On graft transformations decreasing distance spectral radius of graphs
RAIRO. Operations Research, Tome 55 (2021) no. 3, pp. 1757-1765

The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. In this paper, we give several less restricted graft transformations that decrease the distance spectral radius, and determine the unique graph with minimum distance spectral radius among home-omorphically irreducible unicylic graphs on n ≥ 6 vertices, and the unique tree with minimum distance spectral radius among trees on n vertices with given number of vertices of degree two, respectively.

DOI : 10.1051/ro/2021085
Classification : 05C50, 15A48
Keywords: Distance spectral radius, distance matrix, graft transformation, homeomorphically irreducible unicylic graph
@article{RO_2021__55_3_1757_0,
     author = {Wang, Yanna and Zhou, Bo},
     title = {On graft transformations decreasing distance spectral radius of graphs},
     journal = {RAIRO. Operations Research},
     pages = {1757--1765},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/ro/2021085},
     mrnumber = {4275488},
     zbl = {1468.05170},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021085/}
}
TY  - JOUR
AU  - Wang, Yanna
AU  - Zhou, Bo
TI  - On graft transformations decreasing distance spectral radius of graphs
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 1757
EP  - 1765
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021085/
DO  - 10.1051/ro/2021085
LA  - en
ID  - RO_2021__55_3_1757_0
ER  - 
%0 Journal Article
%A Wang, Yanna
%A Zhou, Bo
%T On graft transformations decreasing distance spectral radius of graphs
%J RAIRO. Operations Research
%D 2021
%P 1757-1765
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021085/
%R 10.1051/ro/2021085
%G en
%F RO_2021__55_3_1757_0
Wang, Yanna; Zhou, Bo. On graft transformations decreasing distance spectral radius of graphs. RAIRO. Operations Research, Tome 55 (2021) no. 3, pp. 1757-1765. doi: 10.1051/ro/2021085

[1] M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey. Linear Algebra App. 458 (2014) 301–386. | MR | Zbl | DOI

[2] S. S. Bose, M. Nath and S. Paul, Distance spectral radius of graphs with r pendent vertices. Linear Algebra App. 435 (2011) 2828–2836. | MR | Zbl | DOI

[3] S. S. Bose, M. Nath and S. Paul, On the distance spectral radius of cacti. Linear Algebra App. 437 (2012) 2128–2141. | MR | Zbl | DOI

[4] Y. Deng, D. Li, H. Lin and B. Zhou, Distance spectral radius of series-reduced trees with parameters. RAIRO: OR 55 (2021) S2561–S2574. | MR | Zbl | DOI

[5] R. L. Graham and H. O. Pollack, On the addressing problem for loop switching. Bell Syst. Tech. J. 50 (1971) 2495–2519. | MR | Zbl | DOI

[6] F. Harary and G. Prins, The number of homeomorphically irreducible trees, and other spices. Acta Math. 101 (1959) 141–162. | MR | Zbl | DOI

[7] A. Ilić, Distance spetral radius of trees with given matching number. Discrete Appl. Math. 158 (2010) 1799–1806. | MR | Zbl | DOI

[8] H. Lin and B. Zhou, Distance spectral radius of trees with given number of segments. Linear Algebra App. 600 (2020) 40–59. | MR | Zbl | DOI

[9] W. Lin, Y. Zhang, Q. Chen, J. Chen, C. Ma and J. Chen, Ordering trees by their distance spectral radii. Discrete Appl. Math. 203 (2016) 106–110. | MR | Zbl | DOI

[10] H. Minc, Nonnegative Matrices. John Wiley & Sons, New York (1988). | MR | Zbl

[11] M. Nath and S. Paul, On the distance spectral radius of bipartite graphs. Linear Algebra App. 436 (2012) 1285–1296. | MR | Zbl | DOI

[12] S. N. Ruzieh and D. L. Powers, The distance spectrum of the path P n and the first distance eigenvector of connected graphs. Linear Multilinear Algebra 28 (1990) 75–81. | MR | Zbl | DOI

[13] D. Stevanović and A. Ilić, Distance spectral radius of trees with fixed maximum degree. Electron. J. Linear Algebra 20 (2010) 168–179. | MR | Zbl | DOI

[14] Y. Wang and B. Zhou, On distance spectral radius of graphs. Linear Algebra App. 438 (2013) 3490–3503. | MR | Zbl | DOI

[15] R. Xing, B. Zhou and F. Dong, The effect of a graft transformation on distance spectral radius. Linear Algebra App. 457 (2014) 261–275. | MR | Zbl | DOI

[16] G. Yu, Y. Wu, Y. Zhang and J. Shu, Some graft transformations and its application on a distance spectrum. Discrete Math. 311 (2011) 2117–2123. | MR | Zbl | DOI

[17] B. Zelinka, Medians and peripherians of trees. Arch. Math. (Brno) 4 (1968) 87–95. | MR | Zbl

Cité par Sources :