A modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations
RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2615-2629

In this paper, a new modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations is presented. The method is developed by combining a modified Perry’s conjugate gradient method with the hyperplane projection technique. Global convergence and numerical results of the proposed method are established. Preliminary numerical results show that the proposed method is promising and efficient compared to some existing methods in the literature.

DOI : 10.1051/ro/2021117
Classification : 65K10, 90C06, 90C30, 65K05
Keywords: Derivative-free, nonlinear monotone equations, Perry’s conjugate gradient method, projection technique
@article{RO_2021__55_5_2615_0,
     author = {Koorapetse, M. and Kaelo, P. and Kooepile-Reikeletseng, S.},
     title = {A modified {Perry-type} derivative-free projection method for solving large-scale nonlinear monotone equations},
     journal = {RAIRO. Operations Research},
     pages = {2615--2629},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {5},
     doi = {10.1051/ro/2021117},
     mrnumber = {4313831},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021117/}
}
TY  - JOUR
AU  - Koorapetse, M.
AU  - Kaelo, P.
AU  - Kooepile-Reikeletseng, S.
TI  - A modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2615
EP  - 2629
VL  - 55
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021117/
DO  - 10.1051/ro/2021117
LA  - en
ID  - RO_2021__55_5_2615_0
ER  - 
%0 Journal Article
%A Koorapetse, M.
%A Kaelo, P.
%A Kooepile-Reikeletseng, S.
%T A modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations
%J RAIRO. Operations Research
%D 2021
%P 2615-2629
%V 55
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021117/
%R 10.1051/ro/2021117
%G en
%F RO_2021__55_5_2615_0
Koorapetse, M.; Kaelo, P.; Kooepile-Reikeletseng, S. A modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations. RAIRO. Operations Research, Tome 55 (2021) no. 5, pp. 2615-2629. doi: 10.1051/ro/2021117

[1] A. B. Abubakar and P. Kumam, A descent Dai-Liao conjugate gradient method for nonlinear equations. Numer. Algor. 81 (2019) 197–210. | MR | DOI

[2] A. B. Abubakar, J. Rilwan, S. E. Yimer, A. H. Ibrahim and I. Ahmed, Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints. Thai J. Math. 18 (2020) 501–517. | MR

[3] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization. Comput. Optim. Appl. 38 (2007) 401–416. | MR | Zbl | DOI

[4] A. M. Awwal, P. Kumam, H. Mohammad, W. Watthayu and A. B. Abubakar, A Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing 1 regularized problem. Optimization 70 (2021) 1231–1259. | MR | DOI

[5] Y. H. Dai and L. Z. Liao, New conjugacy conditons and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101. | MR | Zbl | DOI

[6] Y. H. Dai, Y. K. Huang and X. W. Liu, A family of spectral gradient methods for optimization. Comput. Optim. Appl. 74 (2019) 43–65. | MR | DOI

[7] Z. Dai, X. Chen and F. Wen, A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270 (2015) 378–386. | MR

[8] Y. Ding, Y. Xiao and J. Li, A class of conjugate gradient methods for convex constrained monotone equations. Optimization 66 (2017) 2309–2328. | MR | DOI

[9] S. P. Dirkse and M. C. Ferris, A collection of nonlinear mixed complementarity problems. Optim. Math. Softw. 5 (1995) 319–345. | DOI

[10] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. | MR | Zbl | DOI

[11] P. Gao, C. He and Y. Liu, An adaptive family of projection methods for constrained monotone equations with applications. Appl. Math. Comput. 359 (2019) 1–16. | MR

[12] A. S. Halilu, A. Majumder, M. Y. Waziri and K. Ahmed, Signal recovery with convex constrained nonlinear monotone equations through conjugate gradient hybrid approach. Math. Comput. Simulat. 187 (2021) 520–539. | MR | DOI

[13] P. Kaelo and M. Koorapetse, A global convergent projection method for systems of nonlinear monotone equations. Int. J. Comput. Math. 98 (2021) 421–434. | MR | DOI

[14] M. Koorapetse, P. Kaelo and E. R. Offen, A scaled derivative-free projection method for solving nonlinear monotone equations. Bull. Iran. Math. Soc. 45 (2019) 755–770. | MR | DOI

