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OPTIMAL REINSURANCE AND INVESTMENT STRATEGIES FOR AN
INSURER UNDER MONOTONE MEAN-VARIANCE CRITERION

Bohan Li and Junyi Guo∗

Abstract. This paper considers the optimal investment-reinsurance problem under the monotone
mean-variance preference. The monotone mean-variance preference is a monotone version of the classical
mean-variance preference. First of all, we reformulate the original problem as a zero-sum stochastic
differential game. Secondly, the optimal strategy and the optimal value function for the monotone
mean-variance problem are derived by the approach of dynamic programming and the Hamilton-Jacobi-
Bellman-Isaacs equation. Thirdly, the efficient frontier is obtained and it is proved that the optimal
strategy is an efficient strategy. Finally, the continuous-time monotone capital asset pricing model is
derived.
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1. Introduction

The investment and reinsurance are increasingly crucial issues for insurance companies. For this reason, lots of
mathematical models were proposed to help derive the optimal strategies. With these strategies, the insurance
companies can make profits and manage their risk exposures. In particular, because of its tractability and
intuitiveness, the mean-variance optimization problem has received great attention in recent years. The essence
of the mean-variance problem is to minimize the variance of the prospect while keep the expected prospect
fixed, that is, the mean-variance problem is a constrained optimization problem as follows:{

Minimize J(u) = V arP [f ],
EP [f ] = ξ,

(1.1)

with ξ ≥ ξ0, where P is a given probability measure and f is an uncertain prospect influenced by the strategy
u. ξ0 is the riskless prospect, that is, the expectation of a prospect whose holder avoids any possible risk.
If the expectation EP [f ] = ξ varies, the corresponding optimal strategy and the minimized variance change
accordingly. Hence, the points (V arP [f ], EP [f ]) draw a half parabolic curve in the plane, which is called the
efficient frontier.
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On the other hand, there is an equivalent non-constrained formulation to (1.1) which is called penalty for-
mulation as follows:

Maximize Jθ(u) = EP [f ]− θ

2
V arP [f ],

where θ is an index of the insurer’s aversion to variance. As it turns out, the penalty formulation gives exactly
the same efficient frontier as that obtained from the constrained formulation.

Since the mean-variance problem was proposed by [19] in 1952, scholars have investigated it in many specific
situations and developed many approaches to solve this problem. In 2000, [13] first applied the mean-variance
criterion to the multi-period portfolio selection problem. Zhou and Li [28] studied the mean-variance problem in
continuous-time market. They introduced the linear-quadratic approach and obtained the optimal portfolio as
well as the efficient frontier by solving a stochastic Riccati equation. Li et al. [14] investigated this problem with
no-shorting constraints via the dynamic programming approach. They obtained the non-smooth value function
which is proved to be a viscosity solution of the corresponding Hamilton-Jacobi-Bellman (HJB) equation. Bäuerle
[3] incorporated the concept of reinsurance into his model and considered the optimal benchmarked reinsurance
problem in 2005. Bai and Guo [2] investigated the no-shorting constrained mean-variance problem with multiple
risky assets. Zeng and Li [27] studied the time-inconsistency of the mean-variance problem and found a time-
consistent equilibrium strategy via the equilibrium approach. Chen and Yam [5] studied the problem in the
case that the market is regime-switching via the maximum principle approach. Shen and Zeng [22] considered
a wealth process with delayed capital inflow/outflow in the mean-variance problem and obtained the efficient
strategy and efficient frontier.

Let �mv be a preference on uncertain prospects with the following utility score:

Uθ(f) = EP [f ]− θ

2
V arP (f),

that is, g �mv f if and only if Uθ(g) ≤ Uθ(f). We call �mv the mean-variance preference, because the functional
Uθ(·) coincides with the penalty formulation of the mean-variance problem. Unfortunately, the mean-variance
preference has a major drawback that it fails to be monotone. It may happen that an asset that has strictly
higher return could have lower score with mean-variance preference. Henceforth, investors who follow the mean-
variance preference may prefer less than more, which violates the most fundamental principles of economic
rationality. Especially, the monotonicity of preference is a crucial assumption in financial theory, without which
the arbitrage argument cannot be established (see [6] and [21]). In fact, the non-monotonicity can be bypassed
only under a very strict assumption about the probability distribution of prospect process, that is, the prospect
f must be bounded by EP [f ] + 1

θ almost surely.
In most literature of continuous-time portfolio selection, the insurer’s wealth process is assumed to be governed

by
dX(t) = [r(t)X(t) + u(t)TB(t) + a(κ− κr)]dt+ u(t)Tσ(t)dW (t),

with initial value X(0) = x0, where u(·) is an Rn+1-valued adapted strategy process representing the reinsurance
and investment strategies. The objective of the insurer is to maximize the expectation of its terminal wealth
X(T ). It is easy to see that X(t) is an Ornstein-Uhlenbeck process, and the terminal wealth X(T ) may not be
bounded by EP [X(T )] + 1

θ . In this case, using the mean-variance preference functional Uθ as the utility score
is rather irrational.

In order to overcome the lack of monotonicity, [18] introduced an amended version of the mean-variance
preference named monotone mean-variance preference. It is based on the variational preferences of [17]. The
monotone mean-variance preference is the minimal monotone modification of the mean-variance preference.
It not only fills the gap of non-monotonicity, but also maintains the basic intuition and tractability of the
mean-variance preference.

Specifically, the monotone mean-variance preference �mmv is defined via the following utility score:

Vθ(f) = min
Q

{
EQ[f ] +

1
2θ
C(Q||P )

}
, ∀f ∈ L2(P ),
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where Q ranges over all absolutely continuous probability measures with square integrable density with respect
to P , and C(Q||P ) is the relative Gini concentration index. Readers who are interested in more details of the
monotone mean-variance preference are referred to [18]. In this paper, we focus on maximizing the insurance
company’s monotone mean-variance preference utility rather than the classical mean-variance preference utility.

To the best of our knowledge, there are few research results for the optimal monotone mean-variance problem.
Trybu la and Zawisza [24] studied a continuous time portfolio choice problem where the coefficients of stocks
prices are assumed to be functions of a stochastic process. The discounted terminal wealth process are considered.
They obtained the optimal portfolio and the value function when the coefficients are specified. They assumed
Q is an equivalent probability measure with respect to P . For a large class of portfolio choice problem, [23]
further proved that, when the risk assets are continuous semimartingales, the optimal portfolios and value
functions of the classical mean-variance preference and the monotone mean-variance preference coincide. For
a general semimartingale model, [25] gave several results about the relationship of the classical mean-variance
preference and the monotone mean-variance preference. In this paper, we consider not only financial assets,
but also insurance and reinsurance. This is the first time that the monotone mean-variance objective is used
for the optimal reinsurance problem. Moreover, in this paper, Q need not be restricted to be equivalent to P ,
but allowed to be absolutely continuous. We start from a family of absolutely continuous probability measures
and prove that the objective function reaches a minimum point at an equivalent probability Q∗. Moreover, the
explicit optimal value function and the optimal strategy are both obtained.

