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A MODIFIED PERRY-TYPE DERIVATIVE-FREE PROJECTION METHOD FOR
SOLVING LARGE-SCALE NONLINEAR MONOTONE EQUATIONS

M. Koorapetse , P. Kaelo and S. Kooepile-Reikeletseng

Abstract. In this paper, a new modified Perry-type derivative-free projection method for solving large-
scale nonlinear monotone equations is presented. The method is developed by combining a modified
Perry’s conjugate gradient method with the hyperplane projection technique. Global convergence and
numerical results of the proposed method are established. Preliminary numerical results show that the
proposed method is promising and efficient compared to some existing methods in the literature.
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1. Introduction

In this paper, we use a modified Perry-type derivative-free projection method to solve the nonlinear monotone
equations

F (x) = 0, x ∈ Ω, (1.1)

where F : Rn → Rn is continuous and monotone, and Ω ⊆ Rn is a nonempty closed convex set. By monotonicity,
we mean that

(F (x)− F (y))T (x− y) ≥ 0, ∀x, y ∈ Rn.

If Ω = Rn then (1.1) is a general system of nonlinear equations problem, and when Ω ⊆ Rn is a nonempty closed
convex set then (1.1) is said to be constrained. Nonlinear monotone equations have many practical applications
such as in chemical equilibrium systems [20] and the economic equilibrium problems [9]. Also, some monotone
variational inequality problems can also be converted into nonlinear monotone equations by means of fixed point
mappings or normal maps if the underlying function satisfies some coercive conditions [34].

Conjugate gradient-based projection methods are among the most famous and efficient methods for solv-
ing (1.1) and, thus, have recently received a lot of attention. This is due to their simplicity, global convergence
properties and low memory requirements, which make them suitable for solving large-scale equations [8,16,26].
They are iterative methods, that is, given xk, the next iterate xk+1 is obtained as

xk+1 = PΩ

[
xk −

F (zk)T (xk − zk)
‖F (zk)‖2

F (zk)
]
, (1.2)
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where zk = xk + αkdk, αk > 0 is a step length and

dk =

{
−Fk, if k = 0,
−Fk + βkdk−1, if k ≥ 1,

with βk being a conjugate gradient parameter such that

FTk dk ≤ −c‖Fk‖2, c > 0, (1.3)

where Fk = F (xk) and ‖ · ‖ is the Euclidean norm. If Ω is a closed convex subset of Rn then the projection
operator PΩ[·] is a map from Rn onto Ω, that is,

PΩ[x] = arg min{‖x− y‖ | y ∈ Ω}, ∀x ∈ Rn.

This operator is non-expansive, that is, for any x, y ∈ Rn,

‖PΩ[x]− PΩ[y]‖ ≤ ‖x− y‖.

Conjugate gradient-based projection methods are obtained by combining conjugate gradient methods
[3, 5, 6, 30, 32] with the projection technique proposed by Solodov and Svaiter [25]. Thus, they differ accord-
ing to how the direction is obtained, or, more specifically, in how the parameter βk is constructed. Recently, by
employing Perry’s conjugate gradient parameter [22], in which

βPk =
FTk (yk−1 − sk−1)

yTk−1dk−1
,

or the Dai-Liao conjugate gradient parameter [5], in which

βDL
k =

FTk (yk−1 − tsk−1)
yTk−1dk−1

, t ≥ 0,

where yk−1 = Fk−Fk−1 and sk−1 = xk−xk−1, a number of modified forms of the Perry and Dai-Liao methods
for nonlinear systems of equations have been proposed [1, 4, 7, 27, 28]. These Perry and Dai-Liao methods are
based on a quasi-Newton aspect and have been considered to be among the most effective in the context of
unconstrained optimization. Note that when t = 1, the Dai-Liao method reduces to the Perry method.

In Dai et al. [7], a modified Perry method is combined with the hyperplane technique [25] to give a derivative-
free method for solving large-scale nonlinear monotone equations. And in Waziri et al. [28], two enhanced Dai-
Liao methods are presented based on two modified spectral coefficients and a revised form of the extended
secant condition in [29]. All these methods were shown to be very competitive when compared to some of the
existing methods for solving large-scale nonlinear monotone equations.

Abubakar et al., in [2], constructed three-term conjugate gradient projection methods by proposing the
direction as

dk =

{
−Fk, if k = 0,
−Fk + βCDk wk−1 − λkFk, if k ≥ 1,

with βCDk = ‖Fk‖2
−dT

k−1Fk
and wk−1 = zk−1−xk−1 = αk−1dk−1. In order to satisfy (1.3), they derived the parameter

λk using three different approaches, thus proposing three different conjugate gradient projection methods with

λk =
FTk wk−1

−dTk−1Fk
, λk =

‖Fk‖2‖wk−1‖2

(−dTk−1Fk)2
and λk =

FTk wk−1

−dTk−1Fk
+

‖Fk‖2

(−dTk−1Fk)2
,

and they named the resulting algorithms as M3TCD1, M3TCD2 and M3TCD3, respectively.
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Another recently suggested three term derivative-free conjugate gradient-based projection method, which
the authors named PDY, is that by Liu and Feng [16]. In this method, the authors proposed a three term
derivative-free projection method based on the Dai-Yuan (DY) conjugate gradient parameter

βk =
‖Fk‖2

dTk−1wk−1
,

where

yk−1 = Fk − Fk−1, wk−1 = yk−1 + tk−1dk−1, and tk−1 = 1 + max

{
0,−

dTk−1yk−1

dTk−1dk−1

}
.

