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ON GRAFT TRANSFORMATIONS DECREASING DISTANCE SPECTRAL
RADIUS OF GRAPHS

YANNA WANG! AND BO ZHOU?*

Abstract. The distance spectral radius of a connected graph is the largest eigenvalue of its distance
matrix. In this paper, we give several less restricted graft transformations that decrease the distance
spectral radius, and determine the unique graph with minimum distance spectral radius among home-
omorphically irreducible unicylic graphs on n > 6 vertices, and the unique tree with minimum distance
spectral radius among trees on n vertices with given number of vertices of degree two, respectively.
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1. INTRODUCTION

We consider simple, finite, undirected and connected graphs. For u € V(G), let Ng(u) be the set of neighbors
of w in G. The degree of a vertex u in G, denoted by degq(u), is the number of edges incident to w in G.

A homeomorphically irreducible tree is a tree with no vertex of degree two [6]. A homeomorphically irreducible
unicylic graph is a unicylic graph with no vertex of degree two.

Let G be a connected graph on n vertices. For u,v € V(G), the distance between u and v in G, denoted
by dg(u,v), is the length of a shortest path connecting them in G. In particular, dg(u,u) = 0. The distance
spectrum of G is the spectrum of the distance matriz of G, defined as the n by n symmetric matrix D(G) =
(da(u,v))uwev(a)- The distance spectral radius of G, denoted by p(G), is the largest distance eigenvalue of
G. Graham and Pollack [5] studied the distance spectrum for the first time due to its connection to a data
communication problem. Now the distance spectrum has been studied extensively, see the survey [1]. Particularly,
the distance spectral radius has received much attention. Graphs with minimum and/or maximum distance
spectral radius have been determined for some classes of graphs, see, e.g., [2,7,11-15]. Yu et al. [16] determined
the graphs with minimum and maximum distance spectral radius among unicylic graphs. Lin and Zhou [§]
determined the trees with maximum distance spectral radius among trees on n vertices with given number of
vertices of degree two.

To determine the structure of the graphs with minimum or maximum distance spectral radius in some class
of graphs, we usually suppose the graph does not have the structure and perform surgery to obtain a graph for
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which the distance spectral radius is decreased or increased. Such surgery is known as graft transformation(s)
in the literature, see, e.g., [3,4,9,14,16].

In this paper, we propose some graft transformations in a more elaborate way. We propose some graft
transformations with less restricted conditions that decrease the distance spectral radius, and as applications,
we identify the unique graphs that minimize the distance spectral radius among homeomorphically irreducible
unicylic graphs on n > 6 vertices, and among trees on n vertices with given number of vertices of degree two,
respectively.

2. PRELIMINARIES

Let G be a connected graph with V(G) = {v1,...,v,}. Since D(G) is irreducible, by Perron—Frobenius
theorem, p(G) is simple and there is a unique unit positive eigenvector corresponding to p(G), which is called
the distance Perron vector of G, denoted by z(G). If y = (Yu,,---,%0,)' € R" is unit and has at least one
nonnegative entry, then by Rayleigh’s principle, we have p(G) > y* D(G)y with equality if and only if y = 2(Q).
If # = x(G), then for each u € V(G), we have p(G)zy = >, cv(q) da(u,v)T,, which is called the distance
eigenequation of G at u.

Let N C (Ng(u) \ Ng(v)) \ {v}. Let G' = G — uw + vw for w € N. We say that G’ is obtained from G by
moving edge uw at u from u to v.

For a connected graph G with V; C V(G), let 0¢(V7) be the sum of the entries of the distance Perron vector
of G corresponding to the vertices in V;. Furthermore, if all the vertices of V; induce a connected subgraph H
of G, then we write og(H) instead of o¢ (V7).

A component of a graph is a maximal connected subgraph, and a cut edge is an edge of a graph whose removal
increases the number of components of the graph.

For a connected graph G, let s(G) be the minimum row sum of D(G). In [17], is called the mean vertex
deviation of G, where n = |V(G)|. It is known that p(G) > s(G), see Theorem 1.1 in page 24 of [10].

s(G)

3. GRAFT TRANSFORMATIONS THAT DECREASE THE DISTANCE SPECTRAL RADIUS

Firstly, we give a result related to (the entries of) the distance Perron vector, which will be frequently used
in the subsequent proofs.

Lemma 3.1. Suppose that v, w be two non-adjacent neighbors of vertex u in a connected graph G. Let © = x(G).
Then ., + x,, — x, > 0.