This paper is organized as follows. In Section 2, we introduce the wealth process and the monotone mean-
variance optimization problem. To simplify our problem, we connect our optimization problem with a two-player
zero-sum game, and the optimal strategy of the insurer lies in the Nash equilibrium. In Section 3, we give the
classical formulation of the stochastic differential game, by the theory of absolutely continuous probability
measure in [11] and [16]. The Hamilton-Jacobi-Bellman-Isaacs(HJBI) equation for this game is also given.
Section 4 consists of all results of the paper. In Subsection 4.1, the value function is given explicitly by solving
the HJBI equation. The optimal strategy is also given. In Subsection 4.2, we present the efficient frontier of the
monotone mean-variance problem. This is proved to coincide with the efficient frontier of the classical mean-
variance problem. In Subsection 4.3, when only the financial market is considered, a monotone CAPM based
on the monotone mean-variance preference is obtained.

2. Model setting

In this section, we first introduce our wealth dynamic and then give a monotone mean-variance criterion
based on [18].

2.1. The wealth process

Let (Ω,F , P ) be a complete probability space. Let S(t) = (S1(t), S2(t), . . . , Sn(t)) denote the prices of n
stocks. The price of i-th stock at time t is

dSi(t) = Si(t)dPi(t),

with initial value Si(0) = si. Pi(t) is the return of the i-th stock:

dPi(t) = bi(t)dt+
d∑
j=1

σij(t)dWj(t),

where bi(t) and σij(t) are both deterministic functions mapping from [0, T ] to R. Wi(t)
∣∣
i=0,1,...,d

are i.i.d.
R-valued standard Brownian motion under probability P , which describe the risk of the financial market.
Suppose that the financial market is arbitrage free, that is, n ≤ d. If n < d, the financial market is incomplete.
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To simplify the notations, we write

bS(t) = (b1(t), b2(t), . . . , bn(t))T ∈ Rn,
σS(t) = (σij(t)) ∈ Rn×d,
P (t) = (P1(t), P2(t), . . . , Pn(t))T ∈ Rn,
WS(t) = (W1(t),W2(t), . . . ,Wd(t))T .

Thus the vector form of return is given by

dP (t) = bS(t)dt+ σS(t)dWS(t).

Besides, investor can also put money in the risk-free bank account. Suppose that the interest rate is a
deterministic function r(t), and this risk-free asset at time t satisfies the ordinary differential equation

dS0(t) = S0(t)r(t)dt

with initial value S0(0) = 1.

Assumption 2.1. We assume that r(·), bS(·) and σS(·) are all bounded deterministic functions and σS(·)
satisfies the following nondegeneracy condition

ΣS(t) := σS(t)σS(t)T ≥ δSI, ∀t ∈ [0, T ],

for some constant δS > 0 and the identity matrix I ∈ Rn×n.

Next, we introduce the insurance risk model. Let C(t) be the claim process of the insurer which is governed
by the drifted Brownian motion

dC(t) = adt− σ0dW0(t),

where a and σ0 are two constants. W0(t) is a standard Brownian motion modeling the insurance risk. Suppose
that W0(t) is independent of Wj(t) for any 1 ≤ j ≤ d. We note that the above model of the claim process is a
diffusion approximation of the classical Cramér-Lundberg model. There has been much work on the diffusion
approximations, such as [7, 9, 10], etc.

The parameters in the above model have the following interpretation

a = λE(Ui), σ2
0 = λE(U2

i ),

where λ is the intensity of a Poisson point process N(t), Ui is the size of the i-th claim. All the {Ui} are
independent and identical distributed and are also independent of N(t).

The insurance premium is paid continuously at the rate of

c = (1 + κ)a,

where κ > 0 is the relative safety loading of the insurer. Therefore, without reinsurance, the surplus process is
given by

dR(t) = cdt− dC(t) = κadt+ σ0dW0(t), t ∈ [0, T ].

Denote by W (t) = (W0(t),W1(t),W2(t), . . . ,Wd(t))T , and let F := {Ft|t ∈ [0, T ]} be a P-completion of the
right continuous filtration G := {Gt|t ∈ [0, T ]}, where Gt = σ(W (s), s ≤ t).

The insurer can invest its wealth in risky assets or put it in a risk-free bank account so as to manage its
capital market risk. The insurer can also purchase proportional reinsurance product or acquire new business so
as to manage its insurance risk. Let X(t) denote the wealth process of the insurer. Let ui(t) be the amount of
money invested in the i-th risky asset at time t, and X(t)−

∑n
i=1 ui(t) be the amount of money put in the bank
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account. We allow ui(t) to be greater than X(t), or being negative. If ui(t) > X(t), it means that the insurer
borrows money from bank. If ui(t) < 0, it means that the insurer short sells the i-th risky asset. Let u0(t) be
the retention level of reinsurance at time t. We allow u0 to be greater than 1. As in [3], u0(t) > 1 means that
the insurer acquired new business. Let κr be the relative safety loading of the reinsurer. Usually κr ≥ κ, but
when κr = κ we call it the cheap reinsurance.

If the insurer purchases 100(1− u0(t))% proportional reinsurance, it should pay the premium at the rate of
(1 + κr)(1 − u0(t))a to the reinsurer, and the reinsurer should undertake 100(1 − u0(t))% of the claim from
insurer. Thus, the surplus process of the insurer after purchasing proportional reinsurance is given by

dR(t) = cdt− (1 + κr)(1− u0(t))adt− u0(t)dC(t)
= [κru0(t) + (κ− κr)]adt+ u0(t)σ0(t)dW0(t), (2.1)

with initial value R(0) = x0. The insurer’s wealth process X(t) is given by

dX(t) =
n∑
i=1

ui(t)
dSi(t)
Si(t)

+ (X(t)−
n∑
i=1

ui(t))
dS0(t)
S0(t)

+ dR(t)

= [r(t)X(t) + u(t)TB(t) + a(κ− κr)]dt+ u(t)Tσ(t)dW (t), (2.2)

with initial value X(0) = x0, where

u(t) =(u0(t), u1(t), . . . , un(t))T ,

B(t) =(aκr, b1(t)− r(t), . . . , bn(t)− r(t))T ,

σ(t) =
(
σ0

~01×n
~0n×1 σS(t)

)
,

W (t) =(W0(t),W1(t), . . . ,Wd(t))T .

By Assumption 2.1, r(·), B(·) and σ(·) are all bounded functions and satisfy:

Σ(t) := σ(t)σ(t)T =
(
σ2

0
~01×n

~0n×1 ΣS(t)

)
≥ δI, ∀t ∈ [0, T ],

for some constant δ > 0 and the identity matrix I ∈ R(n+1)×(n+1).
Let ρ(t) := B(t)TΣ(t)−1B(t) ≡ a2κ2

r

σ2
0

+ ρS(t), where ρS(t) := BS(t)TΣS(t)−1BS(t). By Assumption 2.1,
ρ(t) > 0.

2.2. Monotone mean-variance objective function

In this section, we give a concise introduction of the monotone mean-variance preference derived from [18].
The monotone mean-variance preference utility is defined by

Vθ(f) = min
Q∈∆2(P )

{
EQ[f ] +

1
2θ
C(Q||P )

}
, ∀f ∈ L2(P ), (2.3)

where

∆2(P ) =
{
Q : Q(Ω) = 1, E

[
(
dQ

dP
)2

]
<∞

}
,

and C(Q||P ), defined by

C(Q||P ) =

EP
[
(dQdP )2

]
− 1, if Q� P ,

+∞, otherwise,
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is the relative Gini concentration index (or χ2-distance) which enjoys properties similar to those of the relative
entropy (see [15]).

