Inertial normal S -type Tseng’s extragradient algorithm for solution of variational inequality problems
RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2165-2180

In this paper, we introduce inertial Tseng’s extragradient algorithms combined with normal-S iteration process for solving variational inequality problems involving pseudo-monotone and Lipschitz continuous operators. Under mild conditions, we establish the weak convergence results in Hilbert spaces. Numerical examples are also presented to show that faster behaviour of the proposed method.

DOI : 10.1051/ro/2021091
Classification : 47J05, 47J25, 47J20
Keywords: Pseudo-Monotone mapping, Tseng’s Extragradient Method, Variational Inequality Problems
@article{RO_2021__55_4_2165_0,
     author = {Sahu, D.R. and Singh, Amit Kumar},
     title = {Inertial normal $S$-type {Tseng{\textquoteright}s} extragradient algorithm for solution of variational inequality problems},
     journal = {RAIRO. Operations Research},
     pages = {2165--2180},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/ro/2021091},
     mrnumber = {4282590},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021091/}
}
TY  - JOUR
AU  - Sahu, D.R.
AU  - Singh, Amit Kumar
TI  - Inertial normal $S$-type Tseng’s extragradient algorithm for solution of variational inequality problems
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 2165
EP  - 2180
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021091/
DO  - 10.1051/ro/2021091
LA  - en
ID  - RO_2021__55_4_2165_0
ER  - 
%0 Journal Article
%A Sahu, D.R.
%A Singh, Amit Kumar
%T Inertial normal $S$-type Tseng’s extragradient algorithm for solution of variational inequality problems
%J RAIRO. Operations Research
%D 2021
%P 2165-2180
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021091/
%R 10.1051/ro/2021091
%G en
%F RO_2021__55_4_2165_0
Sahu, D.R.; Singh, Amit Kumar. Inertial normal $S$-type Tseng’s extragradient algorithm for solution of variational inequality problems. RAIRO. Operations Research, Tome 55 (2021) no. 4, pp. 2165-2180. doi: 10.1051/ro/2021091

[1] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications. Springer, New York, NY, USA (2009). | MR | Zbl

[2] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14 (2004) 773–782. | MR | Zbl | DOI

[3] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Space. Springer, Berlin (2011). | MR | Zbl | DOI

[4] R. I. Boţ and E. R. Csetnek, An inertial Tsengs type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171 (2015) 600–616. | MR | DOI

[5] R. I. Boţ, E.R. Csetnek and P. T. Vuong, The Forward-Backward-Forward Method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. Preprint arXiv:1808.08084 (2018). | MR

[6] X. Cai, G. Gu and B. He, On the 0 ( 1 / t ) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57 (2014) 339–363. | MR | Zbl | DOI

[7] S. Y. Cho, X. Qin, J. C. Yao and Y. Yao, Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces. J. Nonlinear Convex Anal. 19 (2018) 251–264. | MR

[8] A. Dixit, D. R. Sahu, A. K. Singh and T. Som, Application of a new accelerated algorithm to regression problems. Soft Comput. 24 (2020) 1539–1552. | DOI

[9] A. Gibali, S. Reich and R. Zalas, Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. 17 (2015) 775–811. | MR | DOI

[10] A. A. Goldstein, Convex programming in Hilbert spaces. Bull. Am. Math. Soc. 70 (1964) 709–710. | MR | Zbl | DOI

[11] D. V. Hieu and S. Reich, Two Bregman projection methods for solving variational inequalities. Optimization (2020) 1–26. DOI: 10.1080/02331934.2020.1836634. | MR

[12] D. V. Hieu and D. V. Thong, New extragradient-like algorithms for strongly pseudomonotone variational inequalities. J. Global Optim. 70 (2018) 385–399. | MR | DOI

[13] D. V. Hieu, Y. J. Cho, Y. B. Xiao and P. Kumam, Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces. Vietnam J. Math. (2020) 1–19. DOI: 10.1007/s10013-020-00447-7. | MR

[14] D. V. Hieu, J. J. Strodiot and L. D. Muu, An explicit extragradient algorithm for solving variational inequalities. J. Optim. Theory App. 185 (2020) 476–503. | MR | DOI

[15] D. V. Hieu, Y. J. Cho and Y. B. Xiao, Modified accelerated algorithms for solving variational inequalities. Int. J. Comput. Math. 97 (2020) 2233–2258. | MR | DOI

[16] D. V. Hieu, Y. J. Cho, Y. B. Xiao and P. Kumam, Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces. Optimization 69 (2020) 2279–2304. | MR | DOI

[17] P. D. Khanh, A new extragradient method for strongly pseudomonotone variational inequalities. Numer. Funct. Anal. Optim. 37 (2016) 1131–1143. | MR | DOI

