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A NOVEL APPROACH FOR SOLVING STOCHASTIC PROBLEMS WITH
MULTIPLE OBJECTIVE FUNCTIONS

RAMzI KASRI*® AND FATIMA BELLAHCENE

Abstract. In this paper we suggest an approach for solving a multiobjective stochastic linear pro-
gramming problem with normal multivariate distributions. Our approach is a combination between a
multiobjective method and a nonconvex technique. The problem is first transformed into a deterministic
multiobjective problem introducing the expected value criterion and an utility function that represents
the decision makers preferences. The obtained problem is reduced to a mono-objective quadratic prob-
lem using a weighting method. This last problem is solved by DC (Difference of Convex) programming
and DC algorithm. A numerical example is included for illustration.
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1. INTRODUCTION

Multiobjective stochastic linear programming (MOSLP) is an appropriate tool to model many concrete real-
life problems because it is not obvious to have the complete data about the parameters. So, to deal with this type
of problems it is required to introduce a randomness framework. Such a class of problems includes investment and
energy resources planning [2,32,35], manufacturing systems in production planning [12,14], mineral blending [18],
water use planning [8,10] and multi-product batch plant design [36]. Among the applications of MOSLP in
portfolio selection, we can mention the recent works of Shing and Nagasawa [30], Ogryczak [27], Ballestero [5]
and Aouni [4].

In order to obtain solutions for MOSLP problems, it is necessary to combine techniques used in stochastic
programming and multiobjective programming. From this, two approaches can be considered, both of them
involve a double transformation, consisting on the transformation of the multiobjective problem into a mono-
objective problem and the stochastic problem into its equivalent deterministic one. The difference between the
two approaches is the order in which the transformations are carried out. Ben Abdelaziz [8] and Ben Abdelaziz
et al. [9] qualified as multiobjective approach the perspective which transform first, the stochastic multiobjective
problem into its equivalent multiobjective deterministic problem, and stochastic approach the technique that
transform in first the stochastic multiobjective problem into a monobjective stochastic problem.
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As we have known in the MOSLP problems, the coefficients of the problem are assumed as random variables
with known distributions in most of cases. However, the specifications of the distributions are very subjective.
Many researchers invoke the discrete distribution. For instance, we can mention the STRANGE method proposed
by Teghem et al. [33], the recourse method using a two stage mathematical programming model by Klein
et al. [17], the STRANGE-MOMIX of Teghem [34], the cutting plane methods by Abbas and Bellahcene [1],
Amrouche and Moulai [3], Chaabane and Mebrek [13]. Publications dealing with continuous distributions are
very few in number and use. In this context, Stancu-Minasian [31] describe a sequential method for solving
MOSLP problem where several probabilities are maximized, Goicoechea et al. [16] present the Probabilistic
Trade-off Development Method or PROTRADE which treats problems with general distributions for the random
coefficients of linear objectives, Munoz and Ruiz [26] developed the ISTMO method which uses the Kataoka
criterion to handle the randomness and combines the concept of probability efficiency for stochastic problems
with the reference point philosophy for deterministic multiobjective problems, Bellahcene and Marthon [6]
suggest a bisection based method that generates a compromise solution to MOSLP problems in which the
objective functions parameters are random variables with multivariate distributions. In this paper, a novel
method for solving MOSLP problem with normal multivariate distributions is proposed. First, we assume that
decision maker’s preferences can be represented by exponential utility functions (One can use the same function
for all the objectives). This assumption is motivated by the fact that exponential utility function will lead to an
equivalent quadratic problem which can be solved by a DC (Difference of Convex functions) method. The DC
programming and DC Algorithm (DCA) have been introduced by Pham Dinh Tao in their preliminary form in
1985 and developed by Le Thi and Pham Dinh since [19-22]. This method has proved its efficiency in a large
number of nonconvex problems [23, 28, 29].

Remainder sections of this paper are organized as follows: in Section 2, the problem formulation is given.
In Section 3, we analyze our new formulation for the problem considering the particular structure induced by
the combined use of utility functions and the weighting method. The new formulation results in a quadratic
problem that can be solved efficiently by a DC algorithm. Section 4 shows how to apply the DC programming
and DCA for the resulting problem. Our experimental results are presented in Section 5.

