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A CONJECTURE ON A CONTINUOUS OPTIMIZATION MODEL FOR THE
GOLOMB RULER PROBLEM

Phil Duxbury1, Carlile Lavor2 and Luiz Leduino de Salles-Neto3,∗

Abstract. A Golomb Ruler (GR) is a set of integer marks along an imaginary ruler such that all
the distances of the marks are different. Computing a GR of minimum length is associated to many
applications (from astronomy to information theory). Although not yet demonstrated to be NP-hard,
the problem is computationally very challenging. This brief note proposes a new continuous optimization
model for the problem and, based on a given theoretical result and some computational experiments,
we conjecture that an optimal solution of this model is also a solution to an associated GR of minimum
length.
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1. Introduction

Given a positive integer n, the Golomb Ruler Problem (GRP) asks for locating n integer marks along an
imaginary ruler such that all distances between pairs of marks are distinct and the length of the ruler is
minimum [3,6]. The GRP has many applications, including astronomy [4], communications [1], and information
theory [18].

Historically, the GRP first appeared related to Sidon sets [21], i.e. sets of integers so that all pairwise sums
of elements of the set are distinct. Lower bounds for the GRP and connections to number theory are discussed,
respectively, in [7, 14,22,23].

We say that we have a Golomb Ruler (GR), given n marks, when the associated distances are all different,
and an Optimal Golomb Ruler (OGR), when a GR has the smallest length.

For example, the OGR for n = 4 is {0, 1, 4, 6}, and for n = 5, there are two solutions: {0, 1, 4, 9, 11} and
{0, 2, 7, 8, 11}.

Although not yet demonstrated to be NP-hard, solving the GRP exactly proved to be very difficult [5, 19].
Solutions for all n ≤ 27 are available on Wikipedia (“Golomb Ruler”, acessed on February 15th, 2021).

In [13], a linear programming model is proposed for the GRP and, more recently, authors in [8] compare
different optimization approaches to certify optimality to the GRP.
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We present a new model to the GRP based on a continuous optimization formulation (Sect. 2.1). In Section 2.2,
we give a theoretical result and conjecture that a solution of this model is also a solution to the associated GRP.
Computational experiments are given in Section 3. Section 4 concludes the paper with new research directions.

2. Models, a theoretical result and a conjecture for the GRP

Formally, a GR consists of a set of integers R = {r1, . . . , rn}, with r1 < r2 < . . . < rn, such that for each
positive integer d, there is at most one pair {ri, rj} ⊂ R, i < j, that satisfies

d = rj − ri.

The set R represents positions of n marks on the ruler with length L = rn − r1. Without loss of generality, we
fix r1 = 0.

2.1. A new model for the GRP

In order to present the first model to the GRP (first described in [8]), we need an upper bound Lu for the
length of the ruler, given also as input of the problem, in addition to n marks on the ruler:

min
t≥0, xi∈{0,1}

t

s.t.
ixi ≤ t, i = 1, . . . , Lu,

Lu∑
i=1

xi = n− 1,

xj +
Lu−j∑
i=1

(xixi+j) ≤ 1, j = 1, . . . , Lu − 1,

xi ∈ {0, 1}, i = 1, . . . , Lu. (2.1)

Since we are minimizing t, inequalities

ixi ≤ t,

for i = 1, . . . , Lu, “force” the length of the ruler to be minimum. At the same time, equation

Lu∑
i=1

xi = n− 1

requires that n− 1 of the variables xi are equal to 1, and inequalities

xj +
Lu−j∑
i=1

(xixi+j) ≤ 1,

for j = 1, . . . , Lu − 1, guarantee that all distances between pairs of marks are distinct.
A solution (x1, . . . , xLu

) of model (2.1) provides a GRP solution given by (ixi), for i = 1, . . . , Lu, whose
minimum length of the associated ruler is the optimal value found for t.
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In the literature, there are many heuristics for calculating upper bounds for the GRP (e.g. see [8]). We
propose a simple greedy heuristic whose pseudocode is given below1:

Algorithm 1: Greedy Heuristic.
Input: number of marks n
Set d = [0, 0, . . .], mark = [0, 0, . . .], I = {0, 1, 2, 3, . . .}, J = ∅, L = 0;
Put a mark in position 0, set nmark = 1 and mark[0] = 1;
while nmark < n do

Define k = min
i∈I−J

{i} such that d[i] = 0 and set L0 = L + k;

if d[L0 − i] = 0 for all i such that mark[i] = 1 then
Set L = L0, mark[k] = 1 and d[L0 − i] = 1 for all i such that mark[i] = 1 ;

else
J = J ∪ {i} and nmark = nmark − 1;

end
nmark = nmark + 1

end
Output: upper bound L0 and vector mark

To solve larger instances of the GRP, compared to model (2.1), we propose below a continuous version of
this model, with a simple but fundamental modification on the first constraint:

min
t≥0, xi∈[0,1]

t

s.t.
ixi ≤ txi, i = 1, . . . , Lu,

Lu∑
k=1

xi = n− 1,

xj +
Lu−j∑
i=1

(xixi+j) ≤ 1, j = 1, . . . , Lu − 1,

0 ≤ xi ≤ 1, i = 1, . . . , Lu. (2.2)

2.2. A theorem and a conjecture for the GRP

The next result establishes that, if the optimal solution (x1, . . . , xLu
) of model (2.2) is such that xi ∈ {0, 1},

for i = 1, . . . , Lu, in fact, (x1, . . . , xLu) is also a solution for the associated GRP.

