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A MODIFIED PERRY-TYPE DERIVATIVE-FREE PROJECTION METHOD FOR
SOLVING LARGE-SCALE NONLINEAR MONOTONE EQUATIONS

M. KOORAPETSE®, P. KAELO AND S. KOOEPILE-REIKELETSENG

Abstract. In this paper, a new modified Perry-type derivative-free projection method for solving large-
scale nonlinear monotone equations is presented. The method is developed by combining a modified
Perry’s conjugate gradient method with the hyperplane projection technique. Global convergence and
numerical results of the proposed method are established. Preliminary numerical results show that the
proposed method is promising and efficient compared to some existing methods in the literature.
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1. INTRODUCTION

In this paper, we use a modified Perry-type derivative-free projection method to solve the nonlinear monotone
equations

F(x)=0, ze€Q, (1.1)

where F' : R™ — R™ is continuous and monotone, and 2 C R™ is a nonempty closed convex set. By monotonicity,
we mean that

(F(z) = F(y)"(x —y) >0, Va,ycR"

If 2 = R™ then (1.1) is a general system of nonlinear equations problem, and when 2 C R" is a nonempty closed
convex set then (1.1) is said to be constrained. Nonlinear monotone equations have many practical applications
such as in chemical equilibrium systems [20] and the economic equilibrium problems [9]. Also, some monotone
variational inequality problems can also be converted into nonlinear monotone equations by means of fixed point
mappings or normal maps if the underlying function satisfies some coercive conditions [34].

Conjugate gradient-based projection methods are among the most famous and efficient methods for solv-
ing (1.1) and, thus, have recently received a lot of attention. This is due to their simplicity, global convergence
properties and low memory requirements, which make them suitable for solving large-scale equations [8,16, 26].
They are iterative methods, that is, given xy, the next iterate xy1 is obtained as

F(z)" (w1 — z1)

G L )| (12)

Tpy1 = Po |z —
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where 2 = x) + axdi, o, > 0 is a step length and

o [-R if k=0,
YT —F+ Brdi_y, ifk>1,

with 0k being a conjugate gradient parameter such that
Eld, < —c|Fe|?, ¢>0, (1.3)

where Fy, = F(x) and || - || is the Euclidean norm. If Q is a closed convex subset of R™ then the projection
operator Pg[] is a map from R™ onto 2, that is,

Pqlz] = argmin{|jz — y|| |y € Q}, Vax € R"™.
This operator is non-expansive, that is, for any x,y € R™,
[ Pafz] = Palylll < llz—yll.

Conjugate gradient-based projection methods are obtained by combining conjugate gradient methods
[3,5,6,30,32] with the projection technique proposed by Solodov and Svaiter [25]. Thus, they differ accord-
ing to how the direction is obtained, or, more specifically, in how the parameter §y is constructed. Recently, by
employing Perry’s conjugate gradient parameter [22], in which

/Bp _ F;;‘F(ykq - Sk71)
* ygL1dk—1 ’

or the Dai-Liao conjugate gradient parameter [5], in which

Fl (ye—1 — tsp—1)
yg;ldkfl

B = , t>0,

where yp_1 = F — F—1 and sg_1 = T} — xx_1, a number of modified forms of the Perry and Dai-Liao methods
for nonlinear systems of equations have been proposed [1,4,7,27,28]. These Perry and Dai-Liao methods are
based on a quasi-Newton aspect and have been considered to be among the most effective in the context of
unconstrained optimization. Note that when ¢ = 1, the Dai-Liao method reduces to the Perry method.

In Dai et al. [7], a modified Perry method is combined with the hyperplane technique [25] to give a derivative-
free method for solving large-scale nonlinear monotone equations. And in Waziri et al. [28], two enhanced Dai-
Liao methods are presented based on two modified spectral coefficients and a revised form of the extended
secant condition in [29]. All these methods were shown to be very competitive when compared to some of the
existing methods for solving large-scale nonlinear monotone equations.

Abubakar et al., in [2], constructed three-term conjugate gradient projection methods by proposing the
direction as

R if k=0,
TR + B Pwp—1 — Mo Fy, if k> 1,

2
with ﬁgD = % and wi_1 = 2k—1 — Tp—1 = ax_1dg—1. In order to satisfy (1.3), they derived the parameter
Ak using three different approaches, thus proposing three different conjugate gradient projection methods with
_ P wr—a|?

Flwg_q
=—"— MNx=—>—"— and M\ =
_dgqu ; (_dzqu)Q g

Flwgy [| Fy||?