This method was shown to have nice convergence properties. And Yan et al., in [31], proposed two derivative-free
projection methods based on the three term Hestenes-Stiefel (HS) conjugate gradient method of Zhang et al.
[32]. They showed that their methods were also efficient for solving large-scale nonlinear systems of monotone
equations. Based on a modified line search, an extension of the scaled conjugate gradient (SCG) method of
[3] and the projection technique, Ou and Li [21] proposed a derivative-free SCG-type projection method for
nonlinear monotone equations with convex constraints. They showed further that when F in (1.1) is a strongly
monotone mapping, then the sequence {xk} generated by their method R-linearly converges to x∗ ∈ Ω∗, where
Ω∗ is the solution set of (1.1). Other gradient-based projection methods for large-scale nonlinear monotone
equations can be found in [11–15,18,23,26,33,35].

Motivated by the works of [19, 30], we propose a descent Perry-type derivative-free projection method for
solving large-scale nonlinear monotone equations. This method is presented in the next section. In Section 3, we
prove the global convergence of the proposed method followed by the convergence rate in Section 4. Numerical
results follow in Section 5. Finally, conclusion is presented in Section 6.

2. Motivation and the algorithm

In this section, we describe the details of the proposed method. But first, we briefly review the work of Livieris
and Pintelas [19] and that of Yao and Ning [30] which motivated this work.

Livieris and Pintelas, in [19], proposed a modified Perry’s conjugate gradient method for the unconstrained
optimization problem

min{f(x) |x ∈ Rn},

with f : Rn → R being a continuously differentiable function bounded from below. The method generates
iterations xk+1 = xk + αkdk using the direction

dk =

{
−gk, if k = 0,

−
(

1 + βMP
k

gT
k dk−1
‖gk‖2

)
gk + βMP

k dk−1, if k ≥ 1,

where gk = ∇f(xk) is the gradient of f at xk, and

βMP
k =

gTk (wk−1 − sk−1)
wTk−1dk−1

with

wk−1 = yk−1 + hk‖gk−1‖rsk−1.
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The authors suggested hk be given as

hk = t+ max

{
−
sTk−1yk−1

‖sk−1‖2
, 0

}
‖gk−1‖−r,

where t and r are positive constants, and yk−1 = gk − gk−1 and sk−1 = xk − xk−1. The parameter βMP
k was

shown to satisfy the sufficient descent property

dTk gk ≤ −c‖gk‖2, ∀ k ≥ 0,

where c > 0 is a positive constant and that the method is globally convergent.
Yao and Ning [30], using a modified symmetric Perry matrix

Qk = I − tk
sk−1y

T
k−1 + yk−1s

T
k−1

sTk−1yk−1
+
sk−1s

T
k−1

sTk−1yk−1
,

where tk is a positive parameter to be determined, defined their search direction as

dk = −Qkgk, ∀k ≥ 1.

By minimizing the distance, in the Frobenius norm, between the above Perry matrix and the self-scaling mem-
oryless BFGS matrix [24]

H = ξkI − ξk
sk−1y

T
k−1 + yk−1s

T
k−1

sTk−1yk−1
+

(
1 + ξk

‖yk−1‖2

sTk−1yk−1

)
sk−1s

T
k−1

sTk−1yk−1
,

they determined an optimal parameter t∗k as

t∗k =
1

1 + ak
, ak =

‖sk−1‖2‖yk−1‖2

(sTk−1yk−1)2
.

Hence, using this optimal parameter t∗k, the authors suggested an adaptive three term Perry’s conjugate gradient
method

dk = −gk + βkdk−1 + δkyk−1,

where

βk =
gTk (tkyk−1 − sk−1)

dTk−1yk−1
and δk =

tkg
T
k sk−1

sTk−1yk−1
,

with

tk = min

{
1

1 + ak
,
sTk−1yk−1

‖yk−1‖2

}
.

The method was shown to be effective numerically.
Now, motivated by the above discussed modified Perry’s conjugate gradient methods of [19, 30], we propose

a modified Perry-type derivative-free projection method for solving (1.1). By taking a careful look at the search
direction presented in [19] and the βk parameter in [30], we propose our search direction as

dk =

{
−Fk, if k = 0,

−
(
λk + βMk

FT
k dk−1
‖Fk‖2

)
Fk + βMk dk−1, if k ≥ 1,

(2.1)
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where

βMk =
FTk (λkwk−1 − sk−1)

wTk−1dk−1
and λk =

{
λ∗, if λ∗ ∈ [κ, 1],
1, otherwise,

with λ∗ = ‖sk−1‖2
sT

k−1uk−1
, sk−1 = zk−1 − xk−1, uk−1 = yk−1 + φsk−1, yk−1 = F (zk−1) − Fk−1, wk−1 = uk−1 +

‖Fk−1‖sk−1, and φ is a positive constant and κ ∈ (0, 1]. With dk given in (1.3) above, we determine the next
iterate xk+1 using (1.2), where the step length αk = max{ρi : i = 0, 1, 2, ...}, ρ ∈ (0, 1], is such that it satisfies

−F (xk + αkdk)T dk ≥ σαk‖F (xk + αkdk)‖‖dk‖2, σ > 0. (2.2)

We present our proposed method below.