[18] P. D. Khanh and P. T. Vuong, Modified projection method for strongly pseudomonotone variational inequalities. J. Global Optim. 58 (2014) 341–350. | MR | Zbl | DOI

[19] D. S. Kim, P. T. Vuong and P. D. Khanh, Qualitative properties of strongly pseudomonotone variational inequalities. Optim. Lett. 10 (2016) 1669–1679. | MR | DOI

[20] G. M. Korpelevich, The extragradient method for finding saddle points and other problems. Matecon 12 (1976) 747–756. | MR | Zbl

[21] P. E. Maingé and M. L. Gobinddass, Convergence of one-step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171 (2016) 146–168. | MR | DOI

[22] Y. U. Malitsky and V. V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems. J. Global Optim. 61 (2015) 193–202. | MR | Zbl | DOI

[23] B. T. Polyak, Some methods of speeding up the convergence of iterarive methods. Zh. Vychisl. Mat. Mat. Fiz. 4 (1964) 1–17. | MR | Zbl

[24] D. R. Sahu, Applications of the S -iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory Appl. 12 (2011) 187–204. | MR | Zbl

[25] D. R. Sahu, Applications of accelerated computational methods for quasi-nonexpansive operators to optimization problems. Soft Comput. 24 (2020) 17887–17911. | DOI

[26] D. R. Sahu, A. Pitea and M. Verma, A new iteration technique for nonlinear operators as concerns convex programming and feasibility problems. Numer. Algorithms 83 (2020) 421–449. | MR | DOI

[27] D. R. Sahu, J. C. Yao, M. Verma and K. K. Shukla, Convergence rate analysis of proximal gradient methods with applications to composite minimization problems. Optimization 70 (2021) 75–100. | MR | DOI

[28] M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems. SIAM J. Control Optim. 37 (1999) 765–776. | MR | Zbl | DOI

[29] G. Stampacchia, Forms bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258 (1964) 4413–4416. | MR | Zbl

[30] B. S. Thakur and M. Postolache, Existence and approximation of solutions for generalized extended nonlinear variational inequalities. J. Inequal. Appl. 2013 (2013) 590. | MR | Zbl | DOI

[31] D. V. Thong and D. V. Hieu, An inertial method for solving split common fixed point problems. J. Fixed Point Theory Appl. 19 (2017) 3029–3051. | MR | DOI

[32] D. V. Thong and D. V. Hieu, Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 78 (2017) 1045–1060. | MR | DOI

[33] D. V. Thong and D. V. Hieu, New extragradient methods for solving variational inequality problems and fixed point problems. J. Fixed Point Theory Appl. 20 (2018) 129. | MR | DOI

[34] D. V. Thong and D. V. Hieu, Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341 (2018) 80–98. | MR | DOI

[35] D. V. Thong and P. T. Vuong, Modified Tseng’s extragradient methods for solving pseudomonotone variational inequalities. Optimization 68 (2019) 2203–2222. | MR | DOI

[36] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38 (2000) 431–446. | MR | Zbl | DOI

[37] M. Verma and K. K. Shukla, Convergence analysis of accelerated proximal extra-gradient method with applications. Neurocomputing 388 (2020) 288–300. | DOI

[38] F. H. Wang and H. K. Xu, Weak and strong convergence theorems for variational inequality and fixed point problems with Tseng’s extragradient method. Taiwan. J. Math. 16 (2012) 1125–1136. | MR | Zbl

[39] Y. Yao, R. Chen and H. K. Xu, Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 72 (2010) 3447–3456. | MR | Zbl | DOI

[40] Y. Yao, M. Postolache, Y. C. Liou and J. C. Yao, Construction algorithms for a class of monotone variational inequalities. Optim. Lett. 10 (2016) 1519–1528. | MR | DOI

[41] Y. Yao, M. Postolache and J. C. Yao, An iterative algorithm for solving generalized variational inequalities and fixed points problems. Mathematics 7 (2019) 61. | DOI

[42] Y. Yao, M. Postolache and J. C. Yao, Iterative algorithms for generalized variational inequalities. UPB Sci. Bull., Ser. A 81 (2019) 3–16. | MR

[43] Y. Yao, M. Postolache and J. C. Yao, Strong convergence of an extragradient algorithm for variational inequality and fixed point problems. U. Politeh. Buch. Ser. A 82 (2020) 3–12. | MR

[44] X. P. Zhao, D. R. Sahu and C. F. Wen, Iterative methods for system of variational inclusions involving accretive operators and applications. Fixed Point Theory 19 (2018) 801–822. | MR | DOI

Cité par Sources :