2. PROBLEM STATEMENT

Let us consider the multiobjective stochastic linear programming problem formulated as follows:

min (Etlx, ééx, ey éflx)
st.xeS (2.1)
where = (z1, 9, ..., z,) denotes the n-dimensional vector of decision variables. The feasible set S is a subset

of n-dimensional real vector space R™ characterized by a set of linear inequality constraints of the form Ax < b;
where A is an m x n coefficient matrix and b an m-dimensional column vector. We assume that S is nonempty
and compact in R™. Each vector ¢, follows a normal distribution with mean ¢, and covariance matrix V.
Therefore, every objective & x follows a normal distribution with mean py, = ¢,z and variance o7 = x'Vyz.

In the following section, we will be mainly interested in the main way to transform problem (2.1) into
an equivalent multiobjective deterministic problem which in turn will be reformulated as a DC programming
problem.

3. TRANSFORMATIONS AND REFORMULATION

First, we will take into consideration the notion of risk. Assuming that decision maker’s preferences can be
represented by utility functions, under plausible assumptions about decision maker’s risk attitudes, problem
(2.1) is interpreted as:

. ~t ~t ~t
min (E [U (clx)}, E [U (ch)} ..., B [U (cqx)])

xT
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st. zeS (3.1)

The utility function U is generally assumed to be continuous and convex. In this paper, we consider an expo-
nential utility function of the form U(r) = 1 —e™%", where r is the value of the objective and a the coefficient of
incurred risk (a large corresponds to a conservative attitude). Our choice is motivated by the fact that exponen-
tial utility functions will lead to an equivalent quadratic problem which encouraged us to design a DC method
to solve it simply and accurately. Therefore, if r ~ N(u,0?), we have:

+oo —(r—p)?/20° d 2,2
e r o2a
EU(r :/ l1—-e)———=1—¢ 2 19
e B R e
Minimizing F(U(r)) means maximizing ”22a2 — pa or minimizing p — %

Our aim is to search for efficient solutions of the multiobjective deterministic problem (3.1) according to the
following definition:

Definition 3.1 ([7]). A feasible solution z* to problem (2.1) is an efficient solution if there doesn’t exist another
feasible solution x such that E[U(¢,z))] < E[U(cLa*)] for k € {1,...,q} with at least one strict inequality. The
resulting criterion vector E[U(é,z*)] is said to be non-dominated.

Applying the widely used method for finding efficient solutions in multiobjective programming problems,
namely the weighting sum method [9, 11], we assign to each objective function in (3.1) a non-negative weight
wy and aggregate the objectives functions in order to obtain a single function. Thus, problem (3.1) is reduced
to:

q
min ZwkE [U (Eix)]
k=1

st.xesS
wp €A VEe{1,...,q} (3.2)
or equivalently
mln E (Z wkck:c>]
st.xesS
wrp €A VEe{1,...,q} (3.3)

where A = {wy, : Y}, wp =1, w, >0 Vke{1,...,q}}.

Theorem 3.2 ([15]). A point z* € S is an efficient solution to problem (3.1) if and only if x* € S is optimal
for problem (3.3).

Given that the random variable F(z,¢) = Y 7_, wyé,z in (3.3) is a linear function of the random objectives
¢t x; its variance depends on the variances of ¢tz and on their covariances. Since each ¢z follows a normal
distribution with mean pj, and covariance o7, the function F(x,¢) follows a normal distribution with mean p
and covariance o2 where,

= Z Zwkckm (34)

q
0% = Z wiop +2 Z WrWsO s (3.5)

k=1 k,s=1
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where oy, denotes the covariance of the random objectives ¢ and ¢tz. Finally, we obtain the following quadratic
problem:

q q q
. _t a 2 2
min Z Wkt — 5 Z wioj + 2 Z WEWsO ks (3.6)
k=1 k=1 ko=t
st.xesS
or
q al & q
. _t 2, t t
min Zwkckx ~3 Zwkx Vix +2 Z W Ws T VisT (3.7)
k=1 k=1 kk~<=§1
st.xes
where ¢, = (Cg1,Cr2, - - -, Ckn) is the k-th component of the expected value of the random multinormal vector ¢,

Vis and Vi, are elements of the positive definite covariance matrix V of ¢:

Vi [Viz|- | Vis]. - | Vig
Var| Ve || Vas|---| Vag

Vi1 | Viea |-« | Vs ...qu

Vo [Vaz |- Vs ||V,
4. THE SOLUTION METHOD

In this section, we present briefly the DC programming approach developed for solving nonconvex problems.
For more details, see [23,28,29]. And we use DCA for solving problem (3.7).