A
r _dzlek (—d{ile)Q’

and they named the resulting algorithms as M3TCD1, M3TCD2 and M3TCD3, respectively.
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Another recently suggested three term derivative-free conjugate gradient-based projection method, which
the authors named PDY, is that by Liu and Feng [16]. In this method, the authors proposed a three term
derivative-free projection method based on the Dai-Yuan (DY) conjugate gradient parameter

5= LB
dj_ywy—1’

where

d£71yk’—1
Ye—1 = Fr — Fr—1, wg—1 = yYp—1 + tg—1dk—1, and ty—1 =1+ max{ 0, ———— ».
djy—qdi—1

This method was shown to have nice convergence properties. And Yan et al., in [31], proposed two derivative-free
projection methods based on the three term Hestenes-Stiefel (HS) conjugate gradient method of Zhang et al.
[32]. They showed that their methods were also efficient for solving large-scale nonlinear systems of monotone
equations. Based on a modified line search, an extension of the scaled conjugate gradient (SCG) method of
[3] and the projection technique, Ou and Li [21] proposed a derivative-free SCG-type projection method for
nonlinear monotone equations with convex constraints. They showed further that when F in (1.1) is a strongly
monotone mapping, then the sequence {x} generated by their method R-linearly converges to x* € Q*, where
0* is the solution set of (1.1). Other gradient-based projection methods for large-scale nonlinear monotone
equations can be found in [11-15,18,23, 26,33, 35].

Motivated by the works of [19,30], we propose a descent Perry-type derivative-free projection method for
solving large-scale nonlinear monotone equations. This method is presented in the next section. In Section 3, we
prove the global convergence of the proposed method followed by the convergence rate in Section 4. Numerical
results follow in Section 5. Finally, conclusion is presented in Section 6.

2. MOTIVATION AND THE ALGORITHM

In this section, we describe the details of the proposed method. But first, we briefly review the work of Livieris
and Pintelas [19] and that of Yao and Ning [30] which motivated this work.

Livieris and Pintelas, in [19], proposed a modified Perry’s conjugate gradient method for the unconstrained
optimization problem

min{f(z) [z € R"},

with f : R™ — R being a continuously differentiable function bounded from below. The method generates
iterations xy4+1 = ) + apdy using the direction

d —9Gk, lfk:O,
= T
CT (14 B EER) g+ BY P, iR 1,

llgx

where g, = V f(zy) is the gradient of f at xj, and

gMP _ 9i (w—1 — sp—1)
ME

T
Wi,y -1

with

Wk—1 = Yr—1 + hiellgr—11]"Sk—1.
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The authors suggested hj be given as

Sg—lyk_l -7
hy =t + max —Wao lgr—l™",

where ¢ and r are positive constants, and yr_1 = gr — gr—1 and sx_1 = T — Tr_1. The parameter ,1;/[13 W

shown to satisfy the sufficient descent property

as

digr < —clgl®, V=0,

where ¢ > 0 is a positive constant and that the method is globally convergent.
Yao and Ning [30], using a modified symmetric Perry matrix

T T T
Sk—1Yg—1 T Yk—15k_1  Sk—15k_1
Qk =1- tk T + T )

Sk—1Yk—1 Sk—1Yk—1

where tj, is a positive parameter to be determined, defined their search direction as
dr = —Qrgr, Vk > 1.

By minimizing the distance, in the Frobenius norm, between the above Perry matrix and the self-scaling mem-
oryless BEGS matrix [24]

r T 2 T
Sk—1Yj—1 T Yk—15p_ 3 sp_15T
H =60 — & 1Ye—1 T Y 1k1+<1+§k Hyk 1H ) 15,1

T T T J
Sk—1Yk—1 Sk—1Yk-1 ) Sp_1Yk-1

they determined an optimal parameter ¢} as

1 _ lskalPllye-al®

t* = 5 k
P 1+ ay (sf_1uk—1)?

Hence, using this optimal parameter t7, the authors suggested an adaptive three term Perry’s conjugate gradient
method

di = =gk + Brdr—1 + OrYr—1,

where
T T
teYr—1 — Sk— t Sk—
519:9]“(“#61 kl) and §; = kTgkk1’
dj_1Yk—1 Sp_1Yk—1
with

t min 1 Skoalk—1
k= ’ .
T+ar’ [lyr—al®
The method was shown to be effective numerically.
Now, motivated by the above discussed modified Perry’s conjugate gradient methods of [19,30], we propose

a modified Perry-type derivative-free projection method for solving (1.1). By taking a careful look at the search
direction presented in [19] and the §; parameter in [30], we propose our search direction as