Let Gθ ⊂ L2(P ) be the domain of monotonicity of the classical mean-variance utility Uθ, in other words, a
subset of L2(P ) where the Gateaux differential of Uθ is positive. By Lemma 2.1 of [18], Gθ is given by

Gθ =
{
f ∈ L2(P ) : f − EP [f ] ≤ 1

θ
, P − a.s.

}
,

which implies that f ∈ Gθ only if f is an almost surely bounded random variable under P and the deviation
f − EP [f ] is small enough.

In this paper, the terminal wealth Xu(T ) of the insurer takes place of the prospect f . Since Xu(T ) may be
unbounded for some admissible strategies, the widely used classical mean-variance utility

Uθ(Xu(T )) = EP
[
Xu(T )

]
− θ

2
V arP

(
Xu(T )

)
, ∀f ∈ L2(P )

fails to be monotone. Specifically, there may exist two strategies u and v which satisfy that Xu(T ) > Xv(T ), P−
a.s, but Uθ(Xu(T )) < Uθ(Xv(T )) (please see Example 2.2 below). Therefore, the monotone mean-variance utility

Vθ(Xu(T )) = inf
Q∈∆2(P )

{
EQ
[
Xu(T )

]
+

1
2θ
C(Q||P )

}
is a more rational objective function for insurers’ purposes. The aim of the insurer is to find the optimal strategy
u∗(·) which can maximize Vθ(Xu(T )).

Example 2.2. Consider a company whose risk-aversion is θ = 2. Let η ∼ N(10, 1) and ε ∼ U(0, 12) be two
independent random variables where η is the profit from the operation of the company and ε is an opportunity
of arbitrage in the financial market. Then the company’s total wealth is Xu = η + uε, where u is the portfolio.
For the cases u = 0 and u = 1, we have

Uθ(X0) = EP η − V arP η = 9,

and

Uθ(X1) = EP η − V arP η + EP ε− V arP ε = 3.

Obviously, X1 is always greater than X0 but the company shall chose the portfolio u = 0 because Uθ(X1) is less
than Uθ(X0).

Problem 2.3. (MMVθ)
Maximize Iθ(u(·)) over U [0, T ],

where

Iθ(u(·)) := Vθ(Xu(T )) = inf
Q∈∆2(P )

{
EQ[Xu(T )] +

1
2θ
C(Q||P )

}
, (2.4)

and the set U [0, T ] is defined by definition 3.1 in Subsection 3.2.

Let us consider a companion two-player zero-sum game as follows:

Problem 2.4. (G) Let

Jθ(u(·), Q) :=
{
EQ[Xu(T )] +

1
2θ
C(Q||P )

}
.

The player one wants to maximize Jθ(u(·), Q) with its strategy u(·) over U [0, T ] and the player two wants to
maximize −Jθ(u(·), Q) with his strategy Q over ∆2(P ).
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In this case,
Iθ(u(·)) ≡ inf

Q∈∆2(P )
Jθ(u(·), Q).

We also set

I]θ(Q) := sup
u(·)∈U [0,T ]

Jθ(u(·), Q), Φ]θ := inf
Q∈∆2(P )

I]θ(Q), Φθ = sup
u(·)∈U [0,T ]

Iθ(u(·)).

Definition 2.5. If there exists an F-adapted process u∗(·) ∈ U [0, T ] and a probability measure Q∗ ∈ ∆2(P )
such that

Jθ(u∗(·), Q∗) = sup
u(·)∈U [0,T ]

Jθ(u(·), Q∗),

Jθ(u∗(·), Q∗) = inf
Q∈∆2(P )

Jθ(u∗(·), Q),

then we call the pair (u∗(·), Q∗) a Nash equilibrium (non-cooperative equilibrium) for Problem (G).

Lemma 2.6. Given some u∗(·) ∈ U [0, T ] and Q∗ ∈ ∆2(P ), the following statements are equivalent:
(a) (u∗(·), Q∗) is a Nash equilibrium of Problem (G);
(b) ∀(u(·), Q) ∈ U [0, T ]×∆2(P ), Jθ(u(·), Q∗) ≤ Jθ(u∗(·), Q∗) ≤ Jθ(u∗(·), Q);
(c) Φ]θ = Φθ, Iθ(u∗(·)) = Φθ and I]θ(Q

∗) = Φ]θ.

Proof. The proof is the same as that of proposition 8.1 in [1].

Lemma 2.1 shows that the optimal strategy lies in the Nash equilibrium of the companion two-player zero-sum
game. We only need to solve Problem (G) for the solutions of Problem (MMVθ).

3. Problem reformulation

3.1. The structure of Y and q

In this section, we will characterize Q by a mean one nonnegative square integrable martingale. In this case,
the choosing of Q is equivalent to the choosing of a control variable q. We first let

Y (t) :=
dQ

dP

∣∣∣∣
Ft

, (3.1)

Y := Y (T ) ≡ dQ

dP
·

By virtue of properties of the Radon-Nikodym derivative, we have Y (t) = EP [Y |Ft].

Lemma 3.1. Suppose that Q ∈ ∆2(P ), then the process {Y (t) : t ∈ [0, T ]} defined by (3.1) on (Ω,F , P ) is a
nonnegative square integrable martingale under P adapted to the filtration F with EPY (t) = 1. Moreover,

EQ[X(t)] = EP [X(t)Y (t)] (3.2)

for any bounded and Ft-measurable function X(t). Conversely, if {Y (t) : t ∈ [0, T ]} is a nonnegative F-adapted
square integrable martingale under P with EPY (t) = 1, then, for any t ∈ [0, T ], the probability measure Qt
defined via (3.2) belongs to ∆2(P ), and {Qt, t ∈ [0, T ]} satisfies the following consistency condition:

QT (A) = Qt(A), ∀A ∈ Ft, t ∈ [0, T ].
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Proof. Suppose that Q ∈ ∆2(P ). It is obvious that Y (t) defined by (3.1) is a nonnegative martingale. We note
that

EP [(Y (t)2)] =EP
{

[EP (Y |Ft)]2
}

≤EP
[
EP (Y 2|Ft)

]
=EP [Y 2] = EP [(

dQ

dP
)2] < +∞, ∀t ∈ [0, T ],

where the above inequality is due to Jensen’s inequality. Thus Y (t) is square integrable. By the definition of
Radon-Nikodym derivative, (3.2) is proved.

Conversely, let Y (t) be a nonnegative square integrable martingale with unit expectation. It is proved in Claim
6.1 of [8] that Q defined via (3.2) is an absolutely continuous probability measure. By the square integrability of
Y (t), Q ∈ ∆2(P ). The consistency condition is due to the martingale property of Y (t). ut

Let Y2(P ) be the set of all F-adapted nonnegative continuous square integrable martingales under P with
EPY (t) = 1. Thus, Q ∈ ∆2(P ) if and only if Y (t) ∈ Y2(P ). The monotone mean-variance objective (2.4) can
be formulated as

Iθ(u(·)) : = min
Y (·)∈Y2(P )

{
EP
[
Xu(T )Y (T ) +

1
2θ
Y (T )2 − 1

2θ

]}
.

