A conjecture on a continuous optimization model for the Golomb Ruler Problem
RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2241-2246

A Golomb Ruler (GR) is a set of integer marks along an imaginary ruler such that all the distances of the marks are different. Computing a GR of minimum length is associated to many applications (from astronomy to information theory). Although not yet demonstrated to be NP-hard, the problem is computationally very challenging. This brief note proposes a new continuous optimization model for the problem and, based on a given theoretical result and some computational experiments, we conjecture that an optimal solution of this model is also a solution to an associated GR of minimum length.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021103
Classification : 90C26, 90C27
Keywords: Nonlinear programming, Golomb Ruler Problem, continuous models
@article{RO_2021__55_4_2241_0,
     author = {Duxbury, Phil and Lavor, Carlile and de Salles-Neto, Luiz Leduino},
     title = {A conjecture on a continuous optimization model for the {Golomb} {Ruler} {Problem}},
     journal = {RAIRO. Operations Research},
     pages = {2241--2246},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/ro/2021103},
     mrnumber = {4292305},
     zbl = {1479.90167},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021103/}
}
TY  - JOUR
AU  - Duxbury, Phil
AU  - Lavor, Carlile
AU  - de Salles-Neto, Luiz Leduino
TI  - A conjecture on a continuous optimization model for the Golomb Ruler Problem
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2241
EP  - 2246
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021103/
DO  - 10.1051/ro/2021103
LA  - en
ID  - RO_2021__55_4_2241_0
ER  - 
%0 Journal Article
%A Duxbury, Phil
%A Lavor, Carlile
%A de Salles-Neto, Luiz Leduino
%T A conjecture on a continuous optimization model for the Golomb Ruler Problem
%J RAIRO. Operations Research
%D 2021
%P 2241-2246
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021103/
%R 10.1051/ro/2021103
%G en
%F RO_2021__55_4_2241_0
Duxbury, Phil; Lavor, Carlile; de Salles-Neto, Luiz Leduino. A conjecture on a continuous optimization model for the Golomb Ruler Problem. RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2241-2246. doi: 10.1051/ro/2021103

[1] W. Babcock, Intermodulation interference in radio systems. Bell Labs Tech. J. 32 (1953) 63–73. | DOI

[2] S. Billinge, P. Duxbury, D. Gonçalves, C. Lavor and A. Mucherino, Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures. Ann. Oper. Res. 271 (2018) 161–203. | MR | Zbl | DOI

[3] G. Bloom and S. Golomb, Applications of numbered undirected graphs. Proc. IEEE 65 (1977) 562–570. | DOI

[4] E. Blum, J. Ribes and F. Biraud, Some new possibilities of optimum synthetic linear arrays for radioastronomy. Astron. Astrophys. 41 (1975) 409–411.

[5] A. Dollas, W. Rankin and D. Mccracken, A new algorithm for Golomb ruler derivation and proof of the 19 mark ruler. IEEE Trans. Inf. Theory 44 (1998) 379–382. | MR | Zbl | DOI

[6] K. Drakakis, A review of the available construction methods for Golomb rulers. Adv. Math. Commun. 3 (2009) 235–250. | MR | Zbl | DOI

[7] P. Erdös and P. Turán, On a problem of Sidon in additive number theory and on some related problems. J. London Math. Soc. 16 (1941) 212–215. | MR | Zbl | DOI

[8] B. Kocuk and W.-J. Van Hoeve, A computational comparison of optimization methods for the Golomb Ruler Problem. Lecture Notes Comput. Sci. 11494 (2019) 409–425. | Zbl | DOI

[9] C. Lavor, L. Liberti, W. Lodwick and T. Mendonça Da Costa, An Introduction to Distance Geometry Applied to Molecular Geometry. Springer Briefs, Springer, New York (2017). | MR | DOI

[10] L. Liberti and C. Lavor, Six mathematical gems from the history of distance geometry. Int. Trans. Oper. Res. 23 (2016) 897–920. | MR | Zbl | DOI

[11] L. Liberti and C. Lavor, Euclidean Distance Geometry: An Introduction. Springer, New York (2017). | MR | DOI

[12] L. Liberti, C. Lavor, N. Maculan and A. Mucherino, Euclidean distance geometry and applications. SIAM Rev. 56 (2014) 3–69. | MR | Zbl | DOI

[13] R. Lorentzen and R. Nilsen, Application of linear programming to the optimal difference triangle set problem. IEEE Trans. Inf. Theory 37 (1991) 1486–1488. | MR | DOI

[14] C. Meyer and B. Jaumard, Equivalence of some LP-based lower bounds for the Golomb Ruler Problem. Discrete Appl. Math. 154 (2006) 120–144. | MR | Zbl | DOI

[15] C. Meyer and P. Papakonstantinou, On the complexity of constructing Golomb Rulers. Discrete Appl. Math. 157 (2009) 738–748. | MR | Zbl | DOI

[16] A. Mucherino, C. Lavor, L. Liberti and N. Maculan, eds., Distance Geometry: Theory, Methods, and Applications. Springer, New York (2013). | MR | Zbl | DOI

[17] O. Oshiga and G. Abreu, Design of orthogonal Golomb rulers with applications in wireless localization. In: Proc. of the 48th Asilomar Conference on Signals, Systems and Computers (2014) 1497–1501.

[18] J. Robinson and A. Bernstein, A class of binary recurrent codes with limited error propagation. IEEE Trans. Inf. Theory 13 (1967) 106–113. | Zbl | DOI

[19] J. Shearer, Some new optimum Golomb rulers. IEEE Trans. Inf. Theory 36 (1990) 183–184. | MR | Zbl | DOI

[20] J. Shearer, Symmetric Golomb squares. IEEE Trans. Inf. Theory 50 (2004) 1846–1847. | MR | Zbl | DOI

[21] S. Sidon, Ein Satz uber trigonometrische polynome und seine anwendungen in der theorie der Fourier-Reihen. Math. Annal. 106 (1932) 536–539. | MR | Zbl | DOI

[22] J. Singer, A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43 (1938) 377–385. | MR | JFM | DOI

[23] M. Slusky and W.-J. Van Hoeve, A Lagrangian relaxation for Golomb rulers. Lecture Notes Comput. Sci. 7874 (2013) 251–267. | Zbl | DOI

Cité par Sources :