Algorithm 1 New Modified Perry-type Derivative-free Projection Method
1: Given x0 ∈ Ω, σ, κ, φ, ε > 0 and ρ ∈ (0, 1], set k = 0.
2: for k = 0, 1, . . . do
3: If ‖Fk‖ ≤ ε, then stop. Otherwise, go to Step 4.
4: Compute dk by (2.1).
5: Compute zk = xk + αkdk, where αk is obtained by (2.2)
6: If zk ∈ Ω and ‖F (zk)‖ ≤ ε, stop. Otherwise compute xk+1 by (1.2).
7: Set k = k + 1 and go to Step 3.
8: end for

3. Global convergence

We now establish the global convergence of the presented Algorithm 1. Throughout the paper, we assume
that Fk 6= 0 for all k, otherwise a stationary point has been found. We also assume that the following assumption
holds.

Assumption 3.1.
(i) The function F (·) is monotone on Rn.
(ii) The solution set Ω∗ is nonempty.
(iii) The function F (·) is Lipschitz continuous on Rn, i.e. there exists a positive constant L such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

Note that from the monotonicity of F , we have that

sTk−1uk−1 = (F (zk−1)− Fk−1)T (zk−1 − xk−1) + φ‖sk−1‖2 ≥ φ‖sk−1‖2 > 0.

This indicates that λ∗ is positive whenever sk−1 is not zero and hence λk in (2.1) is well-defined.

Lemma 3.2. The search direction dk generated by Algorithm 1 satisfies the descent condition

FTk dk ≤ −κ‖Fk‖, ∀ k ≥ 0 and κ > 0. (3.1)

Proof. Since d0 = −F0, we have FT0 d0 = −‖F0‖2, which satisfies (3.1). Now, for k ≥ 1, we obtain from (2.1)
and the relation λk ≥ κ that

FTk dk = −
(
λk + βMk

FTk dk−1

‖Fk‖2

)
‖Fk‖2 + βMk F

T
k dk−1

= −λk‖Fk‖2

≤ −κ‖Fk‖2.

�
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Lemma 3.3. Suppose that Assumption 3.1 holds, and let the sequences {xk} and {zk} be generated by Algo-
rithm 1. Then, for any x∗ ∈ Ω, it holds that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − σ2‖xk − zk‖4. (3.2)

Moreover, the sequences {xk} and {zk} are bounded, and

∞∑
k=0

‖xk − zk‖4 < ∞.

Furthermore, it holds that

lim
k→∞

αk‖dk‖ = 0. (3.3)

Proof. From (2.2), we have

F (zk)T (xk − zk) ≥ σ‖F (zk)‖‖xk − zk‖2 > 0. (3.4)

For x∗ ∈ Ω, we obtain from (1.2) that

‖xk+1 − x∗‖2 = ‖PΩ(xk − θkF (zk))− x∗‖2

≤ ‖xk − θkF (zk)− x∗‖2 (3.5)

= ‖xk − x∗‖2 − 2θkF (zk)T (xk − x∗) + θ2
k‖F (zk)‖2,

where θk = F (zk)T (xk−zk)
‖F (zk)‖2 . By monotonicity of F , we obtain

F (zk)T (xk − x∗) = F (zk)T (xk − zk) + F (zk)T (zk − x∗)
≥ F (zk)T (xk − zk) + F (x∗)T (zk − x∗) (3.6)

= F (zk)T (xk − zk).

From (3.4)–(3.6), we get that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2θkF (zk)T (xk − zk) + θ2
k‖F (zk)‖2

= ‖xk − x∗‖2 −
(F (zk)T (xk − zk))2

‖F (zk)‖2
(3.7)

≤ ‖xk − x∗‖2 − σ2‖xk − zk‖4.

Thus, the sequence {‖xk−x∗‖} is decreasing and convergent, and hence {xk} is bounded. From (3.4), it follows
that

σ‖F (zk)‖‖xk − zk‖2 ≤ F (zk)T (xk − zk)
≤ ‖F (zk)‖‖xk − zk‖,

giving

σ‖xk − zk‖ ≤ 1, (3.8)

which shows that {zk} is also bounded.
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Furthermore, it follows from (3.7) that

σ2
∞∑
k=0

‖xk − zk‖4 ≤
∞∑
k=0

(‖xk − x∗‖2 − ‖xk+1 − x∗‖2) <∞,

which implies

lim
k→∞

‖xk − zk‖ = lim
k→∞

αk‖dk‖ = 0.