Theorem 2.1. Given an upper bound Lu for model (2.2) and let L be the optimal value associated to an optimal
solution x = (x1, . . . , xLu). If xi ∈ {0, 1}, for i = 1, . . . , Lu, then x = (x1, . . . , xLu) is an optimal solution for
model (2.1) with optimal value equal to L.

Proof. If x = (x1, . . . , xLu
) is an optimal solution to problem (2.2) with xi ∈ {0, 1}, for i = 1, . . . , Lu, then

x = (x1, . . . , xLu) is a feasible solution to problem (2.1). Suppose that there exists another feasible solution
y = (y1, . . . , yLu

) to problem (2.1) such that t = maxi=1,...,Lu
{iyi} < L. Since y is a feasible solution to problem

(2.2), L cannot be the optimal value, which is a contradiction. �

Computational experiments provided in the next section indicate that the opposite direction of the above
result is also true, which we state as a conjecture, given as follows.

Conjecture 2.2. Given an upper bound Lu for model (2.1), if L is the optimal value associated to an optimal
solution x = (x1, . . . , xLu), then x = (x1, . . . , xLu) is an optimal solution for model (2.2) with optimal value
equal to L.

1The source code is available on GitHub at https://github.com/luizleduino/golombruler/blob/master/heuristic.

https://github.com/luizleduino/golombruler/blob/master/heuristic
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Table 1. Upper bounds.

n Heuristic n2 n2 − n

5 12 25 20
6 20 36 30
7 30 49 42
8 44 64 56
9 59 81 72
10 75 100 90
11 96 121 120
12 118 144 132
13 143 169 156
14 169 196 182
15 197 225 210
16 230 256 240
17 264 289 272
18 299 324 306
19 335 361 342
20 373 400 380
21 413 441 420
22 455 484 462
23 501 529 506
24 549 576 552
25 598 625 600
26 648 676 650
27 701 729 702
28 758 784 756

3. Computational results

For n = 5, . . . , 28, the values for Lu were obtained using the greedy heuristic as described in the previous
section. Table 1 gives such values, comparing to two conjectured upper bounds for the GRP [8].

For n = 5, . . . , 11, Table 2 shows the computational time, in seconds, required to find the associated optimal
values (also given) considering models (2.1) and (2.2).

Model (2.2) was solved using the software “Knitro 12.3.0”, via Neos Server Version 6.02, and “Cplex 12.8.0”
was used to solve model (2.1), since it is better than Knitro to combinatorial problems. All the instances run
on a Lenovo laptop with 6 GB RAM, intel celeron 1.6 GHz and 64 bit windows 10.

The limit time was set to 120 000 s when the solver Cplex was used. For the solver Knitro, we used 5000
random initial solutions.

From Table 2, we see that the computational time required for solving model (2.1) increases exponentially
and no solution is found for n > 7.

4. Conclusions

Using a very modest computer, small-size instances of the GRP were solved, with related computational time
increasing sub-exponentially (differently from the exponential cost of the combinatorial model), which may
suggest promising research directions based on this new approach. Indeed, it is possible to develop an ad hoc
nonlinear optimization algorithm for the mathematical model proposed,in order to improve the computational

2https://neos-server.org/neos/solvers/cp:Knitro/AMPL.html.

https://neos-server.org/neos/solvers/cp:Knitro/AMPL.html


A CONJECTURE ON A CONTINUOUS OPTIMIZATION MODEL FOR THE GRP 2245

Table 2. Computational time in seconds and optimal values.

n Lu Optimal Value Model (2.1) – Cplex Model (2.2) – Knitro

5 12 11 0.125 1.66
6 20 17 0.266 4.30
7 30 25 395.265 11.37
8 44 34 – 18.78
9 59 44 – 299.14
10 75 55 – 579.84
11 96 72 – 589.30

results. This possibility can be considered the main advantage of our proposal, compared to the other approaches
given in literature.

Compared to two conjectured upper bounds for the GRP, the proposed greedy heuristic also presented good
results as observed in Table 1.

Our approach is based on a continuous optimization model and we conjecture that an optimal solution of
this model is also a solution to the related GRP.

We emphasize that GRP solutions for n = 24, 25, 26, 27 have been obtained by a massively parallel computa-
tional system (www.distributed.net) and the problem for n = 28 is currently under way, whose search started
in 2014.

Motivated by the application of the GRP on wireless localization [17] and Partial Digest Problem [15], the
connection with Distance Geometry [2, 9–12, 16] should be exploited, also considering the variants of the GRP
in 2D or higher dimensions [20].

Acknowledgements. We would like to thank the Brazilian research agencies CNPq, CAPES, and FAPESP for their
financial support and the reviewer’s comments.
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