] —F, if k=0, o)
= T .
CT (e B B ) P+ B d o, iR >0,
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where
FT(\wp—1 — Sk A* i A e [k, 1],
gM — k(ka:1 k—1) and A = i '[“ ]
wi_1dr—1 1, otherwise,
2
with A* = Jeeatll g o — e, ket = Ykt + DSty ko1 = F(zp—1) — Fy—1, Wi—1 = up—1 +

Sh_quk—1’
| Fr—1l/$k—1, and ¢ is a positive constant and « € (0,1]. With dj, given in (1.3) above, we determine the next
iterate 1 using (1.2), where the step length o = max{p’:i =0,1,2,...}, p € (0,1], is such that it satisfies

—F({Ek + Oékdk)Tdk- > O'CkkHF(:L'k + Oékdk)||||dk‘|2, o> 0. (22)

We present our proposed method below.

Algorithm 1 New Modified Perry-type Derivative-free Projection Method
1: Given zg € Q, 0, K, ¢, € > 0 and p € (0,1], set k = 0.
2: for k=0,1,... do
3. If || Fx|| < ¢, then stop. Otherwise, go to Step 4.
4:  Compute dj by (2.1).
5:  Compute zr = i + ardy, where oy is obtained by (2.2)
6: If zx € Q and ||F(2x)]| < ¢, stop. Otherwise compute 51 by (1.2).
7.
8:

: Set k=k+ 1 and go to Step 3.
end for

3. GLOBAL CONVERGENCE

We now establish the global convergence of the presented Algorithm 1. Throughout the paper, we assume
that Fj # 0 for all k, otherwise a stationary point has been found. We also assume that the following assumption
holds.

Assumption 3.1.

(i) The function F(-) is monotone on R™.

(ii) The solution set Q* is nonempty.

(iii) The function F(-) is Lipschitz continuous on R™, i.e. there exists a positive constant L such that

[1F(z) = Fly)ll < Llz—yl, Vz,yeR"
Note that from the monotonicity of F', we have that
sh_qup—1 = (F(zi—1) = Fae1)" (2—1 — p-1) + Ollse—1l|> > ollsp—1]* > 0.
This indicates that A* is positive whenever si_; is not zero and hence A\ in (2.1) is well-defined.
Lemma 3.2. The search direction dy generated by Algorithm 1 satisfies the descent condition
Fldy, < —k||Fy|l, VE>0 and k>0. (3.1)

Proof. Since dy = —Fy, we have F{'dy = —||Fp||?, which satisfies (3.1). Now, for k > 1, we obtain from (2.1)
and the relation A\ > & that

Frd,_
FTd, = — (Ak +B%W> IFel|® + BM Fldi
= =i || Fy|?
< =K Fyl %
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Lemma 3.3. Suppose that Assumption 3.1 holds, and let the sequences {xy} and {z} be generated by Algo-
rithm 1. Then, for any x* € Q, it holds that

[@rt1 — 2*|* < Nlze — 2% — o®|Jak — z||". (3.2)

Moreover, the sequences {xy} and {z} are bounded, and

o0
Z lzp — 21]|* < o0.
k=0

Furthermore, it holds that

lim akHdkH =0. (33)

k—o0
Proof. From (2.2), we have

F(z)" (ar — zk) 2 ol F(z0) [z — 2] > 0. (3.4)
For z* € Q, we obtain from (1.2) that
[zkr1 — 212 = || Pa(zr — 0uF (21)) — ||
= llax — 2| = 20k F (1) (2 — &™) + 2] F (21.) 1%,

where 0, = % By monotonicity of F', we obtain

F(zp)T (xg — 2x) + F(z) " (2 — %)
(ze) T (zr — 21) + F(2*)T (21, — %) (3.6)

(21)" (zh — 21)-

F(z)" (2 — 2¥)

vV
!

From (3.4)—(3.6), we get that

k1 — 2|1 < llox — 2*|* = 206 F (z1)" (zk — 21) + 07| F (21|
(F(21)" (1 — 21))?

£ (k)
i — | — 02k — =l

(3.7)

e, — 21 —

IA

Thus, the sequence {||x —z*||} is decreasing and convergent, and hence {zx} is bounded. From (3.4), it follows
that

ol|F(zi)llller — 2el* < Flz)" (2x — 21)

<
< [F(zi) |z — 2]l
giving
ollzr — zkl] <1, (3.8)

which shows that {z;} is also bounded.
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Furthermore, it follows from (3.7) that
o0 o0
o e =zt <) (law — 2P = eess — 7)) < oo,
k=0 k=0

which implies

lim ||zg — 2| = lim agl/dg]| = 0.
k—oo k—o0

Observe from (3.7) that
k1 — 2| < flaw — 2"

implies
lzp — 2*||* < |lzo — %%, Vk > 0.
Therefore, since F' is continuous, by the Lipschitz condition we get that
1F(@e)l| = [|[F(zx) — F(z")]]
Lz — 2|

Lllzo — 7.

