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ON GRAFT TRANSFORMATIONS DECREASING DISTANCE SPECTRAL
RADIUS OF GRAPHS

Yanna Wang1 and Bo Zhou2,∗

Abstract. The distance spectral radius of a connected graph is the largest eigenvalue of its distance
matrix. In this paper, we give several less restricted graft transformations that decrease the distance
spectral radius, and determine the unique graph with minimum distance spectral radius among home-
omorphically irreducible unicylic graphs on n ≥ 6 vertices, and the unique tree with minimum distance
spectral radius among trees on n vertices with given number of vertices of degree two, respectively.
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1. Introduction

We consider simple, finite, undirected and connected graphs. For u ∈ V (G), let NG(u) be the set of neighbors
of u in G. The degree of a vertex u in G, denoted by degG(u), is the number of edges incident to u in G.

A homeomorphically irreducible tree is a tree with no vertex of degree two [6]. A homeomorphically irreducible
unicylic graph is a unicylic graph with no vertex of degree two.

Let G be a connected graph on n vertices. For u, v ∈ V (G), the distance between u and v in G, denoted
by dG(u, v), is the length of a shortest path connecting them in G. In particular, dG(u, u) = 0. The distance
spectrum of G is the spectrum of the distance matrix of G, defined as the n by n symmetric matrix D(G) =
(dG(u, v))u,v∈V (G). The distance spectral radius of G, denoted by ρ(G), is the largest distance eigenvalue of
G. Graham and Pollack [5] studied the distance spectrum for the first time due to its connection to a data
communication problem. Now the distance spectrum has been studied extensively, see the survey [1]. Particularly,
the distance spectral radius has received much attention. Graphs with minimum and/or maximum distance
spectral radius have been determined for some classes of graphs, see, e.g., [2,7,11–15]. Yu et al. [16] determined
the graphs with minimum and maximum distance spectral radius among unicylic graphs. Lin and Zhou [8]
determined the trees with maximum distance spectral radius among trees on n vertices with given number of
vertices of degree two.

To determine the structure of the graphs with minimum or maximum distance spectral radius in some class
of graphs, we usually suppose the graph does not have the structure and perform surgery to obtain a graph for
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which the distance spectral radius is decreased or increased. Such surgery is known as graft transformation(s)
in the literature, see, e.g., [3, 4, 9, 14,16].

In this paper, we propose some graft transformations in a more elaborate way. We propose some graft
transformations with less restricted conditions that decrease the distance spectral radius, and as applications,
we identify the unique graphs that minimize the distance spectral radius among homeomorphically irreducible
unicylic graphs on n ≥ 6 vertices, and among trees on n vertices with given number of vertices of degree two,
respectively.

2. Preliminaries

Let G be a connected graph with V (G) = {v1, . . . , vn}. Since D(G) is irreducible, by Perron–Frobenius
theorem, ρ(G) is simple and there is a unique unit positive eigenvector corresponding to ρ(G), which is called
the distance Perron vector of G, denoted by x(G). If y = (yv1 , . . . , yvn

)> ∈ Rn is unit and has at least one
nonnegative entry, then by Rayleigh’s principle, we have ρ(G) ≥ yTD(G)y with equality if and only if y = x(G).
If x = x(G), then for each u ∈ V (G), we have ρ(G)xu =

∑
v∈V (G) dG(u, v)xv, which is called the distance

eigenequation of G at u.
Let N ⊆ (NG(u) \NG(v)) \ {v}. Let G′ = G − uw + vw for w ∈ N . We say that G′ is obtained from G by

moving edge uw at u from u to v.
For a connected graph G with V1 ⊆ V (G), let σG(V1) be the sum of the entries of the distance Perron vector

of G corresponding to the vertices in V1. Furthermore, if all the vertices of V1 induce a connected subgraph H
of G, then we write σG(H) instead of σG(V1).

A component of a graph is a maximal connected subgraph, and a cut edge is an edge of a graph whose removal
increases the number of components of the graph.

For a connected graph G, let s(G) be the minimum row sum of D(G). In [17], s(G)
n is called the mean vertex

deviation of G, where n = |V (G)|. It is known that ρ(G) ≥ s(G), see Theorem 1.1 in page 24 of [10].

3. Graft transformations that decrease the distance spectral radius

Firstly, we give a result related to (the entries of) the distance Perron vector, which will be frequently used
in the subsequent proofs.

