainty can be given in bilevel form
as:

Upper Level: min
𝑥𝑖

{︃
1

2

4∑︁

𝑖=1

4∑︁

𝑗=1

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 : 4.57𝑥1 + 3.97𝑥2 + 3.11𝑥3 + 4.22𝑥4 ≥ 𝜏,

4∑︁

𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0

}︃

s.t.

Lower Level: 𝜎𝑖𝑗 ∈ argmax
𝜎𝑖𝑗

{
4∑︁

𝑖=1

4∑︁

𝑗=1

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 : |𝜎11 − 8.622| ≤ 0.06, |𝜎22 − 4.150| ≤ 0.05, |𝜎33 − 2.092| ≤ 0.04,

|𝜎44 − 0.890| ≤ 0.03}.
(4.5)

Table 3. Optimal portfolio results for several expected returns when uncertainty affects the
covariance of returns.

Expected
return (𝜏)

Optimal attribute Nominal data Box uncertainty Ellipsoidal uncertainty

3.8

𝑥1 0.000001 0.000000 0.000013
𝑥2 0.081416 0.083609 0.082905
𝑥3 0.227565 0.229699 0.232814
𝑥4 0.691019 0.686692 0.684268

Risk 0.308482 0.316815 0.315655

3.9

𝑥1 0.000000 0.000000 0.000013
𝑥2 0.081416 0.083609 0.082906
𝑥3 0.227565 0.229699 0.232811
𝑥4 0.691019 0.686692 0.684270

Risk 0.308482 0.316815 0.315655

4.0

𝑥1 0.009983 0.011681 0.011757
𝑥2 0.094371 0.096444 0.097128
𝑥3 0.180091 0.180160 0.180025
𝑥4 0.715555 0.711715 0.711090

Risk 0.310521 0.319040 0.318185

4.1

𝑥1 0.034971 0.036844 0.036880
𝑥2 0.115018 0.116785 0.117874
𝑥3 0.093230 0.093423 0.093187
𝑥4 0.756782 0.752948 0.752059

Risk 0.323562 0.332658 0.332108

4.2

𝑥1 0.059958 0.062007 0.061980
𝑥2 0.135664 0.137126 0.138640
𝑥3 0.006369 0.006686 0.006335
𝑥4 0.798008 0.794181 0.793045

Risk 0.348488 0.358572 0.357994

4.3

𝑥1 0.228571 0.228571 0.228573
𝑥2 0.000000 0.000000 0.000000
𝑥3 0.000000 0.000000 0.000000
𝑥4 0.771429 0.771429 0.771426

Risk 0.496925 0.507419 0.505989

4.4

𝑥1 0.514286 0.514286 0.514287
𝑥2 0.000000 0.000000 0.000000
𝑥3 0.000000 0.000000 0.000000
𝑥4 0.485714 0.485714 0.485712

Risk 1.254941 1.266415 1.263635
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Figure 4. Comparison of efficient frontiers for nominal problem and robust problems when
uncertainty affects covariance of returns.

On reducing the above bilevel problem into a single level problem we get the robust counterpart problem as:

min
𝑥𝑖

1
2

[8.682𝑥2
1 + 4.200𝑥2

2 + 2.132𝑥2
3 + 0.920𝑥2

4 + 2 · 1.842𝑥1𝑥2 + 2 · 2.075𝑥1𝑥3

+ 2 · 0.039𝑥1𝑥4 + 2 · 1.442𝑥2𝑥3 + 2 · (−0.071)𝑥2𝑥4 + 2 · 0.034𝑥3𝑥4]

s.t. 4.57𝑥1 + 3.97𝑥2 + 3.11𝑥3 + 4.22𝑥4 ≥ 𝜏,

4∑︁
𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.

(ii) Ellipsoidal uncertainty: The robust counterpart problem (4.4) for ellipsoidal uncertainty can be given
in bilevel form as:

Upper Level: min
𝑥𝑖

{︃
1

2

4∑︁

𝑖=1

4∑︁

𝑗=1

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 :

4∑︁

𝑖=1

𝜇𝑖𝑥𝑖 ≥ 𝜏,

4∑︁

𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0

}︃

s.t.

Lower Level: 𝜎𝑖𝑗 ∈ argmax
𝜎𝑖𝑗

{︃
4∑︁

𝑖=1

4∑︁

𝑗=1

𝜎𝑖𝑗𝑥𝑖𝑥𝑗 :
(𝜎11 − 8.622)2

(0.06)2
+

(𝜎22 − 4.150)2

(0.05)2
+

(𝜎33 − 2.092)2

(0.04)2
+

(𝜎44 − 0.890)2

(0.03)2
≤ 1

}︃

.

(4.6)

On reducing the above bilevel problem into a single level problem we get the robust counterpart problem as:

min
𝑥𝑖

1

2
[8.622𝑥2

1 + 4.150𝑥2
2 + 2.092𝑥2

3 + 0.890𝑥2
4 + 2 · 1.842𝑥1𝑥2 + 2 · 2.075𝑥1𝑥3 + 2 · 0.039𝑥1𝑥4 + 2 · 1.442𝑥2𝑥3

+ 2 · (−0.071)𝑥2𝑥4 + 2 · 0.034𝑥3𝑥4 +
√︁

(0.06𝑥2
1)

2 + (0.05𝑥2
2)

2 + (0.04𝑥2
3)

2 + (0.03𝑥2
4)

2]

s.t. 4.57𝑥1 + 3.97𝑥2 + 3.11𝑥3 + 4.22𝑥4 ≥ 𝜏,

4∑︁

𝑖=1

𝑥𝑖 = 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0.
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The solutions of the above problems for different values of 𝜏 are given in Table 3 and the efficient frontiers
are shown in Figure 4.

From the results of Table 3 it can be observed that the optimal results of the box and ellpsoidal uncertainty
models are almost equal to the nominal model. This can also be seen from Figure 4, where efficient frontiers of
the uncertain models overlap the nominal model. That means the optimal solution does not get affected very
much for the uncertain covariance terms as compared to the uncertain asset returns.

5. Conclusion

In this paper, we have proposed a methodology for finding the robust solutions of uncertain portfolio opti-
mization problems. Here we have transformed the uncertain problems into bi-level optimization models and
applied the single level reduction approach for deriving their robust counterparts. From the two types of uncer-
tainty sets we have studied, the robust ellipsoidal model is less conservative as compared to the robust box
model. In addition, for the uncertain portfolio optimization problems it is better to maintain a tradeoff between
optimality and robustness in the solution, so the robust ellipsoidal model can be more useful.

Furthermore, the proposed methodology can be applied for any uncertain minimization problem whose worst
case realization of uncertain parameters is a convex problem. There is a scope of further research in the methodol-
ogy for uncertain multiobjective optimization problems. In future research, we will study the robust counterparts
of uncertain portfolio problems under several other uncertainties.

Acknowledgements. The authors would like to thank the editor and the anonymous reviewers for their useful comments
and suggestions to improve quality of the paper.
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