<
<

Taking v = L||zo — z*|| gives that | F(zg)| < 7. Also, (3.8) implies that there is a positive constant £ such that
sl < p, k> 0.

Lemma 3.4. For all k > 0, we have
Bl < lldell < ol Fill- (3.9)
where s a positive constant.
Proof. From (3.1) and Cauchy-Schwarz inequality , we obtain
ldill = &l Fil-
And from (2.1), we have
ldell < 11Fx]l + 2162 [l dx—1 . (3.10)

From the definitions of ug_1, wg—1 and sx_1 in (2.1), we get that there exist positive constants w and g such
that

gl < IF Gl + B | + Bllsiall < 25 + o =
and

lwe—1ll < lue—1ll + 1 Fe—1llllse—1ll < @ +yp = o
Notice that for Fj_; # 0 and sx_1 # 0, we get

sk Wh—1 = Sk Uk—1 + | Fe—allllse-1]* > || Fe1llsk—1]* > 0.
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Hence, there is a constant w > 0 such that
df_ywi—1 = @ty si_qwi—r > o [|Feoa||llsk—al® 2 wlldi—1 |-
It then follows that

[E5 Nl k-l + lsk—1l) _ [1Ekll(0+ 1)

M) < <
12 Wl iy e

From (3.10) we get

F + 2(0 +
ldell < 1B+ 21 et a1+ 220 — gy,
wldia] -

Wheregp:l—i—w. (I

Lemma 3.5. Let {xx} and {z} be generated by Algorithm 1. Then

. Kp
> 1, —mM— . 11
akmln{ ’(L—|—a*y)<p2}>0 (3.11)

Proof. From the line search procedure (2.2), if oy, # 1, then o}, = p~tay, does not satisfy (2.2). This means that
—F(2)" di, < o ||F (z3)Ill|die|I?,
where z}, = x) + aj.di. This together with (2.2), (3.1) and (3.9) imply that

Rl Bl < —Fldy
= (F(z1,) = Fy)dy, — F(21,)" dy,
< Lag|ldy||* + ooi [ F(z1) || dx?
= (L +a||F(z)Darp™"[ldx?
< (L + oy)arp™ || Fi|*.
Thus

ap > rp
" S Lt o)

which gives the desired result. O

>0,

Theorem 3.6. Suppose that Assumption 3.1 holds, and let the sequence {xj} be generated by Algorithm 1.
Then

lim inf || Fy[| = 0. (3.12)

Proof. We assume that (3.12) does not hold, that is, 31 > 0 such that ||Fx|| > n, Vk > 0. It then follows from
(3.9) that

ldel| > &||Fxl| > kn >0, Yk >0,
and (3.3) implies that

klim a =0. (3.13)

On the other hand, (3.11) implies that «y, > 0, Yk > 0, which contradicts (3.13). Thus, (3.12) holds. O
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4. CONVERGENCE RATE

From the above discussions, it is evident that the sequence {xj} converges to a solution of problem (1.1).
Therefore, we always assume that x; converges to x* as k — oo, where z* belongs to the solution set Q* of
problem (1.1). To determine the rate of convergence for the proposed algorithm, we also assume the following
assumption holds.

Assumption 4.1. For any x* € QF, there exist two positive constants ¥ and § satisfying
Ydist(z, Q*) < |F(2)]]?, Ve Ns(x*), (4.1)
where Ns(z*) = {z € R™: ||z — z*|| < &} and dist(z, Q*) is the distance from x to Q*.

Theorem 4.2. Let Assumptions 3.1 and 4.1 hold, and the sequence {xy} be generated by Algorithm 1. Then the
sequence {dist(x, 2*)} is Q-linearly convergent to 0, and hence the sequence {xy} R-linearly converges to x*.