�

Observe from (3.7) that
‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2

implies
‖xk − x∗‖2 ≤ ‖x0 − x∗‖2, ∀k ≥ 0.

Therefore, since F is continuous, by the Lipschitz condition we get that

‖F (xk)‖ = ‖F (xk)− F (x∗)‖
≤ L‖xk − x∗‖
≤ L‖x0 − x∗‖.

Taking γ = L‖x0−x∗‖ gives that ‖F (xk)‖ ≤ γ. Also, (3.8) implies that there is a positive constant µ such that
‖sk‖ ≤ µ, k ≥ 0.

Lemma 3.4. For all k ≥ 0, we have

κ‖Fk‖ ≤ ‖dk‖ ≤ ϕ‖Fk‖. (3.9)

where ϕ is a positive constant.

Proof. From (3.1) and Cauchy-Schwarz inequality , we obtain

‖dk‖ ≥ κ‖Fk‖.

And from (2.1), we have

‖dk‖ ≤ ‖Fk‖+ 2|βMk |‖dk−1‖. (3.10)

From the definitions of uk−1, wk−1 and sk−1 in (2.1), we get that there exist positive constants $ and % such
that

‖uk−1‖ ≤ ‖F (zk)‖+ ‖Fk−1‖+ φ‖sk−1‖ ≤ 2γ + φµ = $

and

‖wk−1‖ ≤ ‖uk−1‖+ ‖Fk−1‖‖sk−1‖ ≤ $ + γµ = %.

Notice that for Fk−1 6= 0 and sk−1 6= 0, we get

sTk−1wk−1 = sTk−1uk−1 + ‖Fk−1‖‖sk−1‖2 > ‖Fk−1‖‖sk−1‖2 > 0.
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Hence, there is a constant ω > 0 such that

dTk−1wk−1 = α−1
k−1s

T
k−1wk−1 > α−1

k−1‖Fk−1‖‖sk−1‖2 ≥ ω‖dk−1‖.

It then follows that

|βMk | ≤
‖Fk‖(‖wk−1‖+ ‖sk−1‖)

wTk−1dk−1
≤ ‖Fk‖(%+ µ)

ω‖dk−1‖
.

From (3.10) we get

‖dk‖ ≤ ‖Fk‖+ 2
‖Fk‖(%+ µ)
ω‖dk−1‖

‖dk−1‖ = ‖Fk‖
(

1 +
2(%+ µ)

ω

)
= ϕ‖Fk‖,

where ϕ = 1 + 2(%+µ)
ω . �

Lemma 3.5. Let {xk} and {zk} be generated by Algorithm 1. Then

αk ≥ min
{

1,
κρ

(L+ σγ)ϕ2

}
> 0. (3.11)

Proof. From the line search procedure (2.2), if αk 6= 1, then α′k = ρ−1αk does not satisfy (2.2). This means that

−F (z′k)T dk < σα′k‖F (z′k)‖‖dk‖2,

where z′k = xk + α′kdk. This together with (2.2), (3.1) and (3.9) imply that

κ‖Fk‖2 ≤ −FTk dk
= (F (z′k)− Fk)T dk − F (z′k)T dk
≤ Lα′k‖dk‖2 + σα′k‖F (z′k)‖‖dk‖2

= (L+ σ‖F (z′k)‖)αkρ−1‖dk‖2

≤ (L+ σγ)αkρ−1ϕ2‖Fk‖2.

Thus
αk ≥

κρ

(L+ σγ)ϕ2
> 0,

which gives the desired result. �

Theorem 3.6. Suppose that Assumption 3.1 holds, and let the sequence {xk} be generated by Algorithm 1.
Then

lim inf
k→∞

‖Fk‖ = 0. (3.12)

Proof. We assume that (3.12) does not hold, that is, ∃ η > 0 such that ‖Fk‖ ≥ η, ∀ k ≥ 0. It then follows from
(3.9) that

‖dk‖ ≥ κ‖Fk‖ ≥ κη > 0, ∀ k ≥ 0,

and (3.3) implies that

lim
k→∞

αk = 0. (3.13)

On the other hand, (3.11) implies that αk > 0, ∀k ≥ 0, which contradicts (3.13). Thus, (3.12) holds. �
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4. Convergence Rate

From the above discussions, it is evident that the sequence {xk} converges to a solution of problem (1.1).
Therefore, we always assume that xk converges to x∗ as k → ∞, where x∗ belongs to the solution set Ω∗ of
problem (1.1). To determine the rate of convergence for the proposed algorithm, we also assume the following
assumption holds.

Assumption 4.1. For any x∗ ∈ Ω∗, there exist two positive constants ψ and δ satisfying

ψdist(x,Ω∗) ≤ ‖F (x)‖2, ∀x ∈ Nδ(x∗), (4.1)

where Nδ(x∗) = {x ∈ Rn : ‖x− x∗‖ ≤ δ} and dist(x,Ω∗) is the distance from x to Ω∗.