An equivalent problem is to maximize

Ĩθ(u(·)) := min
Y (·)∈Y2(P )

{
EP
[
Xu(T )Y (T ) +

1
2θ
Y (T )2

]}
.

Problem 3.2. (D) Let

Jθ(u(·), Y (·)) := EP [Xu(T )Y (T ) +
1
2θ
Y (T )2].

The player one wants to maximize Jθ(u(·), Y (·)) with its strategy u(·) over U [0, T ] and the player two wants to
maximize −Jθ(u(·), Y (·)) with his strategy Y (·) over Y2(P ).

Theorem 3.3. If (u∗(·), Y ∗(·)) is a Nash equilibrium of Problem (D), and let Q∗ := QT where QT is defined
by (3.2) with Y (·) := Y ∗(·), then (u∗(·), Q∗) is a Nash equilibrium of Problem (G). Conversely, if (u∗(·), Q∗) is
a Nash equilibrium of Problem (G), and let Y ∗(t) be defined by (3.1), then (u∗(·), Y ∗(·)) is a Nash equilibrium
of Problem (D).

Proof. The proof is straightforward from Lemma 3.1. ut

Next, we try to write Y (·) ∈ Y2(P ) in the form of the stochastic exponential (please refer to [11, 16] and
[8]). By the Brownian martingale representation theorem, for any Y (·) ∈ Y2(P ), there exists an Rd+1 valued
F-adapted process H(t) such that

EP
∫ T

0

H(t)TH(t)dt <∞,

and

Y (T ) = 1 +
∫ T

0

H(t)T dW (t).
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Because Y may hit zero at finite time, we denote by ζ = limn→+∞ ζn, where

ζn = inf{t ≥ 0;Y (t) =
1
n
},

then Y (ζ) = 0 on {ζ ≤ T}. Let q(t) be a Rd+1 valued process satisfies

q(t) = H(t)Y ⊕(t), (3.3)

where

Y ⊕(t) =

{
Y (t)−1, Y (t) > 0,
0, Y (t) = 0.

According to the definition,
∫ T

0
q(t)T q(s)ds = ∞ may hold in a set of positive measure, so q(·) cannot be an

integrand of stochastic integral. But we can define a generalization of stochastic integral as follows (for details,
please refer to Subsection 4.2.9 in [16]):

Γt(q) = P − lim
n
χ(
∫ t
0 q(s)

T q(s)ds<∞)

∫ t

0

q(n)(s)T dWs,

where
q(n)(s) = q(s)χ(

∫ s
0 q(u)T q(u)du<n).

By Lemma 6.2 in [16], Y (·) admits the representation

Y (t) = exp
(

Γt(q)−
1
2

∫ t

0

q(s)T q(s)ds
)
.

By Lemma 6.3 in [16] and the proof of Lemma 6.2 of [16], Y (·) is the unique nonnegative continuous solution
to stochastic differential equation:

Y (t) = 1 +
∫ t

0

Y (s)q(s)T dW (s), ∀t ∈ [0, T ]. (3.4)

Conversely, for any Rn+1 valued F-adapted process q(·) satisfying

P

(∫ T

0

Y (s)2q(s)T q(s)ds <∞
)

= 1, (3.5)

let

τn =

{
inf{t ≤ T :

∫ t
0
q(s)T q(s)ds ≥ n2},

∞, if
∫ T

0
q(s)T q(s)ds ≤ n2,

and τ = limn τn. By Lemma 6.3 in [16], SDE (3.4) has an unique nonnegative continuous solution

Y (t) = exp
(

Γt(q)−
1
2

∫ t

0

q(s)T q(s)ds
)
,

if and only if the following two conditions are satisfied{
(a) P (τ1 > 0) = 1,
(b) limn→+∞

∫ τn

0
q(s)T q(s)ds = +∞ on set {ω : τ ≤ T}.
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If Y (·) is the nonnegative continuous solution to (3.4), then it is a nonnegative local martingale, and by Fatou’s
lemma,

EY (T ) = E lim inf
n→+∞

Y σn(T ) ≤ lim inf
n→+∞

EY σn(T ) = lim inf
n→+∞

EY (0) = 1,

where σn is a sequence of F-stopping times reducing Y (·). Hence, Y is a supermartingale but may not be a
martingale. In this case, the measure Q defined via (3.2) may not be a probability measure. To make Q a
probability measure, we have to restrict q(·) to the following smaller set Q[0, T ], so that Y (·) is a martingale:

Q[0, T ] :={q(·) : [0, T ]→ Rd+1 : q(·) is F-adapted such that
the SDE (3.4) has an unique nonnegative continuous square integrable martingale solution}.

Corollary 3.4. Suppose that Y (·) ∈ Y2, then the process q(t) defined by (3.3) belongs to Q[0, T ] and Y is the
solution to (3.4). Conversely, if q(·) ∈ Q[0, T ], then the process Y (t) defined by (3.4), belongs to Y2.

Proof. The proof is straightforward from the above arguments.

3.2. Stochastic differential game

In this section, we consider the following classical formulation of stochastic differential game (Problem
(Psxy)). This type of stochastic differential game has been studied by [26] and [20]. Through the dynamic
programming principle, a nonlinear differential equation named Hamilton-Jacobi-Bellman-Isaacs equation (see
theorem 2.5.2 in [26] and theorem 3.2 in [20]) is proposed to solve this stochastic differential game.

We consider the following family of stochastic differential games with different values of initial times and
states:

Problem 3.5. (Psxy) Let

Ju,q(s, x, y) = EPs,x,y

[
Xu(T )Y q(T ) +

1
2θ

(Y q(T ))2

]
, (3.6)

where EPs,x,y[·] represents EP [·|Xu(s) = x, Y q(s) = y]. The player one wants to maximize Ju,q(s, x, y) with its
strategy u(·) over U [s, T ] defined below and the player two wants to maximize −Ju,q(s, x, y) with its strategy
q(·, ·) over Q[s, T ] defined below.

The state processes are given by

dXu(t) =[r(t)Xu(t) + u(t)TB(t) + a(κ− κr)]dt+ u(t)Tσ(t)dW (t), t ∈ [s, T ], (3.7)

dY q(t) =Y q(t)q(t)T dW (t), t ∈ [s, T ], (3.8)

with initial values X(s) = x, Y (s) = y.

Definition 3.6. (admissible) The strategy u(·) of the player one is admissible for Problem (Psxy) if u(·) :
[s, T ]→ U is an F-adapted process such that

EP
∫ T

s

u(t, ω)2dt <∞,

where U = R+ × Rn, and R+ is the set of nonnegative real numbers. Moreover, we denote the set of all
admissible strategies u(·) by U [s, T ]. The strategy q(·) of the player two is admissible for Problem (Psxy) if
q(·) : [s.T ]→ Rd+1 is an F-adapted process such that the SDE (3.8) has a unique nonnegative continuous square
integrable martingale solution. Moreover, we denote the set of all admissible strategies q(·) by Q[s, T ].
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By Theorem 2.5 and theorem 2.9 of chapter 5 in [12], SDE (3.7) has a unique strong solution for any
u(·) ∈ U [s, T ]. If (u(·), q(·)) is the candidate Nash equilibrium of Problem (Psxy), it is important to verify that
the solution of SDE (3.8) is a square integrable martingale.