Proof. Let Ty := argmin{||xx — Z|| : T € Q*}, which implies that Zj is the closest solution to xj, namely,
lzx — Zk|| = dist(ag, Q7).
Denoting z* by Ty, it follows from (3.2) that
oei1 — 2kl < Jloe = 2)1? = 0 [lae — 2| (4.2)
This, together with (3.9) and (4.1), give that for Ty € Q*,

dist (w41, ) = ||2ngs — T

e — 2k — o |lan, — 2 *

dist (2, Q%)% — azHakdk||4
dist(zg, )2 — o?krad|| Fe||*
dist(zy, )2 — o2? st addist (2, QF)?
= (1 — 0%k ad)dist (2, %)%

(VAN VAN VAN VAN

Taking k2 < w, we get that 1 —o29%ka} € (0,1) holds. This implies that the sequence {dist(z, 2*)} converges
to 0 Q-linearly. Therefore, the whole sequence {xy} converges to z* R-linearly. ([l

5. NUMERICAL EXPERIMENTS

In this section, we report some numerical results to test the efficacy of our proposed Algorithm 1, herein
denoted as NMPCG. We compare it with other three term derivative-free projection methods that have
recently been proposed in the literature. These are the three-term conjugate descent projection method of
Abubakar et al. [2], denoted M3TCD1, the derivative-free iterative method of Liu and Feng [16], denoted
PDY, and the partially symmetrical derivative-free Liu-Storey projection method of Liu et al. [18], denoted
sLS. All algorithms are coded in MATLAB R2019b and the methods are compared using number of iterations,
number of function evaluations and CPU time taken for each method to reach the optimal value or termination.
We test the algorithms on eight test problems, with various dimensions, using four different starting points
ry = (-0.1,-0.1,...,—0.1)T, 22 = (0.1,0.1,...,0.1)T, 2% = (0.5,0.5,...,0.5)T and 2§ = (2,2, ...,2)T. The eight
test problems, where the mapping F(+) is taken as F(z) = (Fi(x), FQ( ), F3(2), ..., Fy(z))T, are as follows.

Problem 1 [2].

Fi(x)=¢€"" -1, for i=1,2,3,..,n and Q=R].
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Problem 2 [2].
Fi(z) =21 — ecos(i?),
: o cos(Z1TTitTit1y . _ on
Fi(z)=2;,—¢ 1 , for 1=2,3,..,n—1 and Q=RY,
Fo(z) =z, — ecos ()
Problem 3 [2].

Fi(x) = 2x; —sin(|z;]), for ¢=1,2,3,..,n and Q=R].
Problem 4 [13].
Fi(z) = In(Jz;| +1) — —, for ¢=1,2,3,..,n and Q=R].

Problem 5 [2].

Fi(x) = x; —sin(|z; — 1)), for i=1,2,..,n and Q:{xeR":Zmign,xiZO}.

i=1
Problem 6. [2].
Fi(z)=In(z; +1) — E, for i=1,2,3,...m and Q= {x eR™: le <n,x; > 1}.
n
i=1

Problem 7 [11].

x1(222 4 222) — 1,
Fi(z) =z + 227 +22,)—1, for i=23,..,n—1 and Q=RT,
T, (222, 4 222) — 1.

Problem 8 [17].

Fi(z) = 21 — (75,

L Ti—1tTitTign
Fi(z) = z; — =t i ),

cos(

for i=2,3,.,n—1 and Q=R7],

Fo(z) = 2 — o)

In our experiments, the algorithms are stopped whenever the inequality || F)|| < e = 1079 is satisfied, or the
total number of iterations exceeds 1000. The N M PCG method is implemented with the parameters o = 1074,
p=05,¢=10"° and kK = 10~°, while parameters for the algorithms sLS, PDY and M3TCD1 are set as in
respective papers.

The numerical results are reported in Tables 1 and 2, where ITER refers to the number of iterations, F'F
stands for the number of function evaluations and C'PU is the CPU time in seconds. We note here that all
algorithms managed to solve all the eight test problems successfully. From Tables 1 and 2, we see that in terms
of number of iterations, the NMPCG and M3TC D1 methods are very competitive for most problems, and
perform much better than the other methods. However, in terms of function evaluations, we see that the proposed
NM PCG method is the best. Overall, the results indicate that the proposed N M PCG method performs better
than the other competing methods, with the sLS method the weaker one among the four competing methods.
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TABLE 1. Numerical results for problem 1-4.