Lemma 3.1. Suppose that v, w be two non-adjacent neighbors of vertex u in a connected graph G. Let x = x(G).
Then xw + xu − xv > 0.

Proof. Let V1 = V (G) \ {u, v, w}. For z ∈ V1, one has dG(w, z) ≥ 1 and dG(u, z)− dG(v, z) ≥ −dG(u, v) = −1,
so dG(w, z) + dG(u, z)− dG(v, z) ≥ 0. From the distance eigenequations of G at w, u and v, we have

ρ(G)xw = xu + 2xv +
∑
z∈V1

dG(w, z)xz,

ρ(G)xu = xw + xv +
∑
z∈V1

dG(u, z)xz,

ρ(G)xv = 2xw + xu +
∑
z∈V1

dG(v, z)xz.

Thus

ρ(G)(xw + xu − xv) = −xw + 3xv +
∑
z∈V1

(dG(w, z) + dG(u, z)− dG(v, z))xz

≥ −xw + 3xv,

which implies (ρ(G) + 1)(xw + xu − xv) ≥ xu + 2xv > 0. So it follows that xw + xu − xv > 0. �
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Now we turn our attention to some graft transformations that decrease the distance spectral radius.

Theorem 3.2. Let G be a graph consisting of nontrivial connected graphs G1 and G2 sharing a unique vertex
u such that E(G) = E(G1) ∪E(G2). Suppose that u has neighbor v of degree at least two in G2 satisfying that,
for any z ∈ V (G2) \ {u, v}, dG(u, z) 6= dG(v, z). Let G′ be the graph obtained from G by moving all the edges at
v except uv from v to u. Then ρ(G) > ρ(G′).

Proof. Let w be a neighbor of u in G1. Let x = x(G′). By Lemma 3.1, we have xw + xu − xv > 0.
Let S = {z ∈ V (G2) \ {u, v} : dG(u, z) − dG(v, z) = 1}. Let z be a neighbor of v in G2 different from u. As

dG(u, z) 6= dG(v, z) = 1 and dG(u, z) ≤ dG(v, z) + dG(u, v) = 2, one has dG(u, z) = 2. So z ∈ S and S 6= ∅.

Claim. 1
2x
>(D(G)−D(G′))x ≥ σG′(S) (σG′(G1)− xv).

Note first that, as we pass from G to G′, the distance between a vertex of S and a vertex of V (G1) is decreased
by 1, and the distance between a vertex of S and v is increased by 1. So, to prove the claim, we need only to
show that the distance between any other vertex pairs is decreased or remains unchanged.

It is evident that the distance between any two vertices in V (G1) ∪ {v} remains unchanged as we pass from
G to G′.

Suppose that z1, z2 ∈ V (G2) \ {u, v}. Let P be a path from z1 to z2 with length dG(z1, z2) in G. If v lies
outside P , then P is also a path connecting z1 and z2 in G′. Suppose that v lies on P . If u lies outside P , then
the path obtained from P by replacing v with u is a path connecting z1 and z2 in G′. Otherwise, u lies on P .
In this case, uv appears to be an edge on P . So the path obtained from P by deleting v is a path connecting z1
and z2 in G′. So the distance between any two vertices in V (G2) \ {u, v} is decreased or remains unchanged as
we pass from G to G′.

Suppose that z ∈ S := (V (G2)\{u, v})\S (if S 6= ∅). Then dG(u, z)−dG(v, z) 6= 0, 1. As |dG(u, z)−dG(v, z)| ≤
dG(u, v) = 1, one has dG(u, z)− dG(v, z) = −1. Let P be a path from u to z with length dG(u, z) in G. Then v
lies outside P , so P is also a path from u to z in G′. Therefore, the distance between a vertex in S and a vertex
in V (G1) ∪ {v} is decreased or remains unchanged as we pass from G to G′.

Now we complete the proof of the claim. As ρ(G) ≥ x>D(G)x and ρ(G′) = x>D(G′)x, one has ρ(G)−ρ(G′) ≥
x>(D(G)−D(G′))x. So, by the claim,

1
2

(ρ(G)− ρ(G′)) ≥ 1
2
x>(D(G)−D(G′))x

≥ σG′(S) (σG′(G1)− xv)
≥ σG′(S) (xw + xu − xv)
> 0,

and thus ρ(G) > ρ(G′). �

In the following, we give some consequences of Theorem 3.2.