Theorem 3.7. If (u∗(·; 0, x0, 1), q∗(·; 0, x0, 1)) is a Nash equilibrium of Problem (P0x01), then
(u∗(·; 0, x0, 1), Y ∗(·; 0, x0, 1)) is a Nash equilibrium of Problem (D) where Y ∗(·; 0, x0, 1) is the solution to
(3.4) with q(·) = q∗(·; 0, x0, 1). Conversely if (u∗(·; 0, x0, 1), Y ∗(·; 0, x0, 1)) is a Nash equilibrium of Problem
(D), then (u∗(·; 0, x0, 1), q∗(·; 0, x0, 1)) is a Nash equilibrium of Problem (P0x01) where q∗(·; 0, x0, 1) is defined
via (3.3).

Proof. The proof is straightforward from corollary 3.4. ut

We only consider here u(·) and q(·) are both Markov feedback control, that is, u(t) = u(t,X(t), Y (t)) and
q(t) = q(t,X(t), Y (t)). The infinitesimal generator of (3.7) and (3.8) is given by

Au,qt =
∂

∂t
+ [r(t)x+ uTB(t) + a(κ− κr)]

∂

∂x
+

1
2
uTσ(t)σ(t)Tu

∂2

∂x2
+

1
2
y2qT q

∂2

∂y2
+ yuTσ(t)q

∂2

∂x∂y
·

The following verification theorem is an analogue of the theorem 2.5.2 in [26] or the theorem 3.2 of [20].

Theorem 3.8. (verification theorem) Suppose that there exists a function φ ∈ C1,2,2([0, T ]× R× R+) and
a pair of strategies û(t) ∈ U [0, T ] and q̂(t) ∈ Q[0, T ] such that

(1) Aû,q̂t φ(t, x, y) = 0, ∀(t, x, y) ∈ [0, T )× R× R+,

(2) Aû,qt φ(t, x, y) ≥ 0, ∀q ∈ R, ∀(t, x, y) ∈ [0, T )× R× R+,

(3) Au,q̂t φ(t, x, y) ≤ 0, ∀u ∈ U, ∀(t, x, y) ∈ [0, T )× R× R+,

with the terminal condition φ(T, x, y) = xy + 1
2θy

2. Then φ(s, x, y) is the value function of Problem (Psxy),
(û(t), q̂(t)) is a saddle-point solution to Problem (Psxy). Moreover,

φ(s, x, y) = sup
u(·)∈U [s,T ]

(
inf

q(·)∈Q[s,T ]
Ju,q(s, x, y)

)
= inf
q(·)∈Q[s,T ]

(
sup

u(·)∈U [s,T ]

Ju,q(s, x, y)
)

= sup
u(·)∈U [s,T ]

Ju,q̂(s, x, y) = inf
q(·)∈Q[s,T ]

J û,q(s, x, y)

= J û,q̂(s, x, y) = Φ(s, x, y).

Let
(u∗(·), q∗(·)) := (û(·, X∗(·), Y ∗(·)), q̂(·, X∗(·), Y ∗(·))),

where X∗(·) and Y ∗(·) are solutions to SDEs (3.7) and (3.8) under the feedback saddle-point û(t) =
û(t,X(t), Y (t)) and q̂(t) = q̂(t,X(t), Y (t)), then (u∗(·), q∗(·)) is a Nash equilibrium to Problem (Psxy).

By Lemma 2.6, Theorem 3.8 (1)–(3) are equivalent to the following equalities

Aû(t,x,y),q̂(t,x,y)
t φ(t, x, y) = 0, ∀(t, x, y) ∈ [0, T )× R× R+,

inf
q∈R
Aû(t,x,y),q
t φ(t, x, y) = 0, ∀(t, x, y) ∈ [0, T )× R× R+,

sup
u∈U
Au,q̂(t,x,y)
t φ(t, x, y) = 0, ∀(t, x, y) ∈ [0, T )× R× R+,

which gives us the following compact form of HJBI equation:

sup
u∈U

(
inf
q∈R
Au,qt φ(t, x, y)

)
= inf
q∈R

(
sup
u∈U
Au,qt φ(t, x, y)

)
= 0. (3.9)
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4. Main results

This section consists of all the main results of this paper. In Subsection 4.1, the explicit optimal strategy and
value function are given. In Subsection 4.2, the efficient frontier of monotone mean-variance problem is given.
In Subsection 4.3, the monotone CAPM is presented in the absence of insurance.

4.1. Value function and optimal strategy

We first give the explicit form of the Nash equilibrium of Problem (Psxy) and the optimal strategy for
Problem (MMVθ). The proofs will be presented later.

Theorem 4.1. The value function of Problem (Psxy) is given by

φ(s, x, y) = exp
(∫ T

s

r(t)dt
)
xy +

1
2θ

exp
(∫ T

s

ρ(t)dt
)
y2

+ a(κ− κr)y
∫ T

s

exp
(∫ T

t

r(v)dv
)
dt. (4.1)

The insurer’s strategy u∗(·; s, x, y) defined by

u∗(·; s, x, y) =
1
θ

Σ(·)−1B(·) exp
(∫ T

·
ρ(v)− r(v)dv

)
Y q

∗
(·; s, x, y) (4.2)

belongs to U [s, T ], and the market’s strategy q∗(·; s, x, y) defined by

q∗(·; s, x, y) = −σ(·)TΣ(·)−1B(·) (4.3)

belongs to Q[s, T ]. Moreover (u∗(·; s, x, y), q∗(·; s, x, y)) is a Nash equilibrium of Problem (Psxy), that is,

Ju
∗(·;s,x,y),q∗(·;s,x,y)(s, x, y) = sup

u(·)∈U [0,T ]

Ju(·),q∗(·;s,x,y)(s, x, y),

Ju
∗(·;s,x,y),q∗(·;s,x,y)(s, x, y) = inf

q(·)∈Q[0,T ]
Ju

∗(·;s,x,y),q(·)(s, x, y).

Before proving Theorem 4.1, some lemmas will be given at first. The following lemma provides a candidate
for the Nash equilibrium of Problem (Psxy).

Lemma 4.2. The HJBI Equation (3.9) has a C1,2,2 solution as follows:

φ(t, x, y) = exp
(∫ T

t

r(s)ds
)
xy +

1
2θ

exp
(∫ T

t

ρ(s)ds
)
y2

+ a(κ− κr)y
∫ T

t

exp
(∫ T

s

r(v)dv
)
ds, (4.4)

with the stable saddle-point

û(t, x, y) =
1
θ

Σ(t)−1B(t) exp
(∫ T

t

ρ(v)− r(v)dv
)
y, (4.5)

q̂(t, x, y) = −σ(t)TΣ(t)−1B(t). (4.6)
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Proof. First of all, we study the following HJBI equation:

0 = sup
u∈U

(
inf
q∈R
Au,qt φ(t, x, y)

)
= sup
u∈U

inf
q∈R
{∂φ
∂t

+ [r(t)x+ uTB(t) + a(κ− κr)]
∂φ

∂x

+
1
2
uTΣ(s)u

∂2φ

∂x2
(4.7)

+
1
2
y2qT q

∂2φ

∂y2
+ yuTσ(t)q

∂2φ

∂x∂y
}.