ITER FE CPU

PROB zp DIM NMPCG PDY M3TCDI1 sLS NMPCG PDY M3TCD1 sLS NMPCG PDY M3TCD1 sLS
1 ac(l) 5000 1 1 1 1 3 3 3 3 0.0015 0.0011 0.0020 0.0016
10000 1 1 1 1 3 3 3 3 0.0045 0.0010 0.0021 0.0007
20000 1 1 1 1 3 3 3 3 0.0009 0.0009 0.0009 0.0015
50000 1 1 1 1 3 3 3 3 0.0026 0.0033 0.0034 0.0031
acg 5000 6 16 8 22 11 45 21 58 0.0039 0.0114 0.0063 0.0125
10000 6 16 8 22 11 45 21 58 0.0031 0.0105 0.0051 0.0177
20000 6 16 8 23 11 45 21 60  0.0069 0.0194 0.0099 0.0301
50000 6 17 9 23 11 48 24 60 0.0106 0.0351 0.0170 0.0573
zg 5000 7 17 9 23 13 48 26 61 0.0022 0.0071 0.0035 0.0100
10000 7 17 9 23 13 48 26 61 0.0035 0.0103 0.0054 0.0157
20000 7 18 9 24 13 51 26 63  0.0057 0.0233 0.0086 0.0276
50000 7 18 9 24 13 51 26 62 0.0169 0.0546 0.0210 0.0559
zé 5000 8 19 8 23 16 57 32 63 0.0025 0.0078 0.0035 0.0105
10000 8 19 9 24 16 57 35 65 0.0042 0.0117 0.0067 0.0147
20000 8 21 9 24 16 69 35 64 0.0061 0.0221 0.0100 0.0239
50000 8 22 9 25 16 76 35 67 0.0139 0.0506 0.0214 0.0569
2 z(l) 5000 7 19 10 27 15 54 27 69 0.0085 0.0280 0.0147 0.0304
10000 5 21 10 27 10 64 27 69 0.0084 0.0628 0.0260 0.0693
20000 7 22 10 28 14 68 27 71 0.0239 0.1092 0.0489 0.1142
50000 6 25 10 28 12 86 27 69 0.0452 0.3695 0.1014 0.2640
zg 5000 7 19 10 27 15 54 27 69 0.0066 0.0291 0.0114 0.0378
10000 5 21 10 27 10 64 27 69 0.0087 0.0648 0.0217 0.0619
20000 5 21 10 27 10 64 27 68 0.0160 0.1236 0.0452 0.1105
50000 6 24 10 28 12 81 27 69 0.0453 0.2935 0.1106 0.3002
zg 5000 7 18 10 26 15 51 27 66  0.0065 0.0253 0.0120 0.0372
10000 5 20 10 27 10 59 27 69 0.0105 0.0475 0.0248 0.0583
20000 5 21 10 27 10 64 27 69 0.0192 0.1125 0.0524 0.1204
50000 6 23 10 28 12 76 27 69 0.0465 0.2943 0.1008 0.2811
acé 5000 5 17 9 25 10 48 24 65 0.0056 0.0198 0.0116 0.0320
10000 5 18 9 25 10 51 24 65 0.0089 0.0413 0.0196 0.0554
20000 5 18 10 26 10 51 27 67 0.0158 0.0916 0.0417 0.1228
50000 5 18 10 26 10 51 27 65 0.0374 0.2202 0.0981 0.2540
3 accl) 5000 1 1 1 1 5 5 14 5 0.0005 0.0004 0.0011 0.0005
10000 1 1 1 1 5 5 14 5 0.0007 0.0006 0.0016 0.0006
20000 1 1 1 1 5 5 14 5 0.0011 0.0011 0.0030 0.0011
50000 1 1 1 1 5 5 14 5 0.0023 0.0024 0.0061 0.0023
z% 5000 5 16 8 22 9 45 21 58 0.0013 0.0051 0.0023 0.0074
10000 5 16 8 22 9 45 21 57 0.0018 0.0076 0.0036 0.0122
20000 5 16 9 22 9 45 24 57 0.0032 0.0136 0.0069 0.0207
50000 5 17 9 22 9 48 24 56 0.0071 0.0292 0.0144 0.0437
zg 5000 5 17 9 24 9 48 24 62 0.0013 0.0059 0.0029 0.0088
10000 5 17 9 25 9 48 24 64  0.0020 0.0087 0.0044 0.0136
20000 5 18 9 25 9 51 23 64 0.0032 0.0152 0.0065 0.0230
50000 6 18 9 25 11 51 24 63 0.0086 0.0309 0.0145 0.0483
zé 5000 6 19 10 22 11 56 31 58 0.0016 0.0066 0.0035 0.0078
10000 6 20 10 23 11 59 30 60 0.0024 0.0112 0.0050 0.0135
20000 6 21 10 23 11 65 30 60 0.0043 0.0192 0.0089 0.0221
50000 6 23 10 23 11 76 30 60 0.0092 0.0488 0.0184 0.0447
4 z(l) 5000 1 1 1 1 3 3 3 3 0.0004 0.0004 0.0004 0.0004
10000 1 1 1 1 3 3 3 3 0.0006 0.0006 0.0006 0.0006
20000 1 1 1 1 3 3 3 3 0.0010 0.0009 0.0009 0.0009
50000 1 1 1 1 3 3 3 3 0.0020 0.0021 0.0020 0.0021
zg 5000 4 2 4 6 6 5 6 10 0.0010 0.0007 0.0009 0.0017
10000 4 2 4 6 6 5 6 10 0.0016 0.0011 0.0014 0.0028
20000 4 2 4 6 6 5 6 10 0.0027 0.0018 0.0025 0.0049
50000 4 2 4 8 6 5 6 14 0.0060 0.0039 0.0053 0.0144
acg 5000 5 2 5 10 8 5 8 18 0.0014 0.0008 0.0014 0.0035
10000 5 2 5 10 8 5 8 18 0.0023 0.0011 0.0021 0.0054
20000 5 2 5 10 8 5 8 18 0.0040 0.0020 0.0036 0.0097
50000 5 2 5 10 8 5 8 18 0.0088 0.0041 0.0076 0.0210
xé 5000 7 2 7 14 12 5 12 26 0.0024 0.0008 0.0022 0.0055
10000 7 4 7 14 12 13 12 26 0.0035 0.0031 0.0033 0.0084
20000 7 4 7 15 12 13 12 28 0.0059 0.0052 0.0054 0.0147
50000 7 6 7 15 12 23 12 28 0.0131 0.0201 0.0116 0.0328
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TABLE 2. Numerical results for problem 5-8.