Proof. Let Vi = V(G) \ {u,v,w}. For z € V4, one has dg(w, z) > 1 and dg(u, z) — dg(v, z) > —dg(u,v) = —1,
so dg(w, z) + dg(u, z) — dg(v, z) > 0. From the distance eigenequations of G at w, v and v, we have

p(G)xy = Ty + 22, + Z de(w, 2)x,,

zeV
p(G)xu =Ty + Ty + Z dG(uv Z)xm
ze€Vy
P(G)xy =22y + Ty + Z da(v, 2)x,.
%1

Thus

P(G) (X + Ty — Ty) = =Ty + 3T + Z (dg(w, 2) + dg(u, 2) —dg(v,2))x,
zeWp

Z —ZTw + 3-7;1)7

which implies (p(G) + 1)(2y + Ty — Ty) > X4 + 22, > 0. So it follows that x,, + z,, — 2, > 0. O
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Now we turn our attention to some graft transformations that decrease the distance spectral radius.

Theorem 3.2. Let G be a graph consisting of nontrivial connected graphs G1 and Ga sharing a unique vertex
u such that E(G) = E(G1) U E(G2). Suppose that u has neighbor v of degree at least two in Go satisfying that,
for any z € V(G2) \ {u,v}, dg(u, 2) # dg(v,z). Let G' be the graph obtained from G by moving all the edges at
v except uv from v to u. Then p(G) > p(G").

Proof. Let w be a neighbor of u in Gy. Let 2 = z(G’). By Lemma 3.1, we have z,, + ©, — x, > 0.
Let S = {z € V(G2) \ {u, v} : dg(u, z) — dg(v,z) = 1}. Let z be a neighbor of v in Go different from u. As
dg(u, z) # dg(v,2) =1 and dg(u, z) < dg(v, 2) + dg(u,v) = 2, one has dg(u,z) =2. So z € S and S # ().

Claim. 12" (D(G) — D(G"))z > 0 (S) (0c/ (G1) — a).

Note first that, as we pass from G to G’, the distance between a vertex of S and a vertex of V(G1) is decreased
by 1, and the distance between a vertex of S and v is increased by 1. So, to prove the claim, we need only to
show that the distance between any other vertex pairs is decreased or remains unchanged.

It is evident that the distance between any two vertices in V/(G1) U {v} remains unchanged as we pass from
G to G'.

Suppose that 21,22 € V(G2) \ {u,v}. Let P be a path from z; to zo with length dg(z1,22) in G. If v lies
outside P, then P is also a path connecting z1; and z5 in G’. Suppose that v lies on P. If u lies outside P, then
the path obtained from P by replacing v with u is a path connecting z; and 2o in G’. Otherwise, u lies on P.
In this case, uv appears to be an edge on P. So the path obtained from P by deleting v is a path connecting z;
and 29 in G’. So the distance between any two vertices in V(G2) \ {u, v} is decreased or remains unchanged as
we pass from G to G'.

Suppose that z € S := (V(G2)\{u,v})\S (if S # 0). Then dg(u, 2) —dg (v, z) # 0,1. As |dg(u, 2) —da(v, 2)| <
dg(u,v) =1, one has dg(u, z) — dg(v, z) = —1. Let P be a path from u to z with length dg(u, z) in G. Then v
lies outside P, so P is also a path from u to z in G’. Therefore, the distance between a vertex in S and a vertex
in V(G1) U {v} is decreased or remains unchanged as we pass from G to G'.

Now we complete the proof of the claim. As p(G) > 2" D(G)x and p(G’) = 2" D(G")z, one has p(G)—p(G") >
2" (D(G) — D(G"))z. So, by the claim,

;(p(G) - p(G) = %””T(D(G) - D(@))z
> o6/(5) (06 (G1) — xy)
> O'G’(S) (Z’w‘i‘xu l‘v)
> 0,
and thus p(G) > p(G"). .

In the following, we give some consequences of Theorem 3.2.

Corollary 3.3 ([14]). Let G be a connected graph with a cut edge uv that is not a pendant edge. Let G’ be the
graph obtained from G by moving all edges at v except uv from v to u. Then p(G) > p(G’).

Proof. Let G be the component of G—uv containing u and G5 be the subgraph of G induced by V(G)\ (V(G1)\
{u}). Note that dg(u, 2) = dg(v,2) + 1 for any z € V(G3) \ {u, v}. So the result follows from Theorem 3.2. [

A chain in a graph G is a cycle C such that G — E(C) has exactly |V(C)| components. Length of the cycle
C' is the length of the chain. The following is Lemma 3.3 of [3].

