A novel approach for solving stochastic problems with multiple objective functions
RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2413-2422

In this paper we suggest an approach for solving a multiobjective stochastic linear programming problem with normal multivariate distributions. Our approach is a combination between a multiobjective method and a nonconvex technique. The problem is first transformed into a deterministic multiobjective problem introducing the expected value criterion and an utility function that represents the decision makers preferences. The obtained problem is reduced to a mono-objective quadratic problem using a weighting method. This last problem is solved by DC (Difference of Convex) programming and DC algorithm. A numerical example is included for illustration.

DOI : 10.1051/ro/2021112
Classification : 90C15, 90C26, 90C29, 90B50
Keywords: Multiobjective programming, stochastic programming, DCA, DC programming, utility function, expected value criterion
@article{RO_2021__55_4_2413_0,
     author = {Kasri, Ramzi and Bellahcene, Fatima},
     title = {A novel approach for solving stochastic problems with multiple objective functions},
     journal = {RAIRO. Operations Research},
     pages = {2413--2422},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/ro/2021112},
     mrnumber = {4303672},
     zbl = {1479.90146},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021112/}
}
TY  - JOUR
AU  - Kasri, Ramzi
AU  - Bellahcene, Fatima
TI  - A novel approach for solving stochastic problems with multiple objective functions
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2413
EP  - 2422
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021112/
DO  - 10.1051/ro/2021112
LA  - en
ID  - RO_2021__55_4_2413_0
ER  - 
%0 Journal Article
%A Kasri, Ramzi
%A Bellahcene, Fatima
%T A novel approach for solving stochastic problems with multiple objective functions
%J RAIRO. Operations Research
%D 2021
%P 2413-2422
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021112/
%R 10.1051/ro/2021112
%G en
%F RO_2021__55_4_2413_0
Kasri, Ramzi; Bellahcene, Fatima. A novel approach for solving stochastic problems with multiple objective functions. RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2413-2422. doi: 10.1051/ro/2021112

[1] M. Abbas and F. Bellahcene, Cutting plane method for multiple objective stochastic integer linear programming problem. Eur. J. Oper. Res. 168 (2006) 967–984. | MR | Zbl | DOI

[2] A. Alarcón-Rodrguez, G. Ault and S. Galloway, Multiobjective planning of distributed energy resources review of the state-of-the-art. Renew. Sustainable Energy Rev. 14 (2010) 1353–1366. | DOI

[3] S. Amrouche and M. Moulai, Molti-objective stochastic integer linear programming with fixed recourse. Int. J. Multicrit. Decis. Mak. 2 (2012) 355–378.

[4] B. Aouni, F. Ben Abdelaziz and J. M. Martel, Decision-maker’s preferences modeling in the stochastic goal programming. Eur. J. Oper. Res. 162 (2005) 610–618. | MR | Zbl | DOI

[5] E. Ballestero, Stochastic goal programming: a mean-variance approach. Eur. J. Oper. Res. 131 (2001) 476. | MR | Zbl | DOI

[6] F. Bellahcene and P. Marthon, A compromise solution method for the multiobjective minimum risk problem. Oper. Res. Int. J. (2019). DOI: . | DOI

[7] F. Ben Abdelaziz, L’efficacité en programmation multi-objectifs stochastique. Ph.D. Thesis, Université de Laval, Québec (1992).

[8] F. Ben Abdelaziz and S. Mejri, Application of goal programming in a multi-objective reservoir operation model in Tunisia. Eur. J. Oper. Res. 133 (2001) 352–361. | Zbl | DOI

[9] F. Ben Abdelaziz, P. Lang and R. Nadeau, Distributional unanimity in multiobjective stochastic linear programming, edited by J. Clímaco. In: Multicriteria Analysis. Springer-Verlag, Berlin-Heidelberg (1997). | MR | Zbl | DOI

[10] M. Bravo and I. Gonzalez, Applying stochastic goal programming: a case study on water use planning. Eur. J. Oper. Res. 196 (2009) 1123–1129. | Zbl | DOI

[11] R. Caballero, E. Cerdá, M. Del Mar Muñoz and L. Rey, Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems. Eur. J. Oper. Res. 158 (2004) 633–648. | MR | Zbl | DOI

[12] T. Z. Caner and U. A. Tamer, Tactical level planning in float glass manufacturing with co-production, random yields and substitutable products. Eur. J. Oper. Res. 199 (2009) 252–261. | Zbl | DOI

[13] D. Chaabane and F. Mebrek, Optimization of a linear function over the set of stochastic efficient solutions. CMS 11 (2014) 157–178. | MR | Zbl | DOI

[14] H. Fazlollahtabar and I. Mahdavi, Applying stochastic programming for optimizing production time and cost in an automated manufacturing system. In: International Conference on Computers & Industrial Engineering. Troyes 6-9 July (2009) 1226–1230.