For simplicity, we denote

∂φ

∂t
:= φt,

∂φ

∂x
:= φ1,

∂φ

∂y
:= φ2,

∂2φ

∂x2
:= φ11,

∂2φ

∂y2
:= φ22,

∂2φ

∂x∂y
:= φ12.

To study the Equation (4.7), we first fix u ∈ U and minimize

h(q) :=
1
2
y2qT qφ22 + yuTσ(t)qφ12

respect to q. If φ22 > 0 holds, then the minimum is attained at

q̂(t, x, y) = −σ(t)Tuφ12

yφ22
· (4.8)

Substituting this into (4.7), we are to find the maximizer of

k(u) := uTB(t)φ1 +
1
2
uTΣ(s)u

(
φ11 −

(φ12)2

φ22

)
.

If φ11 − (φ12)2

φ22
< 0 holds, then the maximum is attained at

û(t, x, y) = −Σ(s)−1B(t)
φ1φ22

φ11φ22 − (φ12)2
· (4.9)

Substituting (4.8) and (4.9) into (4.7), we get the following non-linear partial differential equation for the
unknown function φ: {

φt + [r(t)x+ a(κ− κr)]φ1 + 1
2ρ(s) (φ1)2φ22

(φ12)2−φ11φ22
= 0 t ∈ [0, T ),

φ(T, x, y) = xy + 1
2θy

2.
(4.10)

Inspired by the terminal condition of (4.10), we try the following solution

φ(t, x, y) = Λ(t)xy + Θ(t)y2 + Ψ(t)y, (4.11)

with Λ(T ) = 1, Θ(T ) = 1
2θ and Ψ(T ) = 0. Therefore, we have

φt = Λ′(t)xy + Θ′(t)y2 + Ψ′(t)y, φ1 = Λ(t)y,
φ11 = 0, φ12 = Λ(t), φ22 = 2Θ(t). (4.12)
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Substituting (4.12) into (4.10), we get three ordinary differential equations
Λ′(t) + r(t)Λ(t) = 0,
Θ′(t) + ρ(t)Θ(t) = 0,
Ψ′(t) + a(κ− κr)Λ(t) = 0,

with terminal conditions Λ(T ) = 1, Θ(T ) = 1
2θ and Ψ(T ) = 0. It is easy to find that

Λ(t) = exp
(∫ T

t
r(s)ds

)
,

Θ(t) = 1
2θ exp

(∫ T
t
ρ(s)ds

)
,

Ψ(t) = a(κ− κr)
∫ T
t

exp
(∫ T

s
r(v)dv

)
ds.

(4.13)

Substituting (4.13) into (4.11), the smooth solution of the partial differential Equation (4.10) is obtained as
(4.4). It is easy to verify that the solution φ(t, x, y) can indeed make φ22 > 0 and φ11 − (φ12)2

φ22
< 0 hold. Thus

(4.4) is a smooth solution of HJBI Equation (3.9). In the end, by substituting (4.13) into (4.8) and (4.9) and
since (4.5) is nonnegative for any t ∈ [0, T ], the saddle point (û(t, x, y), q̂(t, x, y)) is given by (4.5) and (4.6).

We denote by (u∗(t; s, x, y), q∗(t; s, x, y)) = (û(t,X û(t), Y q̂(t)), q̂(t,X û(t), Y q̂(t))) where û and q̂ are given by
(4.5) and (4.6) and X û(s) = x, Y q̂(s) = y.

Lemma 4.3. The insurer’s strategy u∗(·; s, x, y) defined by (4.2) belongs to U [s, T ], and the market’s strategy
q∗(·; s, x, y) defined by (4.3) belongs to Q[s, T ].

Proof. By Assumption 2.1 and Lemma 6.3 in [16], the SDE (3.8) has a nonnegative continuous solution which we
denote by Y . Since q∗(·; s, x, y) is deterministic and bounded, Y is a square integrable martingale. Consequently,
q∗(·; s, x, y) ∈ Q[s, T ]. On the other hand, since

sup
s≤t≤T

EPY (t)2 < +∞,

we can deduce that

EP [
∫ T

s

u∗(t, ω; s, x, y)2dt] < +∞,

which proves that u∗(·; s, x, y) ∈ U [s, T ]. ut

Proof of Theorem 4.1 is as follows.

Proof. By Lemma 4.3, (u∗(t), q∗(t)) belongs to U [s, T ] × Q[s, T ]. Theorem 4.1 then follows from Theo-
rem 3.8. ut

In what follows, we write (Xu∗(t), Y q
∗
(t)) by (X∗(t), Y ∗(t)) for simplicity.

Theorem 4.4. Let X∗(t) and Y ∗(t) be the state processes under the strategies defined by (4.2) and (4.3), then

1
θ
Y ∗(t) exp

(∫ T

t

ρ(v)− r(v)dv
)

=
∫ t

s

a(κ− κr) exp
(∫ t

v

r(u)du
)
dv −X∗(t)

+ x exp
(∫ t

s

r(v)dv
)

+
1
θ
y exp

(∫ T

s

ρ(v)dv
)

exp
(
−
∫ T

t

r(v)dv
)
. (4.14)



OPTIMAL REINSURANCE AND INVESTMENT STRATEGIES 2483

Proof. By substituting (4.2) and (4.3) into (3.7) and (3.8), we have

dX∗(t) =[r(t)X∗(t) + a(κ− κr) +
1
θ
B(t)TΣ(t)−1B(t) exp

(∫ T

t

ρ(v)− r(v)dv
)
Y ∗(t)]dt

+
1
θ
B(t)TΣ(t)−1σ(t) exp

(∫ T

t

ρ(v)− r(v)dv
)
Y ∗(t)dW (t)

=[r(t)Xu(t) + a(κ− κr)]dt−
1
θ

exp
(
−
∫ T

t

r(v)dv
)
d

(
Y ∗(t) exp

(∫ T

t

ρ(v)dv
))

.

Therefore,

a(κ− κr) exp
(∫ T

t

r(v)dv
)
dt− 1

θ
d

(
Y ∗(t) exp

(∫ T

t

ρ(v)dv
))

= exp
(∫ T

t

r(v)dv
)
dX∗(t)− r(t)Xu(t) exp

(∫ T

t

r(v)dv
)
dt

=d
(
Xu(t) exp

(∫ T

t

r(v)dv
))

.