Theorem 4.2. Let Assumptions 3.1 and 4.1 hold, and the sequence {xk} be generated by Algorithm 1. Then the
sequence {dist(xk,Ω∗)} is Q-linearly convergent to 0, and hence the sequence {xk} R-linearly converges to x∗.

Proof. Let x̄k := arg min{‖xk − x̄‖ : x̄ ∈ Ω∗}, which implies that x̄k is the closest solution to xk, namely,

‖xk − x̄k‖ = dist(xk,Ω∗).

Denoting x∗ by x̄k, it follows from (3.2) that

‖xk+1 − x̄k‖2 ≤ ‖xk − x̄k‖2 − σ2‖xk − zk‖4. (4.2)

This, together with (3.9) and (4.1), give that for x̄k ∈ Ω∗,

dist(xk+1,Ω∗)2 = ‖xk+1 − x̄k‖2

≤ ‖xk − x̄k‖2 − σ2‖xk − zk‖4

≤ dist(xk,Ω∗)2 − σ2‖αkdk‖4

≤ dist(xk,Ω∗)2 − σ2κ4α4
k‖Fk‖4

≤ dist(xk,Ω∗)2 − σ2ψ2κ4α4
kdist(xk,Ω∗)2

= (1− σ2ψ2κ4α4
k)dist(xk,Ω∗)2.

Taking κ2 ≤ 1
σψ , we get that 1−σ2ψ2κ4α4

k ∈ (0, 1) holds. This implies that the sequence {dist(xk,Ω∗)} converges
to 0 Q-linearly. Therefore, the whole sequence {xk} converges to x∗ R-linearly. �

5. Numerical Experiments

In this section, we report some numerical results to test the efficacy of our proposed Algorithm 1, herein
denoted as NMPCG. We compare it with other three term derivative-free projection methods that have
recently been proposed in the literature. These are the three-term conjugate descent projection method of
Abubakar et al. [2], denoted M3TCD1, the derivative-free iterative method of Liu and Feng [16], denoted
PDY , and the partially symmetrical derivative-free Liu-Storey projection method of Liu et al. [18], denoted
sLS. All algorithms are coded in MATLAB R2019b and the methods are compared using number of iterations,
number of function evaluations and CPU time taken for each method to reach the optimal value or termination.
We test the algorithms on eight test problems, with various dimensions, using four different starting points
x1

0 = (−0.1,−0.1, ...,−0.1)T , x2
0 = (0.1, 0.1, ..., 0.1)T , x3

0 = (0.5, 0.5, ..., 0.5)T and x4
0 = (2, 2, ..., 2)T . The eight

test problems, where the mapping F (·) is taken as F (x) = (F1(x), F2(x), F3(x), ..., Fn(x))T , are as follows.

Problem 1 [2].

Fi(x) = exi − 1, for i = 1, 2, 3, ..., n and Ω = Rn+.
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Problem 2 [2].

F1(x) = x1 − ecos(
x1+x2

n+1 ),

Fi(x) = xi − ecos(
xi−1+xi+xi+1

n+1 ), for i = 2, 3, ..., n− 1 and Ω = Rn+,

Fn(x) = xn − ecos(
xn−1+xn

n+1 ).

Problem 3 [2].

Fi(x) = 2xi − sin(|xi|), for i = 1, 2, 3, ..., n and Ω = Rn+.

Problem 4 [13].

Fi(x) = ln(|xi|+ 1)− xi
n
, for i = 1, 2, 3, ..., n and Ω = Rn+.

Problem 5 [2].

Fi(x) = xi − sin(|xi − 1|), for i = 1, 2, ..., n and Ω =

{
x ∈ Rn :

n∑
i=1

xi ≤ n, xi ≥ 0

}
.

Problem 6. [2].

Fi(x) = ln(xi + 1)− xi
n
, for i = 1, 2, 3, ..., n and Ω =

{
x ∈ Rn :

n∑
i=1

xi ≤ n, xi > −1

}
.

Problem 7 [11].

F1(x) = x1(2x2
1 + 2x2

2)− 1,
Fi(x) = xi(x2

i−1 + 2x2
i + x2

i+1)− 1, for i = 2, 3, ..., n− 1 and Ω = Rn+,
Fn(x) = xn(2x2

n−1 + 2x2
n)− 1.

Problem 8 [17].

F1(x) = x1 − ecos(
x1+x2

2 ),

Fi(x) = xi − ecos(
xi−1+xi+xi+1

i ), for i = 2, 3, ..., n− 1 and Ω = Rn+,

Fn(x) = xn − ecos(
xn−1+xn

n ).

In our experiments, the algorithms are stopped whenever the inequality ‖Fk‖ ≤ ε = 10−6 is satisfied, or the
total number of iterations exceeds 1000. The NMPCG method is implemented with the parameters σ = 10−4,
ρ = 0.5, φ = 10−5 and κ = 10−5, while parameters for the algorithms sLS, PDY and M3TCD1 are set as in
respective papers.