[15] M. Koorapetse, P. Kaelo, S. Lekoko and T. Diphofu, A derivative-free RMIL conjugate gradient projection method for convex constrained nonlinear monotone equations with applications in compressive sensing. Appl. Numer. Math. 165 (2021) 431–441. | MR | DOI

[16] J. Liu and Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numer. Algor. 82 (2019) 245–262. | MR | DOI

[17] P. Liu, J. Jian and X. Jiang, A new conjugate gradient projection method for convex constrained nonlinear equations. Complexity 2020 (2020) 1–14.

[18] J. K. Liu, J. L. Xu and L. Q. Zhang, Partially symmetrical derivative-free Liu Storey projection method for convex constrained equations. Int. J. Comput. Math. 96 (2019) 1787–1798. | MR | DOI

[19] I. E. Livieris and P. Pintelas, Globally convergent modified Perry’s conjugate gradient method. Appl. Math. Comput. 218 (2012) 9197–9207. | MR | Zbl

[20] K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22 (1987) 333–361. | MR | Zbl

[21] Y. Ou and J. Li, A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints. J. Appl. Math. Comput. 56 (2018) 195–216. | MR | DOI

[22] A. Perry, A modified conjugate gradient algorithm. Oper. Res. 26 (1978) 1073–1078. | MR | Zbl | DOI

[23] J. Sabi’U, A. Shah and M. Y. Waziri, Two optimal Hager-Zhang conjugate gradient methods for solving monotone nonlinear equations. Appl. Numer. Math. 153 (2020) 217–233. | MR | DOI

[24] D. Shanno, On the convergence of a new conjugate gradient algorithm. SIAM J. Numer. Anal. 15 (1978) 1247–1257. | MR | Zbl | DOI

[25] M. V. Solodov and B. F. Svaiter, A Globally Convergent Inexact Newton Method for Systems of Monotone Equations, edited by M. Fukushima and L. Qi. In: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Vol. 22 of Applied Optimization. Springer, Boston, MA (1998) 355–369. | MR | Zbl

[26] M. Sun and J. Liu, New hybrid conjugate gradient projection method for the convex constrained equations. Calcolo 53 (2016) 399–411. | MR | DOI

[27] M. Y. Waziri, K. Ahmed and J. Sabi’U, A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear equations. Arab. J. Math. 9 (2020) 443–457. | MR | DOI

[28] M. Y. Waziri, K. Ahmed, J. Sabi’U and A. S. Halilu, Enhanced Dai-Liao conjugate gradient methods for systems of nonlinear equations. SeMA J. 78 (2021) 15–51. | MR | DOI

[29] Z. Wei, G. Li and L. Qi, New quasi-Newton methods for unconstrained optimization problems. Appl. Math. Comput. 175 (2006) 1156–1188. | MR | Zbl

[30] S. Yao and L. Ning, An adaptive three-term conjugate gradient method based on self-scaling memoryless BFGS matrix. J. Comput. Appl. Math. 332 (2018) 72–85. | MR | DOI

[31] Q.-R. Yan, X.-Z. Peng and D.-H. Li, A globally convergent derivative-free method for solving large-scale nonlinear monotone equations. J. Comput. Appl. Math. 234 (2010) 649–657. | MR | Zbl | DOI

[32] L. Zhang, W. J. Zhou and D. H. Li, A descent modified Polak-Ribiere-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26 (2006) 629–640. | MR | Zbl | DOI

[33] L. Zheng, L. Yang and Y. Liang, A modified spectral gradient projection method for solving non-linear monotone equations with convex constraints and its application. IEEE Acess 99 (2020) 1–1.

[34] W. Y. Zhao and D. Li, Monotonicity of fixed point and normal mapping associated with varriational inequality and its application. SIAM. J. Optim. 11 (2000) 962–973. | MR | Zbl | DOI

[35] L. Zheng, L. Yang and Y. Liang, A conjugate gradient projection method for solving equations with convex constraints. J. Comput. Appl. Math. 375 (2020) 399–411. | MR | DOI

Cité par Sources :