By integration, we obtain

Xu(t) exp
(∫ T

t

r(v)dv
)
− x exp

(∫ T

s

r(v)dv
)

=
∫ t

s

a(κ− κr) exp
(∫ T

v

r(u)du
)
dv − 1

θ
Y ∗(t) exp

(∫ T

t

ρ(v)dv
)

+
1
θ
y exp

(∫ T

s

ρ(v)dv
)
. ut

Corollary 4.5. If the initial value is X∗(s) = x, Y ∗(s) = y, the optimal strategy of Problem (MMVθ) is given
by

u∗(·; s, x, y) = Σ(·)−1B(·)×
{∫ t

s

a(κ− κr) exp
(∫ t

v

r(u)du
)
dv −X∗(t)

+ x exp
(∫ t

s

r(v)dv
)

+
1
θ
y exp

(∫ T

s

ρ(v)dv
)

exp
(
−
∫ T

t

r(v)dv
)}

,

and the value function of Problem (MMVθ) is given by

Φθ = exp

(∫ T

s

r(v)dv

)
xy +

1
2θ

exp

(∫ T

s

ρ(v)dv

)
y2

+ µ0(κ− κr)y
∫ T

s

exp

(∫ T

v

r(u)du

)
dv − 1

2θ
·

4.2. Efficient frontier

Although the objective function used in this paper is not the classical bi-objective mean-variance pref-
erence, we can still obtain a set of means and variances of the terminal wealth process when letting the
risk aversion θ vary from 0 to ∞. We name this set the efficient frontier. Denote by O := {uθ ∈ U [0, T ] :
uθ is the optimal strategy for Problem (MMVθ), θ ∈ [0,+∞)}.

Definition 4.6. The following set is called the efficient frontier of the optimal monotone mean-variance problem

{(V arPXu(T ), EPXu(T )), u ∈ O}.
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Let u(·) = 0 and solve the SDE (3.7), then we can find the riskless wealth of insurer which is given by

X0(t) = x0 exp
(∫ t

0

r(s)ds
)

+
∫ t

0

a(κ− κr) exp(
∫ t

s

r(u)du)ds. (4.15)

We set
X0 = X0(T ).

Theorem 4.7. (efficient frontier)If EPX(T ) > X0, the efficient strategy u is given by (4.2); if EPX(T ) ≤
X0, the efficient strategy is given by u(t) = ~0,∀t ∈ [0, T ]. The efficient frontier of the monotone mean-variance
problem is given by

(
exp(−

∫ T
0 ρ(s)ds)

1−exp(−
∫ T
0 ρ(s)ds)

(
EPX(T )−X0

)2

, EPX(T )
)
, if EPX(T ) > X0,

(0, X0), if EPX(T ) ≤ X0.

Remark 4.8. The efficient frontier in Theorem 4.7 is actually the same as the efficient frontier of the classical
mean-variance problem given by Theorem 8 in [4].

We first give some lemmas before proving this theorem.

Lemma 4.9. Define Q∗ by the arguments in Lemma 3.1 where Y is replaced by Y ∗. Let u∗(·) be the optimal
strategy. Then, we have

EPX∗(t) = x0 exp
(∫ t

0

r(s)ds
)

+
∫ t

0

a(κ− κr) exp(
∫ t

s

r(u)du)ds

+
∫ t

0

1
θ
ρ(s) exp(

∫ T

s

ρ(u)du)ds exp(−
∫ T

t

r(u)du), (4.16)

EQ
∗
[
dQ∗

dP

∣∣∣∣
Ft

]
≡ EP

[
dQ∗

dP

∣∣∣∣
Ft

]2

≡ EP (Y ∗(t))2 = exp
(∫ t

0

ρ(s)ds
)
. (4.17)

Proof. (4.16) is obvious by taking expectation on (4.14) under P . (4.17) is obtained by applying Itô’s Lemma
to Y (t)2. ut

Lemma 4.10. The variance of the wealth process under optimal strategy u∗(·) is given by

V arPX∗(t) =
exp(−

∫ t
0
ρ(s)ds)

1− exp(−
∫ t

0
ρ(s)ds)

(
EPX∗(t)− EQ

∗
X(t)

)2

, (4.18)

where Q∗ is defined in Lemma 4.9 and

EQ
∗
X(t) = x0 exp

(∫ t

0

r(s)ds
)

+
∫ t

0

a(κ− κr) exp
(∫ t

s

r(u)du
)
ds ≡ X0(t). (4.19)

Proof. By Theorem 4.4 and (4.17), we have

V arPX∗(t) =
1
θ2
e2
∫ T

t
(ρ(s)−r(s))dsV arPY ∗(t)

=
1
θ2
e2
∫ T

t
(ρ(s)−r(s))ds

(
EPY ∗(t)2 − (EPY ∗(t))2

)
=

1
θ2
e2
∫ T

t
(ρ(s)−r(s))ds

(
EQ

∗
Y ∗(t)− EPY ∗(t)

)
=

1
θ2
e2
∫ T

t
(ρ(s)−r(s))ds(e

∫ t
0 ρ(s)ds − 1),
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and

EPX∗(t)− EQ
∗
X(t) =

1
θ

(e
∫ t
0 ρ(s)ds − 1)e

∫ T
t

(ρ(s)−r(s))ds.

Hence

V arPX∗(t) =
1

e
∫ t
0 ρ(s)ds − 1

(
EPX∗(t)− EQ

∗
X(t)

)2

which proves (4.18). ut

Proof of Theorem 4.7 is as follows

Proof. If EPX(T ) ≤ X0, taking expectation of (3.7) and comparing it with (4.15), we have the equivalent
inequality as follows

EP
[ ∫ T

0

u(s)TB(s) exp(
∫ T

s

r(u)du)ds
]
≤ 0. (4.20)

We claim that (uθ(·), qθ(·)) = (~0,~0) is the Nash equilibrium of Problem (P0x01) under constraint (4.20). Indeed,
we have

Y 0(t) ≡ 1, ∀t ∈ [0, T ],

and thus
J0,0(0, x0, 1) = EP [X0(T )Y 0(T ) +

1
2θ

(Y 0(T ))2] = X0(T ) +
1
2θ
,

where X0(T ) is a deterministic function given by (4.15). For any admissible q(·) ∈ Q[0, T ], we have

J0,q(0, x0, 1) = EP [X0(T )Y q(T ) +
1
2θ

(Y q(T ))2]

= X0(T ) +
1
2θ

exp(
∫ T

0

q(s)T q(s)ds)

≥ X0(T ) +
1
2θ

= J0,0(0, x0, 1).

For any admissible u(·) ∈ U [0, T ] satisfying the constraint (4.20), we have

Ju,0(0, x0, 1) = EP [Xu(T )Y 0(T ) +
1
2θ

(Y 0(T ))2]

= EP [Xu(T )] +
1
2θ

= X0(T ) + EP
[ ∫ t

0

u(s)TB(s) exp(
∫ t

s

r(u)du)ds
]

+
1
2θ

≤ X0(T ) +
1
2θ

= J0,0(0, x0, 1).