4.1. Review of DC programming and DCA
A general DC program has the form:
a = inf{f(z) = g(z) — h(z) : x € R"} (4.1)

where g, h are lower semicontinuous proper convex functions on R™ called DC components of the DC function
f while g — h is a DC decomposition of f.
The duality in DC associates to problem (4.1) the following dual program:

a=inf{h"(y) —g"(y) 1 y € R"} (4.2)

where ¢g* and h* are respectively the conjugate functions of g and h.
The conjugate function of g is defined by:

9*(y) = sup{z'y — g(z) : x € R"} (4.3)
From [21], the most used necessary optimality conditions for problem (4.1), is:
0 # Oh (z*) C dg (z*) (4.4)

where Oh (z*) = {y* € R" : g(x) > g(a*) + (x — 2*, y*), Vo € R"} is the subdifferential of h at z*.
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A point x* is called critical point of g — h if
0 # 0g (z*) N Oh (x™) (4.5)

DCA constructs two sequences {x'} and {y'} (candidates for being primal and dual solutions, respectively),
such that their corresponding limit points satisfy the local optimality conditions (4.4) and (4.5). There are two
forms of DCA: the simplified DCA and the complete DCA. In practice, the simplified DCA is most used than
the complete DCA because it is less time consuming [19]. The simplified DCA has the following scheme:

Simplified DCA algorithm

Step 1. Let 2° € R” given. Set i = 0.

Step 2. Calculate y* € Oh(x?).

Step 3. Calculate ' € dg* (v?).

Step 4. If a convergence criterion is satisfied, then stop, else set i =i 4+ 1 and goto step 2.

We also note from[19-22] that:

DCA is a descent method without linesearch.

— If g(z**) — h(21) = g(2) — h(x?), then z° is a critical point of f and y° is a critical point of h* — g*.

— DCA has a linear convergence for general DC programs and has a finite convergence for polyhedral programs.
— If the optimal value of problem (3.7) is finite and the sequences {z‘} and {3’} are bounded then every limit
point z (resp. y) of the sequence {2} (resp. {3’} is a critical point of g — h (resp. h* — g*).

4.2. DCA applied to problem (3.7)

The function f(z) = ming Y} wpche — & ( Y i wios +23 % s wkwsoks> in problem (3.7) will be
k<s

decomposed in order to obtain a DC program of the form:
min{ f(z) = g(z) — h(z)z € S} (4.6)
with

q
9(x) = xs(z) + > wihw
k=1

where xg(.) is the indicator function of the set S
and

q q
h(z) = g Zwixthx +2 Z Wpws T Visx

k=1 k,s=1
k<s

Since the feasible S is nonempty and convex its indicator function is convex.

Furthermore, the ¢tyx, k = 1,...,q are convex as linear functions. Therefore, we can easily deduce that g is a
convex function. However, the convexity of h is due to the fact that the covariance matrix V is positive definite.

After that, we will compute the two sequences {z'} and {y’} such that y* € dh(z?) and 2'T! € dg* (y*).

Computation of y*:

We choose y* € Oh(z") = {Vh(z')}.
It is equivalent to calculate:

q q
v'=a szvkxi +2 Z Wws Vis ' (4.7)
k=1 koam1
k<s
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Computation of z*:

We can choose 2! € dg* (y') as the solution of the following convex problem
q .
min {Z wpchr — 'yt 1w € S} (4.8)
k=1

The solution z° is optimal for the problem (4.6) if one of the following conditions is verified

[(g—h) (z"') —(g—h) (') | < e (4.9)
(@) — (@) <€ (4.10)

Finally, the DC Algorithm that we can apply to problem (3.7) with the decomposition (4.6) can be described
as follows:

Algorithm DCAMOSLP

Step 1. Initialization: Let z° € R”, ¢, k,w € RT,a > 0,V, A, b, ¢ given. Set i = 0.