ITER FE CPU

PROB zp DIM NMPCG PDY M3TCDI1 sLS NMPCG PDY M3TCD1 sLS NMPCG PDY M3TCD1 sLS
5 ac(l) 5000 45 25 49 49 113 95 380 169 0.0492 0.0367 0.1657 0.0736
10000 46 27 48 52 116 104 373 177 0.1119 0.0770 0.2895 0.1493
20000 37 26 49 44 93 101 374 142 0.1508 0.1479 0.5446 0.2289
50000 45 31 45 43 118 126 350 145 0.4376 0.5036 1.2382 0.6233
acg 5000 51 25 45 52 127 94 350 179 0.0537 0.0601 0.1458 0.0825
10000 45 25 45 43 113 97 351 140 0.0951 0.0797 0.3229 0.1336
20000 50 26 52 46 125 100 408 159 0.2223 0.1982 0.7250 0.2836
50000 49 28 44 43 124 113 344 145 0.4518 0.3983 1.1697 0.5386
zg 5000 45 23 57 50 113 87 441 172 0.0483 0.0408 0.2055 0.0713
10000 54 23 58 43 124 86 454 140 0.1062 0.0693 0.3843 0.1399
20000 46 28 52 50 116 108 400 171 0.2214 0.2034 0.6746 0.2815
50000 7 28 48 44 173 112 368 142 0.7346 0.4184 1.4102 0.5480
zé 5000 53 21 58 55 134 77 448 183 0.0564 0.0355 0.1757 0.0761
10000 53 21 60 51 134 7 452 172 0.1029 0.0804 0.4528 0.1433
20000 54 21 78 56 137 7 588 184 0.2121 0.1156 0.8953 0.2990
50000 56 22 54 57 142 80 408 188 0.5549 0.3054 1.5642 0.8342
6 z(l) 5000 15 19 5 21 41 71 31 70 0.0107 0.0104 0.0050 0.0107
10000 15 19 5 21 41 71 31 71 0.0115 0.0151 0.0054 0.0172
20000 11 11 5 11 31 40 31 32 0.0155 0.0161 0.0095 0.0152
50000 15 20 5 22 41 76 31 75 0.0451 0.0886 0.0303 0.0735
zg 5000 15 18 5 19 41 67 32 66  0.0071 0.0095 0.0034 0.0107
10000 15 18 6 19 41 67 40 66 0.0122 0.0151 0.0073 0.0154
20000 15 19 6 20 41 71 40 70 0.0200 0.0368 0.0123 0.0407
50000 15 19 6 20 41 71 40 70 0.0412 0.0557 0.0250 0.0649
zg 5000 4 5 4 18 7 12 24 64 0.0012 0.0017 0.0026 0.0089
10000 4 5 4 18 7 12 24 64 0.0019 0.0025 0.0036 0.0159
20000 4 5 4 19 7 12 24 68 0.0037 0.0043 0.0070 0.0265
50000 4 5 4 19 7 12 24 68 0.0085 0.0114 0.0155 0.0585
acé 5000 6 19 6 23 11 70 35 77 0.0019 0.0087 0.0035 0.0115
10000 6 21 6 22 11 80 35 70 0.0034 0.0194 0.0064 0.0182
20000 6 21 6 23 11 80 35 74 0.0063 0.0332 0.0111 0.0337
50000 6 21 6 23 11 81 35 72 0.0129 0.0687 0.0219 0.0712
7 accl) 5000 6 16 5 11 11 45 11 23 0.0026 0.0087 0.0022 0.0053
10000 6 16 5 11 11 45 11 24 0.0041 0.0137 0.0035 0.0091
20000 6 16 5 12 11 45 11 27 0.0072 0.0243 0.0061 0.0179
50000 6 17 6 13 11 48 14 30 0.0165 0.0549 0.0174 0.0416
z% 5000 4 14 4 6 6 38 6 10 0.0013 0.0064 0.0012 0.0022
10000 4 14 4 6 6 38 6 10 0.0021 0.0112 0.0020 0.0041
20000 4 15 4 6 6 41 6 10 0.0040 0.0211 0.0038 0.0066
50000 4 15 4 8 6 41 6 14 0.0086 0.0450 0.0077 0.0206
zg 5000 5 17 5 10 8 47 8 18 0.0017 0.0080 0.0016 0.0040
10000 5 17 5 10 8 47 8 18 0.0029 0.0137 0.0028 0.0072
20000 5 18 5 10 8 50 8 18 0.0055 0.0272 0.0052 0.0135
50000 5 18 5 10 8 50 8 18 0.0127 0.0610 0.0106 0.0283
zé 5000 7 19 7 14 12 53 12 26 0.0025 0.0092 0.0023 0.0066
10000 7 19 7 14 12 54 12 26 0.0048 0.0161 0.0044 0.0107