Therefore, by Lemma 2.6, when EPX(T ) ≤ X0, the efficient strategy is given by uθ = ~0 and the optimal
probability measure is given by Qe ≡ P . Since X0(T ) is deterministic, V arPX0(T ) = 0 and EPX0(T ) =
X0(T ) = X0. Thus, the efficient frontier is the point (0, X0). If EPX(T ) > X0, then the efficient strategy uθ is
given by the optimal strategy u∗ of (4.2). In fact, u∗ satisfies that u∗(t) > 0, for ∀t ∈ [0, T ] and

EP
[ ∫ T

0

u∗(s)TB(s) exp(
∫ T

s

r(u)du)ds
]
> 0,

thus EPX∗(T ) > X0 holds. Therefore, the efficient frontier can be derived from Lemma 4.10. ut
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Corollary 4.11. If the reinsurance is cheap, in other words, κ = κr, the efficient frontier of the monotone
mean-variance problem is given by

(
exp(−

∫ T
0 ρ(s)ds)

1−exp(−
∫ T
0 ρ(s)ds)

(
EPX(T )−X0

ch

)2

, EPX(T )
)
, if EPX(t) > X0

ch,

(0, X0
ch), if EPX(T ) ≤ X0

ch,

where

X0
ch = x0 exp

(∫ t

0

r(s)ds
)
.

Remark 4.12. It is easy to see that X0 increases to X0
ch as κr decreases to κ. This explains that the variance

of the wealth of the insurer who purchases cheaper reinsurance is smaller than that of the insurer who purchases
expensive reinsurance.

Corollary 4.13. If there is no insurance in our model setting, in other words, a = σ0 = 0, the efficient frontier
of the monotone mean-variance problem is given by

(
exp(−

∫ T
0 ρ(s)ds)

1−exp(−
∫ T
0 ρ(s)ds)

(
EPX(T )−X0

ni

)2

, EPX(T )
)
, if EPX(T ) > X0

ni,

(0, X0
ni), if EPX(T ) ≤ X0

ni,

where

X0
ni = x0 exp

(∫ t

0

r(s)ds
)
.

Remark 4.14. The efficient frontier in corollary 4.13 is actually the same as the classical efficient frontier given
by Theorem 6.1 in [28].

4.3. Monotone CAPM

Lemma 4.15. Let Q∗ be defined in Lemma 4.9. Then the discounted stock price is a martingale under Q∗. If
the reinsurance is cheap (κ = κr), the surplus process is a martingale under Q∗.

Proof. By Theorem 6.2 (generalized Girsanov theorem) of [16], W̃ (t) = W (t)+
∫ t

0
σ(·)TΣ(·)−1B(·)ds is a Wiener

process with respect to system F and measure Q∗, which has components

W̃0(t) = W0(t) +
∫ t

0

aκr
σ0

ds,

W̃S(t) = WS(t) +
∫ t

0

σS(s)TΣS(s)−1BS(s)ds,

where
BS(t) = (b1(t)− r(t), . . . , bn(t)− r(t))T .

The insurance surplus process can be written as

dR(t) = κadt+ σ0dW0(t)

= κadt+ σ0(dW̃0(t)− aκr
σ0

dt)

= a(κ− κr)dt+ σ0dW̃0(t).
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Thus, when κ = κr it is a martingale under Q∗. The return of stock process can be written as

dP (t) = bS(t)dt+ σS(t)dWS(t)

= bS(t)dt+ σS(t)(dW̃S(t)− σS(t)TΣS(t)−1BS(t)dt)

= r(t)~1dt+ σS(t)dW̃S(t)).

Noting that r(t) is the riskless interest rate, Si(t)/S0(t) is a martingale under Q∗.

Remark 4.16. If a = σ0 = 0 (no insurance in the model), Q∗ is an equivalent martingale measure.

Consider the following equality

EP [P (t)Y ∗(t)] = EQ
∗
[P (t)] =

∫ t

0

r(s)~1ds.

It coincides with the first-order conditions (B.16) in [18]. Using the term from [18], Y ∗(t) is called the equilibrium
pricing kernel.

The following proposition is an analogue of proposition 5.1 in [18].

Proposition 4.17. If uθ is the optimal strategy for Problem (MMVθ), then θ
ζu

θ is the optimal strategy for
Problem (MMVζ), in other words, uζ = θ

ζu
θ.

To distinguish the investment and reinsurance from optimal strategy (4.2), we denote by

u∗(t) =
(
u∗0(t)
u∗S(t)

)
,

where

u∗0(t) =
1
θ

aκr
σ2

0

exp
(∫ T

t

ρ(s)− r(s)ds
)
dQ∗

dP

∣∣∣∣
Ft

is the reinsurance strategy(retention level) of the insurer and

u∗S(t) =
1
θ

(
ΣS(t)

)−1
BS(t) exp

(∫ T

t

ρ(s)− r(s)ds
)
dQ∗

dP

∣∣∣∣
Ft

is the portfolio strategy of the insurer.
It is easy to see that uζS = θ

ζu
θ
S . Given θ > 0 with (uθS)T~1 > 0, define m = θ(uθS)T~1. Hence by proposition

4.17

umS =
uθS

(uθS)T~1
.

Then umS does not depend on the choice of θ and satisfies

(umS )T~1 = 1,

which implies that umS is a market portfolio in financial market, that is, the portfolio holder does not invest
any of its wealth in the risk-free asset. In what follows, we assume that only the financial market is considered
(a = σ0 = 0). We denote by Xm the wealth process of the market portfolio holder, that is,

dXm(t) =
n∑
i=1

umS,i(t)X
m dSi(t)
Si(t)

·
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Theorem 4.18. (monotone CAPM) Let Xm be defined as above. Then

EP
[ ∫ t

0

dSi(s)
Si(s)

]
−
∫ t

0

r(s)ds = βi(t)
(
EP
[ ∫ t

0

dXm(s)
Xm(s)

]
−
∫ t

0

r(s)ds
)
,

where

βi(t) =
CovP

[ ∫ t
0
dSi(s)
Si(s)

, Y ∗(t)
]

CovP
[ ∫ t

0
dXm(s)
Xm(s) , Y

∗(t)
] ·

Proof. Note that

CovP
[ ∫ t

0

dSi(s)
Si(s)

, Y ∗(t)
]

=EP
[ ∫ t

0

dSi(s)
Si(s)

Y ∗(t)
]
− EP

[ ∫ t

0

dSi(s)
Si(s)

]
EP
[
Y ∗(t)

]
=EQ

∗
[ ∫ t

0

dSi(s)
Si(s)

]
− EP

[ ∫ t

0

dSi(s)
Si(s)

]
=
∫ t

0

r(s)ds− EP
[ ∫ t

0

dSi(s)
Si(s)

]
, (4.21)

and

CovP
[ ∫ t

0

dXm(s)
Xm(s)

, Y ∗(t)
]

=
n∑
i=1

CovP
[ ∫ t

0

umS,i(s)
dSi(s)
Si(s)

, Y ∗(t)
]

=
n∑
i=1

∫ t

0

umS,i(s)r(s)ds−
n∑
i=1

EP
[ ∫ t

0

umS,i(s)
dSi(s)
Si(s)

]
=
∫ t

0

r(s)ds− EP
[ ∫ t

0

dXm(s)
Xm(s)

]
· (4.22)

Dividing (4.21) by (4.22) gives

CovP
[ ∫ t

0
dSi(s)
Si(s)

, Y ∗(t)
]

CovP
[ ∫ t

0
dXm(s)
Xm(s) , Y

∗(t)
] =

EP
[ ∫ t

0
dSi(s)
Si(s)

]
−
∫ t

0
r(s)ds

EP
[ ∫ t

0
dXm(s)
Xm(s)

]
−
∫ t

0
r(s)ds

,

which completes the proof.
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