Corollary 3.3 ([14]). Let G be a connected graph with a cut edge uv that is not a pendant edge. Let G′ be the
graph obtained from G by moving all edges at v except uv from v to u. Then ρ(G) > ρ(G′).

Proof. Let G1 be the component of G−uv containing u and G2 be the subgraph of G induced by V (G)\(V (G1)\
{u}). Note that dG(u, z) = dG(v, z) + 1 for any z ∈ V (G2) \ {u, v}. So the result follows from Theorem 3.2. �

A chain in a graph G is a cycle C such that G− E(C) has exactly |V (C)| components. Length of the cycle
C is the length of the chain. The following is Lemma 3.3 of [3].

Corollary 3.4. Let G be a connected graph with a chain C of even length. Let uv be an edge on the chain C.
Suppose that degG(u) ≥ 3. If G′ = G− {vw : w ∈ NG(v) \ {u}}+ {uw : w ∈ NG(v) \ {u}}, then ρ(G) > ρ(G′).
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Proof. Let G1 be the component of G − E(C) containing u, and G2 be the subgraph of G induced by V (G) \
(V (G1) \ {u}). Let z ∈ V (G2) \ {u, v}. Note that dG(u, z) − dG(v, z) = dG(u,w) − dG(v, w) for some w on C.
If z lies on C, this is evident as w = z, otherwise, w is the vertex on C such that its distance to z is minimum
among all the distances between vertices of C and z in G. As C is a chain, the shortest path connecting
u (v, respectively) and w contains only vertices on C. As the length of C is even, there is a shortest path
connecting u and w passing through v or a shortest path connecting v and w passing through u, implying that
|dG(u,w)− dG(v, w)| = 1, so dG(u, z) 6= dG(v, z). So the result follows from Theorem 3.2. �

Corollary 3.5. Let H be a graph consisting of two nontrivial connected graphs H1 and H2 sharing a unique
vertex u such that E(H) = E(H1) ∪ E(H2). Suppose that uv1, . . . , uvk are pendant edges in H1, where k ≥ 1
and that NH2(u) = N1 ∪N2, where N1, N2 6= ∅ and N1 ∩N2 = ∅. Let

G = H − {uw : w ∈ N1}+ {vkw : w ∈ N1}

or
G = H − {uw : w ∈ N2}+ {vkw : w ∈ N2}.

For any vertex w ∈ V (H2) \ {u}, if all the paths from u to w with the length dH(u,w) pass only through vertices
in N1 or pass only through vertices in N2, then ρ(G) > ρ(H).

Proof. Assume that G = H − {uw : w ∈ N2} + {vkw : w ∈ N2}. Then H is obtainable from G by moving
all the edges at vk except uvk from vk to u. Let G1 = H1 − vk and let G2 be the subgraph of G induced by
V (H2) ∪ {vk}. Suppose that z ∈ V (G2) \ {u, vk}, i.e., z ∈ V (H2) \ {u}. Note that any shortest path from
u to z in H2 goes through only vertices in N1 or N2. Correspondingly, any shortest path from u to z in G2

goes through only vertices in N1, so dG(u, z) = dG(vk, z) − 1 < dG(vk, z), or any shortest path from u to
z in G2 goes through only vertices in N2, so dG(u, z) = dG(vk, z) + 1 > dG(vk, z). Now by Theorem 3.2,
ρ(G) > ρ(H). �

If k ≥ 2, then Corollary 3.5 becomes Theorem 2.4 of [16].
Corollary 3.3 may be generalized as the following version.

Theorem 3.6. Let G be the graph obtained from vertex disjoint nontrivial connected graphs G1 and G2 with
u ∈ V (G1) and v ∈ V (G2) by adding a path Pt = v1 . . . vt with v1 = u and vt = v, where t ≥ 2, V (G1)∩V (Pt) =
{v1} and V (G2) ∩ V (Pt) = {vt}. Let G′ be the graph obtained from G by moving all the edges at vt in E(G2)
from vt to v1. Then ρ(G) > ρ(G′).

Proof. Let x = x(G′). Let p = b t
2c and p1 = d t

2e.
Let Γ =

∑p
i=1 xvi

+ σG′(V (G1) \ {v1}) + σG′(V (G2) \ {vt})−
∑t

i=p1+1 xvi
.