The numerical results are reported in Tables 1 and 2, where ITER refers to the number of iterations, FE
stands for the number of function evaluations and CPU is the CPU time in seconds. We note here that all
algorithms managed to solve all the eight test problems successfully. From Tables 1 and 2, we see that in terms
of number of iterations, the NMPCG and M3TCD1 methods are very competitive for most problems, and
perform much better than the other methods. However, in terms of function evaluations, we see that the proposed
NMPCG method is the best. Overall, the results indicate that the proposed NMPCG method performs better
than the other competing methods, with the sLS method the weaker one among the four competing methods.
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Table 1. Numerical results for problem 1–4.

ITER FE CPU

PROB x0 DIM NMPCG PDY M3TCD1 sLS NMPCG PDY M3TCD1 sLS NMPCG PDY M3TCD1 sLS

1 x1
0 5000 1 1 1 1 3 3 3 3 0.0015 0.0011 0.0020 0.0016

10000 1 1 1 1 3 3 3 3 0.0045 0.0010 0.0021 0.0007

20000 1 1 1 1 3 3 3 3 0.0009 0.0009 0.0009 0.0015

50000 1 1 1 1 3 3 3 3 0.0026 0.0033 0.0034 0.0031

x2
0 5000 6 16 8 22 11 45 21 58 0.0039 0.0114 0.0063 0.0125

10000 6 16 8 22 11 45 21 58 0.0031 0.0105 0.0051 0.0177

20000 6 16 8 23 11 45 21 60 0.0069 0.0194 0.0099 0.0301

50000 6 17 9 23 11 48 24 60 0.0106 0.0351 0.0170 0.0573

x3
0 5000 7 17 9 23 13 48 26 61 0.0022 0.0071 0.0035 0.0100

10000 7 17 9 23 13 48 26 61 0.0035 0.0103 0.0054 0.0157

20000 7 18 9 24 13 51 26 63 0.0057 0.0233 0.0086 0.0276

50000 7 18 9 24 13 51 26 62 0.0169 0.0546 0.0210 0.0559

x4
0 5000 8 19 8 23 16 57 32 63 0.0025 0.0078 0.0035 0.0105

10000 8 19 9 24 16 57 35 65 0.0042 0.0117 0.0067 0.0147

20000 8 21 9 24 16 69 35 64 0.0061 0.0221 0.0100 0.0239

50000 8 22 9 25 16 76 35 67 0.0139 0.0506 0.0214 0.0569

2 x1
0 5000 7 19 10 27 15 54 27 69 0.0085 0.0280 0.0147 0.0304

10000 5 21 10 27 10 64 27 69 0.0084 0.0628 0.0260 0.0693

20000 7 22 10 28 14 68 27 71 0.0239 0.1092 0.0489 0.1142

50000 6 25 10 28 12 86 27 69 0.0452 0.3695 0.1014 0.2640

x2
0 5000 7 19 10 27 15 54 27 69 0.0066 0.0291 0.0114 0.0378

10000 5 21 10 27 10 64 27 69 0.0087 0.0648 0.0217 0.0619

20000 5 21 10 27 10 64 27 68 0.0160 0.1236 0.0452 0.1105

50000 6 24 10 28 12 81 27 69 0.0453 0.2935 0.1106 0.3002

x3
0 5000 7 18 10 26 15 51 27 66 0.0065 0.0253 0.0120 0.0372

10000 5 20 10 27 10 59 27 69 0.0105 0.0475 0.0248 0.0583

20000 5 21 10 27 10 64 27 69 0.0192 0.1125 0.0524 0.1204

50000 6 23 10 28 12 76 27 69 0.0465 0.2943 0.1008 0.2811

x4
0 5000 5 17 9 25 10 48 24 65 0.0056 0.0198 0.0116 0.0320

10000 5 18 9 25 10 51 24 65 0.0089 0.0413 0.0196 0.0554

20000 5 18 10 26 10 51 27 67 0.0158 0.0916 0.0417 0.1228

50000 5 18 10 26 10 51 27 65 0.0374 0.2202 0.0981 0.2540

3 x1
0 5000 1 1 1 1 5 5 14 5 0.0005 0.0004 0.0011 0.0005

10000 1 1 1 1 5 5 14 5 0.0007 0.0006 0.0016 0.0006

20000 1 1 1 1 5 5 14 5 0.0011 0.0011 0.0030 0.0011

50000 1 1 1 1 5 5 14 5 0.0023 0.0024 0.0061 0.0023

x2
0 5000 5 16 8 22 9 45 21 58 0.0013 0.0051 0.0023 0.0074

10000 5 16 8 22 9 45 21 57 0.0018 0.0076 0.0036 0.0122

20000 5 16 9 22 9 45 24 57 0.0032 0.0136 0.0069 0.0207

50000 5 17 9 22 9 48 24 56 0.0071 0.0292 0.0144 0.0437

x3
0 5000 5 17 9 24 9 48 24 62 0.0013 0.0059 0.0029 0.0088

10000 5 17 9 25 9 48 24 64 0.0020 0.0087 0.0044 0.0136

20000 5 18 9 25 9 51 23 64 0.0032 0.0152 0.0065 0.0230

50000 6 18 9 25 11 51 24 63 0.0086 0.0309 0.0145 0.0483

x4
0 5000 6 19 10 22 11 56 31 58 0.0016 0.0066 0.0035 0.0078

10000 6 20 10 23 11 59 30 60 0.0024 0.0112 0.0050 0.0135

20000 6 21 10 23 11 65 30 60 0.0043 0.0192 0.0089 0.0221

50000 6 23 10 23 11 76 30 60 0.0092 0.0488 0.0184 0.0447

4 x1
0 5000 1 1 1 1 3 3 3 3 0.0004 0.0004 0.0004 0.0004

10000 1 1 1 1 3 3 3 3 0.0006 0.0006 0.0006 0.0006

20000 1 1 1 1 3 3 3 3 0.0010 0.0009 0.0009 0.0009

50000 1 1 1 1 3 3 3 3 0.0020 0.0021 0.0020 0.0021

x2
0 5000 4 2 4 6 6 5 6 10 0.0010 0.0007 0.0009 0.0017

10000 4 2 4 6 6 5 6 10 0.0016 0.0011 0.0014 0.0028

20000 4 2 4 6 6 5 6 10 0.0027 0.0018 0.0025 0.0049

50000 4 2 4 8 6 5 6 14 0.0060 0.0039 0.0053 0.0144

x3
0 5000 5 2 5 10 8 5 8 18 0.0014 0.0008 0.0014 0.0035

10000 5 2 5 10 8 5 8 18 0.0023 0.0011 0.0021 0.0054

20000 5 2 5 10 8 5 8 18 0.0040 0.0020 0.0036 0.0097

50000 5 2 5 10 8 5 8 18 0.0088 0.0041 0.0076 0.0210

x4
0 5000 7 2 7 14 12 5 12 26 0.0024 0.0008 0.0022 0.0055

10000 7 4 7 14 12 13 12 26 0.0035 0.0031 0.0033 0.0084

20000 7 4 7 15 12 13 12 28 0.0059 0.0052 0.0054 0.0147

50000 7 6 7 15 12 23 12 28 0.0131 0.0201 0.0116 0.0328
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Table 2. Numerical results for problem 5–8.

