Optimal reinsurance and investment strategies for an insurer under monotone mean-variance criterion
RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2469-2489

This paper considers the optimal investment-reinsurance problem under the monotone mean-variance preference. The monotone mean-variance preference is a monotone version of the classical mean-variance preference. First of all, we reformulate the original problem as a zero-sum stochastic differential game. Secondly, the optimal strategy and the optimal value function for the monotone mean-variance problem are derived by the approach of dynamic programming and the Hamilton-Jacobi-Bellman-Isaacs equation. Thirdly, the efficient frontier is obtained and it is proved that the optimal strategy is an efficient strategy. Finally, the continuous-time monotone capital asset pricing model is derived.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021114
Classification : 49L20, 93E20, 91B30
Keywords: Optimal reinsurance, Monotone mean-variance preference, Hamilton-Jacobi-Bellman-Isaacs equation, Monotone, efficient frontier, Capital asset pricing model
@article{RO_2021__55_4_2469_0,
     author = {Li, Bohan and Guo, Junyi},
     title = {Optimal reinsurance and investment strategies for an insurer under monotone mean-variance criterion},
     journal = {RAIRO. Operations Research},
     pages = {2469--2489},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/ro/2021114},
     mrnumber = {4303673},
     zbl = {1471.91468},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021114/}
}
TY  - JOUR
AU  - Li, Bohan
AU  - Guo, Junyi
TI  - Optimal reinsurance and investment strategies for an insurer under monotone mean-variance criterion
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2469
EP  - 2489
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021114/
DO  - 10.1051/ro/2021114
LA  - en
ID  - RO_2021__55_4_2469_0
ER  - 
%0 Journal Article
%A Li, Bohan
%A Guo, Junyi
%T Optimal reinsurance and investment strategies for an insurer under monotone mean-variance criterion
%J RAIRO. Operations Research
%D 2021
%P 2469-2489
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021114/
%R 10.1051/ro/2021114
%G en
%F RO_2021__55_4_2469_0
Li, Bohan; Guo, Junyi. Optimal reinsurance and investment strategies for an insurer under monotone mean-variance criterion. RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2469-2489. doi: 10.1051/ro/2021114

[1] J.-P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, Vol. 140 of: Graduate Texts in Mathematics. Springer-Verlag, Berlin-Heidelberg (2013). | MR | Zbl

[2] L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint. Insur. Math. Econ. 42 (2008) 968–975. | MR | Zbl | DOI

[3] N. Bäuerle, Benchmark and mean-variance problems for insurers. Math. Methods Oper. Res. 62 (2005) 159–165. | MR | Zbl | DOI

[4] J. Bi, Q. Meng and Y. Zhang, Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer. Ann. Oper. Res. 212 (2014) 43–59. | MR | Zbl | DOI

[5] P. Chen and S. Yam, Optimal proportional reinsurance and investment with regime-switching for mean–variance insurers. Insur. Math. Econ. 53 (2013) 871–883. | MR | Zbl | DOI

[6] P. H. Dybvig and S. A. Ross, Arbitrage. In Finance. Springer (1989) 57–71. | DOI

[7] J. Grandell, Aspects of Risk Theory. 2nd edition. Springer Science & Business Media (2012). | MR | Zbl

[8] L. P. Hansen, T. J. Sargent, G. Turmuhambetova and N. Williams, Robust control and model misspecification. J. Econ. Theory 128 (2006) 45–90. | MR | Zbl | DOI

[9] J. M. Harrison, Ruin problems with compounding assets. Stoch. Process. Appl. 5 (1977) 67–79. | MR | Zbl | DOI

[10] L. D. Iglehart, Diffusion approximations in collective risk theory. J. Appl. Probab. 6 (1969) 285–292. | MR | Zbl | DOI

[11] J. M. Kabanov, R. Š. Lipcer and A. Širjaev, Absolute continuity and singularity of locally absolutely continuous probability distributions. I. Math. USSR-Sbornik 35 (1979) 631. | Zbl | DOI

[12] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Vol. 113 of: Graduate Texts in Mathematics, 2nd edition. Springer-Verlag, Berlin-Heidelberg (2012). | MR | Zbl

[13] D. Li and W.-L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Math. Finance 10 (2000) 387–406. | MR | Zbl | DOI

[14] X. Li, X. Y. Zhou and A. E. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints. SIAM J. Control Optim. 40 (2002) 1540–1555. | MR | Zbl | DOI

[15] F. Liese and I. Vajda, Convex statistical distances (2007). | MR | Zbl

[16] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes: I. General Theory, Vol. 5 of: Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin-Heidelberg (2013). | MR | Zbl

[17] F. Maccheroni, M. Marinacci and A. Rustichini, Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74 (2006) 1447–1498. | MR | Zbl | DOI

[18] F. Maccheroni, M. Marinacci, A. Rustichini and M. Taboga, Portfolio selection with monotone mean-variance preferences. Math. Finance 19 (2009) 487–521. | MR | Zbl | DOI

[19] H. Markowitz, Portfolio selection. J. Finance 7 (1952) 77–91.

[20] S. Mataramvura and B. Øksendal, Risk minimizing portfolios and HJBI equations for stochastic differential games. Stoch. Int. J. Probab. Stoch. Processes 80 (2008) 317–337. | MR | Zbl | DOI

[21] S. A. Ross, Neoclassical Finance. Princeton University Press (2009). | DOI

[22] Y. Shen and Y. Zeng, Optimal investment–reinsurance with delay for mean–variance insurers: A maximum principle approach. Insur. Math. Econ. 57 (2014) 1–12. | MR | Zbl | DOI

[23] M. S. Strub and D. Li, A note on monotone mean-variance preferences for continuous processes. Oper. Res. Lett. (2020). | MR | Zbl

[24] J. Trybuła and D. Zawisza, Continuous-time portfolio choice under monotone mean-variance preferences-stochastic factor case. Math. Oper. Res. 44 (2019) 966–987. | MR | Zbl | DOI

[25] A. Černý, Semimartingale theory of monotone mean-variance portfolio allocation. Math. Finance 30 (2020). | MR | Zbl | DOI

[26] D. W. Yeung and L. A. Petrosjan, Cooperative Stochastic Differential Games. Series in Operations Research and Financial Engineering. Springer-Verlag, New York (2006). | MR | Zbl

[27] Y. Zeng and Z. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers. Insur. Math. Econ. 49 (2011) 145–154. | MR | Zbl | DOI

[28] X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Appl. Math. Optim. 42 (2000) 19–33. | MR | Zbl | DOI

Cité par Sources :