[15] A. M. Geoffrion, Proper efficiency and the theory of vector maximimization. J. Math. Anal. App. 22 (1968) 618–630. | MR | Zbl | DOI

[16] A. Goicoechea, L. Dukstein and R. T. Bulfin, Multiobjective Stochastic Programming the PROTRADE-method. Operation Research Society of America (1976).

[17] G. Klein, H. Moskowitz and A. Ravindran, Interactive multiobjective optimization under uncertainty. Manage. Sci. 36 (1990) 58–75. | MR | Zbl | DOI

[18] M. Kumral, Application of chance-constrained programming based on multiobjective simulated annealing to solve mineral blending problem. Eng. Optim. 35 (2003) 661–673. | DOI

[19] H. A. Le Thi and T. Pham Dinh, Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Global Optim. 11 (1997) 253–285. | MR | Zbl | DOI

[20] H. A. Le Thi and T. Pham Dinh, A continuous approach for globally solving linearly constrained quadratic zero-one programming problems. Optimization 50 (2001) 93–120. | MR | Zbl | DOI

[21] H. A. Le Thi and T. Pham Dinh, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133 (2005) 23–46. | MR | Zbl | DOI

[22] H. A. Le Thi, T. Pham Dinh and V. N. Huynh, Exact penalty and error bounds in DC programming. J. Glob. Opt. 52 (2002) 509–535. | MR | Zbl | DOI

[23] H. A. Le Thi, T. Pham Dinh, C. N. Nguyen and V. T. Nguyen, DC programming techniques for solving a class of nonlinear bilevel programs. J. Glob. Opt. 44 (2009) 313–337. | MR | Zbl | DOI

[24] LINDO Systems, Inc. LINGO. The modeling langage and optimizer (2017). http://www.lindo.com.

[25] LINDO Systems, Inc., Optimization modelling with LINGO. Technical Support in China (2015). http://lindochina.com.

[26] M. M. Muñoz and F. Ruiz, Interest: an interval reference point based method for stochastic multiobjective programming problems. Eur. J. Oper. Res. 197 (2009) 25–35. | MR | Zbl | DOI

[27] W. Ogryczak, Multiple criteria linear programming model for portfolio selection. Ann. Oper. Res. 97 (2000) 143–162. | MR | Zbl | DOI

[28] T. Pham Dinh and H. A. Le Thi, Convex analysis approach to DC programming: theory, algorithms and applications (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday). Acta Math. Vietnam. 22 (1997) 289–355. | Zbl

[29] T. Pham Dinh, C. N. Nguyen and H. A. Le Thi, DC programming and DCA for globally solving the value-at-risk. Comput. Manag. Sci. 6 (2009) 477–501. | MR | Zbl | DOI

[30] C. Shing and H. Nagasawa, Interactive decision system in stochastic multi-objective portfolio selection. Int. J. Prod. Econ. 60, 61 (1999) 187–193. | DOI

[31] I. M. Stancu-Minasian, Asupra problemei de risk minim multiplu I: cazul a dou funcii obiectiv. II: cazul ar (r > 2) funciiobiectiv, Stud. Cerc. Mat. 28 (1976) 617–623. | MR | Zbl

[32] J. Teghem and P. Kunsch, Application of multiobjective stochastic linear programming to power systems planning. Eng. Costs Prod. Econ. 9 (1985) 83–89. | DOI

[33] J. Teghem, D. Dufrane, M. Thauvoye and P. L. Kunsch, Strange, an interactive method for multiobjective stochastic linear programming under uncertainty. Eur. J. Oper. Res. 26 (1986) 65–82. | MR | Zbl | DOI

[34] J. Teghem, Strange-Momix: an interactive method for mixed integer linear programming, edited by R. Slowinski and J. Teghem. In: Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty. Kluwer, Dordrecht (1990) 101–115. | MR | Zbl

[35] V. Vahidinasab and S. Jadid, Stochastic multiobjective self-scheduling of a power producer in joint energy & reserves markets. Electr. Power Syst. Res. 80 (2010) 760–769. | DOI

[36] Z. Wang, X. P. Jia and L. Shi, Optimization of multi-product batch plant design under uncertainty with environmental considerations. Clean Technol. Environ. Policy 12 (2009) 273–282. | DOI

Cité par Sources :