From the distance eigenequations of G′ at vp1+1 and vp, we have

ρ(G′)
(
xvp1+1 − xvp

)
= (p1 + 1− p)Γ. (3.1)

For i = 1, . . . , p− 1, from the distance eigenequations of G′ at vt+1−i, vi, vt+1−(i+1) and vi+1, we have

ρ(G′)
((
xvt+1−i − xvi

)
−
(
xvt+1−(i+1) − xvi+1

))
= ρ(G′)

(
xvt+1−i − xvi

)
− ρ(G′)

(
xvt+1−(i+1) − xvi+1

)
= 2

 i∑
j=1

xvj
+ σG′(V (G1) \ {v1}) + σG′(V (G2) \ {vt})−

t∑
j=t+1−i

xvj


= 2Γ− 2

p∑
j=i+1

xvj + 2
t−i∑

j=p1+1

xvj
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= 2Γ + 2
p∑

j=i+1

(
xvt+1−j

− xvj

)
. (3.2)

We claim that xvt+1−i
− xvi

and Γ have common sign for i = 1, . . . , p by induction on i. If i = p, then it
follows from (3.1). Suppose that 1 ≤ i ≤ p− 1, and xvt+1−j

− xvj
and Γ have common sign for i+ 1 ≤ j ≤ p. So∑p

j=i+1(xvt+1−j
− xvj

) and Γ have common sign. Thus, from (3.2), (xvt+1−i
− xvi

)− (xvt+1−(i+1) − xvi+1) and Γ
have common sign. This, together with the induction assumption that xvt+1−(i+1) − xvi+1 and Γ have common
sign, implies that xvt+1−i − xvi and Γ have common sign.

Note that

Γ >

p∑
i=1

xvi −
t∑

i=p1+1

xvi = −
p∑

i=1

(
xvt+1−i − xvi

)
.

This requires the above common sign to be +. Again, from (3.1) and (3.2), we have xvt+1−i
−xvi

> xvt+1−(i+1) −
xvi+1 > 0 for i = 1, . . . , p − 1, i.e., 0 < xvt+1−i

− xvi
< xvt+2−i

− xvi−1 for i = 2, . . . , p. It follows that for
i = 2, . . . , p,

0 < xvt+1−i
− xvi

< xvt
− xv1 . (3.3)

As Pt = v1 . . . vt is a proper induced subgraph of G′ and dPt
(vi, vj) = dG′(vi, vj) for any 1 ≤ i < j ≤ t, we

have s(G′) > s(Pt). Note that ρ(G′) ≥ s(G′) ([10], Thm. 1.1 in p. 24) and s(Pt) =
⌊

t2

4

⌋
[17]. So

ρ(G′) ≥ s(G′) > s(Pt) =
⌊
t2

4

⌋
· (3.4)

As we pass from G to G′, the distance between a vertex of V (G2) \ {vt} and a vertex of V (G1) \ {v1} is
decreased by t−1, the distance between a vertex of V (G2)\{vt} and vi for i = 1, . . . , t is decreased by t−2i+1,
and the distances between all other vertex pairs remain unchanged. Let A = (t−1)σG′(V (G1)\{v1})+

∑p
i=1(t−

2i+ 1)(xvi
− xvt+1−i

), i.e.,

A = (t− 1)σG′(V (G1) \ {v1}) +
t∑

i=1

(t− 2i+ 1)xvi .

So

1
2

(ρ(G)− ρ(G′)) ≥ 1
2
x>(D(G)−D(G′))x

= σG′(V (G2) \ {vt})

(
(t− 1)σG′(V (G1) \ {v1}) +

t∑
i=1

(t− 2i+ 1)xvi

)
= σG′(V (G2) \ {vt}) ·A. (3.5)

Let G∗ be the graph obtained from G by moving all the edges at v1 in E(G1) from v1 to vt. Let y = x(G∗).
Let B = (t− 1)σG∗(V (G2) \ {vt}) +

∑p
i=1(t− 2i+ 1)(yvt+1−i

− yvi
), i.e.,

B = (t− 1)σG∗(V (G2) \ {vt})−
t∑

i=1

(t− 2i+ 1)yvi .