Step 2. Calculate y* € Oh(z?) using (4.7).

Step 3. Calculate z°*! € dg*(y), solution of the convex problem (4.8).

Step 4. If one of the conditions (4.9) or (4.10) is verified, then stop z*! is optimal for (4.6),
else set i = 7+ 1 and goto step 2.

5. EXPERIMENTAL RESULTS

In order to investigate the potential of DCA when applied to the considered problem, we implemented it and
tested it on two small problems similar to the mathematical model (2.1). The first is taken from [11] to show the
efficiency of the algorithm. The second example is given to present the performances of DCAMOSLP according
to the variations of the weights and the risk parameter. Our results are compared in terms of running time and
number of iterations to those given by the solver LINGO [24,25].

Example 5.1. Let us consider the following stochastic bi-objective programming problem:

H}Lin (1121 + Crax2, 2121 + Coo2)
st. x1+ 210 >4 (5.1)
1,72 <3
z1,72 20

with ¢ = (¢11, 12, Ca1, é22)" being a random vector multinormal with expected value ¢ = (0.5, 1, 1,2.5) and with
positive definite covariance matrix:

9% 0 0 3
0 2 3 0
V=10 3 1 0
3 0 0 9

In [11], the non dominated solution obtained for w = (0.8,0.2)! is (3,0.5). Now, we solve the same problem
test by DCAMOSLP algorithm for different values of the risk parameter a while keeping the same weight vector
w = (0.8,0.2)". For this, we choose an acceptable tolerance error ¢ = 10~° for the optimality test and set
2% = (0,0) as initial point. The results of this application are shown in Table 1 where nbr_it is the number of
iterations.

We can observe that the non-dominated solution (3,0.5) is obtained for values of parameter a < 10~2. We
also note that the number of iterations decreases with the decrease of the parameter a.



A DCA-BASED METHOD FOR MULTIOBJECTIVE STOCHASTIC PROBLEMS

TABLE 1. Results for different values of parameter a.

TABLE 2. Results for different values of ¢ and vector w with DCAMOSLP.

a

nbr_it

10730
10720
10710
1072
1

10
102

(z1,23) ©Ciz*  Coz”
(3,05) 2 4.25
(3,05) 2 4.25
(3,05) 2 4.25
(3,05) 2 4.25
(3,3) 45 105
(3,3) 45 105
(3,3) 45 105

L Ot Ot W W NN

HlTiH (Cr121 + Cr2®2, 2121 + Coa%2, 3121 + C32%2)

s.t. 2:61
51}1
2371

+3l’2210
+ Txg > 25
—$2§16

73!]514’21’2 §3
1‘2§7
21 2>0,22 >0

a w (z1,x3) nbr_it  CPU time (s)
(0.2,0.5,0.3)  (0.9355,2.9032) 2 0.058
(0.6,0.1,0.3)  (0.9355,2.9032) 2 0.058

1072 (0.1,0.2,0.7)  (0.9355,2.9032) 2 0.058
(0.5,0.2,0.3)  (0.9355,2.9032) 2 0.058
(0.3,0.6,0.1)  (0.9355,2.9032) 2 0.058
(0.2,0.5,0.3) (0.9355,2.9032) 2 0.072
(0.6,0.1,0.3)  (0.9355,2.9032) 2 0.072

107  (0.1,0.2,0.7) (0.9355,2.9032) 2 0.072
(0.5,0.2,0.3)  (0.9355,2.9032) 2 0.072
(0.3,0.6,0.1)  (0.9355,2.9032) 2 0.072
(0.2,0.5,0.3) (0.9355,2.9032) 2 0.074
(0.6,0.1,0.3)  (0.9355,2.9032) 2 0.074

1072 (0.1,0.2,0.7) (0.9355,2.9032) 2 0.074
(0.5,0.2,0.3)  (0.9355,2.9032) 2 0.074
(0.3,0.6,0.1)  (0.9355,2.9032) 2 0.074
(0.2,0.5,0.3)  (11.500,7.000) 3 0.10
(0.6,0.1,0.3)  (11.500,7.000) 3 0.10