Corollary 3.4. Let G be a connected graph with a chain C' of even length. Let uv be an edge on the chain C.
Suppose that dege(u) > 3. If G’ = G — {vw : w € Ng(v) \ {u}} + {vw : w € Ng(v) \ {u}}, then p(G) > p(G").
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Proof. Let G1 be the component of G — E(C) containing u, and G2 be the subgraph of G induced by V(G) \
(V(G1) \ {u}). Let z € V(G2) \ {u,v}. Note that dg(u, z) — da(v, 2) = dg(u,w) — dg(v,w) for some w on C.
If z lies on C, this is evident as w = z, otherwise, w is the vertex on C' such that its distance to z is minimum
among all the distances between vertices of C and z in G. As C is a chain, the shortest path connecting
u (v, respectively) and w contains only vertices on C. As the length of C is even, there is a shortest path
connecting u and w passing through v or a shortest path connecting v and w passing through u, implying that
l[de(u, w) — dg(v,w)| =1, so dg(u, z) # dg(v, z). So the result follows from Theorem 3.2. O

Corollary 3.5. Let H be a graph consisting of two nontrivial connected graphs H1 and Ha sharing a unique
vertex w such that E(H) = E(H,) U E(Hz). Suppose that uvy,...,uvy, are pendant edges in Hy, where k > 1
and that Ny, (u) = Ny U Na, where N1, No # @ and Ny NNy = 0. Let

G=H—{uw:wée N }+{vgw:we Ny}
or

G=H —{uw:w e Na} + {vpw: w € Na}.
For any vertex w € V(Hz) \ {u}, if all the paths from u to w with the length dg(u,w) pass only through vertices
in N1 or pass only through vertices in Na, then p(G) > p(H).

Proof. Assume that G = H — {uw : w € Na} + {vpw : w € N2}. Then H is obtainable from G by moving
all the edges at v except uvy from vg to u. Let G; = H; — v and let G5 be the subgraph of G induced by
V(Hz) U {vr}. Suppose that z € V(G2) \ {u,vi}, i.e., z € V(Hz) \ {u}. Note that any shortest path from
u to z in Hy goes through only vertices in N7 or Ny. Correspondingly, any shortest path from v to z in Go
goes through only vertices in Ny, so dg(u,z) = dg(vk,2) — 1 < dg(vk, 2), or any shortest path from u to
z in Gg goes through only vertices in Na, so dg(u,2) = dg(vk,2) + 1 > dg(vg, z). Now by Theorem 3.2,
p(G) > p(H). O

If & > 2, then Corollary 3.5 becomes Theorem 2.4 of [16].
Corollary 3.3 may be generalized as the following version.

Theorem 3.6. Let G be the graph obtained from vertex disjoint nontrivial connected graphs G1 and Go with
u € V(G1) andv € V(G3) by adding a path P, = vy ...v; withvy = u and vy = v, wheret > 2, V(G1)NV(P;) =
{v1} and V(G2) N V(P;) = {v:}. Let G’ be the graph obtained from G by moving all the edges at vy in E(G2)
from vy to vy. Then p(G) > p(G").

Proof. Let x = z(G'). Let p = [ %] and py = [£].

Let I' =30 20, + 06 (V(G1) \ {v1}) + 06 (V(G2) \ {vi}) = S, 41 Ts-
From the distance eigenequations of G’ at vy, +1 and v,, we have

p(C) (@0 —20,) = (p1+1 = p)T (3.1)

For i =1,...,p — 1, from the distance eigenequations of G at vyy1_;, vs, Vey1—(i41) and v 1, we have

p(G') ((mvtﬂ—i - xvi) - (xvt+17(i+1) - x“z‘ﬂ))
= p(G/) (‘/L.'UtJrl—i - x'Uz‘) - p(G/) (mvt+1_(i+1) - xvi+1>

=2 >, + 0w (VE)\ o) +oa (VG \{uh) = >

p t—i
=20 =2 > @y +2 Y @,

Jj=i+1 Jj=p1+1
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p
=042 ) (T, —T,) - (3.2)
j=i+1

We claim that z,,,, , — z,, and I' have common sign for ¢ = 1,...,p by induction on . If ¢ = p, then it
follows from (3.1). Suppose that 1 <7 <p—1, and x,,,, ; — ,; and I' have common sign for i +1 < j < p. So
> 1@y, — ;) and T have common sign. Thus, from (3.2), (Zv,y, ;= %v,) = (Tu,py_ipy) = Toyyy) and T
have common sign. This, together with the induction assumption that z,, , . , — @y, and I' have common
sign, implies that x,,,, , — x,, and I' have common sign.

Note that
P

p t
F>vai— Z Ty, :_Z(xvt+l—i_x71i)'
i=1

i=p1+1 i=1

This requires the above common sign to be 4. Again, from (3.1) and (3.2), we have z,,,,_, —
Ty, >0fori=1,...,p—1,die,0 < x4, , — @y,
1=2,.