By the similar arguments as above, we have

1
2

(ρ(G)− ρ(G∗)) ≥ 1
2
y>(D(G)−D(G∗))y
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= σG∗(V (G1) \ {v1})

(
(t− 1)σG∗(V (G2) \ {vt})−

t∑
i=1

(t− 2i+ 1)yvi

)
= σG′(V (G1) \ {v1}) ·B. (3.6)

It is evident that φ : V (G′)→ V (G∗) defined by

φ(w) =

{
w if w ∈ V (G1) \ {u} or w ∈ V (G2) \ {v},
vt+1−i if w = vi with i = 1, . . . , t

is an isomorphism from G′ to G∗. Let M be the permutation matrix associated to this isomorphism. That is,
the nonzero entries of M are Mww = 1 if w ∈ V (G1) \ {u} or w ∈ V (G2) \ {v}, Mvivt+1−i

= 1 for i = 1, . . . , t.
Then MTD(G′)M = D(G∗). As ρ(G′) = x>D(G′)x = (Mx)>D(G∗)Mx, Mx is the distance Perron vector of
G∗ and so y = Mx by the Perron–Frobenius theorem. That is, yw = xw if w ∈ V (G1) \ {u} or w ∈ V (G2) \ {v},
and yvi

= xvt+1−i
. Then B = (t − 1)σG′(V (G2) \ {vt}) +

∑p
i=1(t − 2i + 1)(xvi

− xvt+1−i
). From the distance

eigenequations of G′ at vt and v1, we have

ρ(G′)(xvt − xv1) = (t− 1) (σG′(V (G1) \ {v1}) + σG′(V (G2) \ {vt}))

+
p∑

i=1

(t− 2i+ 1)
(
xvi
− xvt+1−i

)
= A+B −

p∑
i=1

(t− 2i+ 1)
(
xvi
− xvt+1−i

)
= A+B +

p∑
i=1

(t− 2i+ 1)
(
xvt+1−i − xvi

)
.

Then, by (3.3) and (3.4), we have

A+B = ρ(G′) (xvt − xv1)−
p∑

i=1

(t− 2i+ 1)
(
xvt+1−i − xvi

)
≥ ρ(G′) (xvt

− xv1)−
p∑

i=1

(t− 2i+ 1) (xvt
− xv1)

=

(
ρ(G′)−

p∑
i=1

(t− 2i+ 1)

)
(xvt
− xv1)

=
(
ρ(G′)−

⌊
t2

4

⌋)
(xvt − xv1)

> 0.

Thus A > 0 or B > 0. Now the result follows from (3.5) and (3.6). �

Now we present the third graft transformation and consider its effect on the distance spectral radius.

Theorem 3.7. Let G be a graph consisting of two nontrivial connected graphs G1 and G2 sharing a unique
vertex u such that E(G) = E(G1) ∪ E(G2). Suppose that NG2(u) = {v1, v2}, degG2

(vi) ≥ 2 for i = 1, 2, v1 and
v2 are not adjacent, and for any w ∈ V (G2) \ {u}, dG2(v1, w) 6= dG2(v2, w). Let G′ be the graph obtained from
G by moving all the edges at vi except uvi from vi to u for each i = 1, 2. Then ρ(G) > ρ(G′).
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Proof. For i = 1, 2, let Si = {z ∈ V (G2) \ {vi} : dG2(u, z) − dG2(vi, z) = 1}. As degG2
(vi) ≥ 2, one has Si 6= ∅

for i = 1, 2. As dG2(v1, w) 6= dG2(v2, w) for any w ∈ V (G2) \ {u}, one has S1 ∩ S2 = ∅.
Choose w ∈ NG1(u). Let x = x(G′), then by Lemma 3.1, we have xw + xu − xvi > 0 for i = 1, 2.
As we pass from G to G′, for i = 1, 2, the distance between a vertex of Si and a vertex of V (G1) is decreased

by 1, the distance between a vertex of Si and vi is increased by 1, and the distance between any other vertex
pair is decreased or remains unchanged. So

1
2

(ρ(G)− ρ(G′)) ≥ 1
2
x>(D(G)−D(G′))x

≥
2∑

i=1

σG′(Si) (σG′(G1)− xvi)

≥
2∑

i=1

σG′(Si) (xw + xu − xvi)

> 0,

and thus ρ(G) > ρ(G′). �

The following is Lemma 3.4 of [3].

Corollary 3.8. Let G be a connected graph with a chain C of odd length `, where ` ≥ 5. Let uv1 and uv2 be
two edges on the chain C. Suppose that degG(u) ≥ 3. If G′ = G − {v1w : w ∈ NG(v1) \ {u}} − {v2w : w ∈
NG(v2) \ {u}}+ {uw : w ∈ (NG(v1) ∪NG(v2)) \ {u}}, then ρ(G) > ρ(G′).