20000 7 20 7 15 12 57 12 28 0.0077 0.0293 0.0071 0.0220
50000 7 21 7 15 12 62 12 28 0.0199 0.0792 0.0183 0.0462
8 z(l) 5000 19 15 7 15 54 68 90 61 0.0111 0.0141 0.0172 0.0116
10000 19 15 7 15 54 68 90 61 0.0229 0.0229 0.0283 0.0234
20000 19 16 7 16 54 73 90 65 0.0379 0.0548 0.0713 0.0603
50000 19 17 7 16 54 79 90 65 0.0956 0.1748 0.1509 0.1233
zg 5000 18 14 6 13 51 63 76 46  0.0112 0.0148 0.0122 0.0121
10000 18 15 6 13 51 68 76 46  0.0232 0.0255 0.0240 0.0181
20000 18 15 6 14 51 68 76 51 0.0521 0.0525 0.0563 0.0417
50000 18 16 6 14 51 74 76 51 0.1167 0.1108 0.1315 0.1178
acg 5000 16 13 6 14 45 59 83 58 0.0090 0.0102 0.0130 0.0143
10000 16 13 6 14 45 59 83 58 0.0173 0.0250 0.0389 0.0393
20000 16 13 6 13 45 59 83 47 0.0404 0.0479 0.0834 0.0419
50000 16 14 6 14 45 64 83 52 0.0993 0.1046 0.1674 0.1036
xé 5000 9 15 7 15 21 74 118 59 0.0051 0.0202 0.0411 0.0133
10000 9 15 7 15 21 74 118 59 0.0198 0.0249 0.0473 0.0307
20000 9 14 7 16 21 70 118 64 0.0191 0.0672 0.1010 0.0690
50000 9 19 7 16 21 104 118 64 0.0409 0.1871 0.1871 0.1413
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For a comprehensive performance of the methods, we use the performance profiles tool proposed by Dolan
and Moré [10] to represent the results in Tables 1 and 2 in figures, based on the number of iterations, number
of function evaluations, and CPU time. These are presented in Figures 1-3, respectively. With the Dolan and
Moré performance profiles, the graph that is above the others for the most part is regarded as the best solver.
We can see from Figure 1 that in terms of number of iterations, the NM PCG and M3TCD1 methods are
very competitive, and perform much better than both the PDY and sLS methods. Figure 2 shows clearly that
in terms of function evaluations, the proposed N M PCG method outperforms all the other methods, followed
by the M3TC D1 method. Figure 3, for the C'PU performance profiles, shows that the proposed NMPCG is
equally efficient.

6. CONCLUSION

In this paper, we proposed a new modified derivative-free Perry’s conjugate gradient-based projection method
for solving systems of large-scale nonlinear monotone equations. Its global convergence and rate of convergence
were established. The proposed algorithm was tested on some benchmark problems, with different starting points
and dimensions, and the numerical results show that the method is efficient as compared to other methods from
the literature. Future work includes extending the new method to solve other kinds of problems like robotic
motion control, signal restoration and image deblurring.

Acknowledgements. The authors are grateful to the Editor and the anonymous referees for their valuable suggestions
and comments that improved the quality of this work.
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