10 (0.1,0.2,0.7)  (11.500,7.000) 3 0.10
(0.5,0.2,0.3)  (11.500,7.000) 3 0.10
(0.3,0.6,0.1)  (11.500,7.000) 3 0.10
(0.2,0.5,0.3) (11.500,7.000) 3 0.11
(0.6,0.1,0.3)  (11.500,7.000) 3 0.11

10? (0.1,0.2,0.7)  (11.500,7.000) 3 0.11
(0.5,0.2,0.3)  (11.500,7.000) 3 0.11
(0.3,0.6,0.1)  (11.500,7.000) 3 0.11

2419

Example 5.2. Now we will test the performance of DCAMOLSP algorithm on the problem below which has
three objective functions and a larger set of feasible solutions.

(5.2)
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TABLE 3. Results for different values of a and vector w with LINGO.

a w (27, x3) nbr_it  CPU time (s)
(0.2,0.5,0.3)  (0.93548,2.90322) 6 0.062
(0.6,0.1,0.3)  (0.93548,2.90322) 5 0.062

1072°  (0.1,0.2,0.7)  (0.93548,2.90322) 5 0.062
(0.5,0.2,0.3)  (0.93548,2.90322) 5 0.062
(0.3,0.6,0.1)  (0.93548,2.90322) 6 0.062
(0.2,0.5,0.3) (0.93548,2.90322) 25 0.25
(0.6,0.1,0.3)  (0.93548,2.90322) 25 0.25

107°  (0.1,0.2,0.7) (0.93548,2.90322) 25 0.22
(0.5,0.2,0.3)  (0.93548,2.90322) 25 0.23
(0.3,0.6,0.1)  (0.93548,2.90322) 25 0.25
(0.2,0.5,0.3) (0.93548,2.90322) 25 0.23
(0.6,0.1,0.3)  (0.93548,2.90322) 25 0.25

1072 (0.1,0.2,0.7) (0.93548,2.90322) 25 0.23
(0.5,0.2,0.3)  (0.93548,2.90322) 25 0.25
(0.3,0.6,0.1)  (0.93548,2.90322) 25 0.23
(0.2,0.5,0.3)  (11.500, 7.000) 26 0.23
(0.6,0.1,0.3)  (11.500,7.000) 26 0.23

10 (0.1,0.2,0.7)  (11.500, 7.000) 26 0.23
(0.5,0.2,0.3)  (11.500,7.000) 26 0.23
(0.3,0.6,0.1)  (11.500, 7.000) 26 0.23
(0.2,0.5,0.3) (11.500,7.000) 26 0.23
(0.6,0.1,0.3)  (11.500, 7.000) 26 0.23

10? (0.1,0.2,0.7)  (11.500, 7.000) 26 0.23
(0.5,0.2,0.3)  (11.500,7.000) 26 0.23
(0.3,0.6,0.1)  (11.500, 7.000) 27 0.23

with ¢ = (5, —2,3,6,8,4) and positive definite covariance matrix:
25 0 0O 0 0 3
0 25 0 3 0 O
V= 0 0 23 0 2 0
10 3 0 1 0 0
0 0 2 0 3 0
3 0 0 0 0 9

The results of this application for different values of parameter and the weight vector are given in Table 2
followed by the results given by LINGO software in Table 3 for the same parameter and weights.

From these results, we observe that the algorithm DCAMOSLP gives efficient solutions of the studied multi-
objective stochastic problem for small values of the incurred risk (a < 10_2). The number of iterations decreases
with the decrease of this parameter. We also note that, proposed DCAMOLSP algorithm finds the same solu-
tions as LINGO and that it is more efficient than LINGO in terms of CPU time and number of iterations
required to reach the optimum.

6. CONCLUSION

We have presented a DC programming based method for solving a multiobjective stochastic linear program-
ming problem with multivariate normal distributions in which the objective functions should be minimized.
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According to the computational experiments, our method outperforms — in terms of number iterations and run-
ning time — the solver LINGO. A novel contribution to this issue would consist of considering real problems and
comparing the results with those of other methods and solvers used in multiobjective stochastic optimization.

Acknowledgements. The author would like to thank the anonymous referees for helpful and constructive comments.
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