Proof. Let G1 be the component of G − E(C) containing u, and G2 be the subgraph of G induced by V (G) \
(V (G1)\{u}). Let w ∈ V (G2)\{u}. Denote by z the vertex on C such that its distance to w is minimum among
all vertices of C. It is evident that z = w if w lies on C. Then dG(v1, w)− dG(v2, w) = dG(v1, z)− dG(v2, z). As
C is a chain, the shortest path connecting v1 (v2, respectively) and z contains only vertices on C. Let P (Q,
respectively) be the shortest path connecting v1 (v2, respectively) and z in G. If P and Q are edge disjoint, then
dG(v1, z) +dG(v2, z) = `−2, and as ` is odd, we have dG(v1, z) 6= dG(v2, z). Otherwise, |dG(v1, z)−dG(v2, z)| =
dG(v1, v2) = 2, so dG(v1, z) 6= dG(v2, z). In either case, dG(v1, w) 6= dG(v2, w). So the result follows from
Theorem 3.7. �

Corollary 3.9. Let H be a graph consisting of two nontrivial connected graphs H1 and H2 sharing a unique
vertex u such that E(H) = E(H1) ∪ E(H2). Suppose that uv1, . . . , uvk are pendant edges in H1, where k ≥ 2
and that NH2(u) = N1 ∪N2, where N1, N2 6= ∅ and N1 ∩N2 = ∅. Let

G = H − {uw : w ∈ NH2(u)}+ {vk−1w : w ∈ N1}+ {vkw : w ∈ N2}.

For any vertex w ∈ V (H2) \ {u}, if all the paths from u to w with length dG(u,w) pass only through N1 or pass
only through N2, then ρ(G) > ρ(H).

Proof. Let G1 = H1 − {vk−1, vk} and let G2 be the subgraph of G induced by V (H2) ∪ {vk−1, vk}. Suppose
that z ∈ V (G2) \ {u}, i.e., z ∈ (V (H2) \ {u}) ∪ {vk−1, vk}. Note that any shortest path from u to z in H2 goes
through only vertices in N1 or N2. Correspondingly, any shortest path from u to z in G2 goes through only
vertices in N1 or N2. Consequently, dG(vk−1, z) 6= dG(vk, z). Now by Theorem 3.7, ρ(G) > ρ(H). �

We remark that Corollary 3.9 and Theorem 3.7 are equivalent. If k ≥ 3, then Corollary 3.9 is just Theorem 2.3
of [16].
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4. Graphs minimizing the distance spectral radius

First we determine the graphs that minimize the distance spectral radius among all homeomorphically irre-
ducible unicylic graphs on n ≥ 6 vertices.

Lemma 4.1 ([9]). For k ≥ 2 and 1 ≤ a1 ≤ a2 − 2, let G be a graph obtained from a connected graph G0 with
two vertices u1 and u2 such that NG0(u1) \ {u2} ⊆ NG0(u2) \ {u1}, by attaching ai pendant vertices to ui for
each i = 1, 2. Let G′ be the graph obtained from G by moving one pendant edge at u2 from u2 to u1. Then
ρ(G) < ρ(G′).

Let Un be a unicylic graph on n vertices obtained from a triangle K3 with V (K3) = {v1, v2, v3}, by attaching
a pendant vertex to vi for i = 1, 2, respectively, and attaching n− 5 pendant vertices to v3.

Theorem 4.2. Let G be a homeomorphically irreducible unicylic graph on n ≥ 6 vertices. Then ρ(G) ≥ ρ(Un)
with equality if and only if G ∼= Un.

Proof. Let G be a homeomorphically irreducible unicylic graph on n vertices that minimizes the distance spectral
radius.

Let g be the girth of the unique cycle C of G. Let u be a vertex on C. Since G is a homeomorphically
irreducible unicylic graph, we have degG(u) ≥ 3. Let v1, v2 be two neighbors of u on C.

Suppose that g ≥ 4. Suppose that g is even. Let G′ be the graph obtained from G by moving all the edges
at v1 except uv1 from v1 to u. Note that G′ is a homeomorphically irreducible unicylic graph on n vertices. By
Theorem 3.2 or Corollary 3.4, ρ(G′) < ρ(G), a contradiction. Thus g is odd. Let G′′ be the graph obtained from
G by moving all the edges at vi except uvi from vi to u for each i = 1, 2. Obviously, G′′ is a homeomorphically
irreducible unicylic graph on n vertices. By Theorem 3.7 or Corollary 3.8, we have ρ(G′′) < ρ(G), also a
contradiction. It thus follows that g = 3.