ITER FE CPU

PROB x0 DIM NMPCG PDY M3TCD1 sLS NMPCG PDY M3TCD1 sLS NMPCG PDY M3TCD1 sLS

5 x1
0 5000 45 25 49 49 113 95 380 169 0.0492 0.0367 0.1657 0.0736

10000 46 27 48 52 116 104 373 177 0.1119 0.0770 0.2895 0.1493

20000 37 26 49 44 93 101 374 142 0.1508 0.1479 0.5446 0.2289

50000 45 31 45 43 118 126 350 145 0.4376 0.5036 1.2382 0.6233

x2
0 5000 51 25 45 52 127 94 350 179 0.0537 0.0601 0.1458 0.0825

10000 45 25 45 43 113 97 351 140 0.0951 0.0797 0.3229 0.1336

20000 50 26 52 46 125 100 408 159 0.2223 0.1982 0.7250 0.2836

50000 49 28 44 43 124 113 344 145 0.4518 0.3983 1.1697 0.5386

x3
0 5000 45 23 57 50 113 87 441 172 0.0483 0.0408 0.2055 0.0713

10000 54 23 58 43 124 86 454 140 0.1062 0.0693 0.3843 0.1399

20000 46 28 52 50 116 108 400 171 0.2214 0.2034 0.6746 0.2815

50000 77 28 48 44 173 112 368 142 0.7346 0.4184 1.4102 0.5480

x4
0 5000 53 21 58 55 134 77 448 183 0.0564 0.0355 0.1757 0.0761

10000 53 21 60 51 134 77 452 172 0.1029 0.0804 0.4528 0.1433

20000 54 21 78 56 137 77 588 184 0.2121 0.1156 0.8953 0.2990

50000 56 22 54 57 142 80 408 188 0.5549 0.3054 1.5642 0.8342

6 x1
0 5000 15 19 5 21 41 71 31 70 0.0107 0.0104 0.0050 0.0107

10000 15 19 5 21 41 71 31 71 0.0115 0.0151 0.0054 0.0172

20000 11 11 5 11 31 40 31 32 0.0155 0.0161 0.0095 0.0152

50000 15 20 5 22 41 76 31 75 0.0451 0.0886 0.0303 0.0735

x2
0 5000 15 18 5 19 41 67 32 66 0.0071 0.0095 0.0034 0.0107

10000 15 18 6 19 41 67 40 66 0.0122 0.0151 0.0073 0.0154

20000 15 19 6 20 41 71 40 70 0.0200 0.0368 0.0123 0.0407

50000 15 19 6 20 41 71 40 70 0.0412 0.0557 0.0250 0.0649

x3
0 5000 4 5 4 18 7 12 24 64 0.0012 0.0017 0.0026 0.0089

10000 4 5 4 18 7 12 24 64 0.0019 0.0025 0.0036 0.0159

20000 4 5 4 19 7 12 24 68 0.0037 0.0043 0.0070 0.0265

50000 4 5 4 19 7 12 24 68 0.0085 0.0114 0.0155 0.0585

x4
0 5000 6 19 6 23 11 70 35 77 0.0019 0.0087 0.0035 0.0115

10000 6 21 6 22 11 80 35 70 0.0034 0.0194 0.0064 0.0182

20000 6 21 6 23 11 80 35 74 0.0063 0.0332 0.0111 0.0337

50000 6 21 6 23 11 81 35 72 0.0129 0.0687 0.0219 0.0712

7 x1
0 5000 6 16 5 11 11 45 11 23 0.0026 0.0087 0.0022 0.0053

10000 6 16 5 11 11 45 11 24 0.0041 0.0137 0.0035 0.0091

20000 6 16 5 12 11 45 11 27 0.0072 0.0243 0.0061 0.0179

50000 6 17 6 13 11 48 14 30 0.0165 0.0549 0.0174 0.0416

x2
0 5000 4 14 4 6 6 38 6 10 0.0013 0.0064 0.0012 0.0022

10000 4 14 4 6 6 38 6 10 0.0021 0.0112 0.0020 0.0041

20000 4 15 4 6 6 41 6 10 0.0040 0.0211 0.0038 0.0066

50000 4 15 4 8 6 41 6 14 0.0086 0.0450 0.0077 0.0206

x3
0 5000 5 17 5 10 8 47 8 18 0.0017 0.0080 0.0016 0.0040

10000 5 17 5 10 8 47 8 18 0.0029 0.0137 0.0028 0.0072

20000 5 18 5 10 8 50 8 18 0.0055 0.0272 0.0052 0.0135

50000 5 18 5 10 8 50 8 18 0.0127 0.0610 0.0106 0.0283

x4
0 5000 7 19 7 14 12 53 12 26 0.0025 0.0092 0.0023 0.0066

10000 7 19 7 14 12 54 12 26 0.0048 0.0161 0.0044 0.0107

20000 7 20 7 15 12 57 12 28 0.0077 0.0293 0.0071 0.0220

50000 7 21 7 15 12 62 12 28 0.0199 0.0792 0.0183 0.0462