Suppose that G has an edge, say vw, outside C that is not a pendant edge. Evidently, vw is a cut edge of G.
Let G∗ be the graph obtained from G by moving all the edges at w except vw from w to v. It is obvious that G∗

is a homeomorphically irreducible unicylic graph on n vertices. By Theorem 3.2 or Corollary 3.3, ρ(G∗) < ρ(G),
a contradiction. Thus, every edge of G outside C is a pendant edge. That is, G is a unicylic graph obtainable
from a triangle K3 with V (K3) = {v1, v2, v3} by attaching ai pendant vertices to vi for i = 1, 2, 3, where
1 ≤ a1 ≤ a2 ≤ a3.

If n = 6, 7, then G ∼= Un.
Suppose that n ≥ 8 and a2 ≥ 2. Let G̃ be the graph obtained from G by moving one pendant edge at v2

from v2 to v3. Obviously, G̃ is a homeomorphically irreducible unicylic graph on n vertices. By Lemma 4.1,
ρ(G̃) < ρ(G), a contradiction. So a2 = 1. That is, a1 = a2 = 1 and a3 = n− 5, i.e., G ∼= Un. �

In the following, we determine the trees that minimize the distance spectral radius among all trees on n
vertices with given number of vertices of degree two.

Let G be a connected graph with v ∈ V (G). For k, ` ≥ 0, let G(v, k, `) be the graph obtained from G by
attaching two paths Pk and P` at one end vertices to v. The following lemma was established in [13], for which
a simple argument was given in [15].

Lemma 4.3. Let G be a connected graph with v ∈ V (G). If k ≥ ` ≥ 1, then ρ(G(v, k, `)) < ρ(G(v, k+1, `−1)).

A tree is called starlike if it has exactly one vertex of degree at least three; this vertex is called the branching
vertex. If the branch vertex has degree s, we call it an s-starlike tree. For an s-starlike tree T on n vertices
with branching vertex u, each path connecting u and a pendant vertex is called a leg. Denote by a1, . . . , as the
lengths of the s legs of T . Then a1 + · · ·+as = |E(T )| = n−1. Assume that a1 ≥ · · · ≥ as. If a1−as = 0, 1, then
the multiset {a1, . . . , as} composes of bn−1

s c + 1 with multiplicity r and bn−1
s c with multiplicity s − r, where

r = n− 1− sbn−1
s c. In this case, we call it an s-starlike tree of almost equal leg lengths, denoted by Sn,s.
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Let T be a tree on n vertices with t vertices of degree two. If t = n − 2, then T ∼= Pn. Note that t =
n − 3 is impossible, since T has at least two pendant vertices, and the remaining unique vertex has degree
2(n− 1)− 2(n− 3)− 1 · 2 = 2.

Theorem 4.4. Let T be a tree on n vertices with t vertices of degree two, where 0 ≤ t ≤ n − 4. Then ρ(T ) ≥
ρ(Sn,n−t−1) with equality if and only if T ∼= Sn,n−t−1.

Proof. Let T be a tree on n vertices with t vertices of degree two that minimizes the distance spectral radius.
Since 0 ≤ t ≤ n− 4, the maximum degree of T is at least three.

Suppose that there are at least two vertices of degree at least three in T . Then we choose two such vertices,
say u and v, by requiring that the distance between them is as small as possible. Let P be the path connecting
u and v. If u and v are not adjacent, then each vertex on P except u and v has degree two. Let w be the vertex
adjacent to v on P (w = u if u and v are adjacent). Let T ′ be the tree obtained from T by moving all the
edges at v except wv from v to u. It is easily seen that T ′ possesses t vertices of degree two. By Theorem 3.6,
ρ(T ′) < ρ(T ), a contradiction. Thus, T has exactly one vertex of degree at least three. That is, T is an s-starlike
tree for some s. Assume a1, . . . , as are the lengths of the legs, where a1 ≥ · · · ≥ as. Then

∑s
i=1 ai = n− 1 and∑s

i=1(ai − 1) = t. So s = n− t− 1. By Lemma 4.3, a1 − an−t−1 = 0, 1. That is, T is an (n− t− 1)-starlike tree
of almost equal leg lengths, or T ∼= Sn,n−t−1. �
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