8 x1
0 5000 19 15 7 15 54 68 90 61 0.0111 0.0141 0.0172 0.0116

10000 19 15 7 15 54 68 90 61 0.0229 0.0229 0.0283 0.0234

20000 19 16 7 16 54 73 90 65 0.0379 0.0548 0.0713 0.0603

50000 19 17 7 16 54 79 90 65 0.0956 0.1748 0.1509 0.1233

x2
0 5000 18 14 6 13 51 63 76 46 0.0112 0.0148 0.0122 0.0121

10000 18 15 6 13 51 68 76 46 0.0232 0.0255 0.0240 0.0181

20000 18 15 6 14 51 68 76 51 0.0521 0.0525 0.0563 0.0417

50000 18 16 6 14 51 74 76 51 0.1167 0.1108 0.1315 0.1178

x3
0 5000 16 13 6 14 45 59 83 58 0.0090 0.0102 0.0130 0.0143

10000 16 13 6 14 45 59 83 58 0.0173 0.0250 0.0389 0.0393

20000 16 13 6 13 45 59 83 47 0.0404 0.0479 0.0834 0.0419

50000 16 14 6 14 45 64 83 52 0.0993 0.1046 0.1674 0.1036

x4
0 5000 9 15 7 15 21 74 118 59 0.0051 0.0202 0.0411 0.0133

10000 9 15 7 15 21 74 118 59 0.0198 0.0249 0.0473 0.0307

20000 9 14 7 16 21 70 118 64 0.0191 0.0672 0.1010 0.0690

50000 9 19 7 16 21 104 118 64 0.0409 0.1871 0.1871 0.1413
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Figure 1. Iterations performance profile.

Figure 2. Function evaluations performance profile.

Figure 3. CPU time performance profile.
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For a comprehensive performance of the methods, we use the performance profiles tool proposed by Dolan
and Moré [10] to represent the results in Tables 1 and 2 in figures, based on the number of iterations, number
of function evaluations, and CPU time. These are presented in Figures 1–3, respectively. With the Dolan and
Moré performance profiles, the graph that is above the others for the most part is regarded as the best solver.
We can see from Figure 1 that in terms of number of iterations, the NMPCG and M3TCD1 methods are
very competitive, and perform much better than both the PDY and sLS methods. Figure 2 shows clearly that
in terms of function evaluations, the proposed NMPCG method outperforms all the other methods, followed
by the M3TCD1 method. Figure 3, for the CPU performance profiles, shows that the proposed NMPCG is
equally efficient.

6. Conclusion

In this paper, we proposed a new modified derivative-free Perry’s conjugate gradient-based projection method
for solving systems of large-scale nonlinear monotone equations. Its global convergence and rate of convergence
were established. The proposed algorithm was tested on some benchmark problems, with different starting points
and dimensions, and the numerical results show that the method is efficient as compared to other methods from
the literature. Future work includes extending the new method to solve other kinds of problems like robotic
motion control, signal restoration and image deblurring.

Acknowledgements. The authors are grateful to the Editor and the anonymous referees for their valuable suggestions
and comments that improved the quality of this work.
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