Ty; > Loyy1_(iv1) —
< Typig; — Ty, for i = 2,...,p. It follows that for

0< Ty = Ty, < Ty, — Toyy - (3.3)

As P, = vy ... is a proper induced subgraph of G’ and dp, (v;,v;) = dgr(vs,v;) for any 1 < i < j < ¢, we
have s(G') > s(Pt). Note that p(G’) > s(G) ([10], Thm. 1.1 in p. 24) and s(P;) = M 7). So

2
p(G) > 5() > s(Py) = m - (3.4)

As we pass from G to G’, the distance between a vertex of V(Gz) \ {v:} and a vertex of V(Gy) \ {v1} is
decreased by ¢t — 1, the distance between a vertex of V(G2)\{v:} and v; for i = 1,...,t is decreased by t —2i+1,
and the distances between all other vertex pairs remain unchanged. Let A = (t—1)oc/ (V(G1)\{vi })+> 5, (t—
2i + 1)(xy, — Topy_,), i€,

A= (t=Doe (VG \ {or}) + D (¢ = 20 + V.

So

S(0(G) — p(@) 2 12T (D(G) ~ DG

= o (V(G2) \ {vi}) ((t — Do (V(G1) \{o1}) + Z(t —2i+ 1)%)
=oa (V(G2) \ {ui}) - A. (3-5)

Let G* be the graph obtained from G by moving all the edges at v; in E(G1) from vy to vs. Let y = 2(G*).
Let B = (t — 1)oe- (V(G2) \ {or}) + S0y (t— 20+ D) (Gurss s — 9)s e

B=(t—1)og-(V(G2) \ {v}) Zt—22+1 Yo, -

By the similar arguments as above, we have

1

3 (P(G) = p(G")) = Sy T (D(G) = D(G"))y

DN | =
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= o+ (V(G1) \ {v1}) ((f — Do+ (V(Gz) \ {ve}) Z (t —2i+ L)y, )
=o0¢ (V(G1) \ {v1}) - B. (3.6)

It is evident that ¢ : V(G') — V(G*) defined by

o) = {w if weV(G)\ {u}orwe V(Ga)\ {v},
Vep1—; if w=wv; withi=1,... ¢t

is an isomorphism from G’ to G*. Let M be the permutation matrix associated to this isomorphism. That is,
the nonzero entries of M are M,,, = 1 if w € V(G1) \ {u} or w € V(G2) \ {v}, My,v,,_, =1fori=1,...t
Then MTD(G')M = D(G*). As p(G') = 2" D(G")z = (Mx) " D(G*)Mxz, Mz is the distance Perron vector of
G* and so y = Mz by the Perron—Frobenius theorem. That is, ¢, = ., if w € V(G1) \ {u} or w € V(G2) \ {v},
and Yy, = Zy,,,_,. Then B = (¢t — 1o/ (V(G2) \ {ve}) + X0, (t — 20 + 1)(20, — @v,,,_,)- From the distance
eigenequations of G’ at v; and vy, we have

p(G) (@, — 20,) = (t = 1) (06 (V(G1) \ {v1}) + 06 (V(G2) \ {ve}))

P

+ Z(t —2i+1) ($v7~, - ‘:U'Ut+1—7?)
=1
=A+B— Z t—22+1) (zw xvt+17@')
=1
p
:A+B+Z(t_2l+1) (x'UH»l i va)
1=1

Then, by (3.3) and (3.4), we have

b
A+B= p(Gl) (xvt - x'Ul) - Z(t -2+ 1) (xvt+1—i - 'rvi)

=1
P
> p(G') (w0, — 20,) — Z(t —2i+1) (%0, — T,)
=1
P
= (p(G/) Z(t — 2%+ 1)) (T, — Toy)
i=1
t2
= ()= | 5] ) =)
>0
Thus A > 0 or B > 0. Now the result follows from (3.5) and (3.6). O

Now we present the third graft transformation and consider its effect on the distance spectral radius.

Theorem 3.7. Let G be a graph consisting of two nontrivial connected graphs G1 and Gy sharing a unique
vertex u such that E(G) = E(G1) U E(Gz). Suppose that Ng,(u) = {v1,v2}, degg, (vi) > 2 fori=1,2, vy and
ve are not adjacent, and for any w € V(Ga) \ {u}, dg,(vi,w) # dg,(ve,w). Let G’ be the graph obtained from
G by moving all the edges at v; except uv; from v; to u for each i = 1,2. Then p(G) > p(G’).
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Proof. For i = 1,2, let S; = {z € V(G2) \ {vi} : da,(u, 2) — dg,(vi,2) = 1}. As degg, (v;) > 2, one has S; # ()
for i = 1,2. As dg,(vi,w) # dg,(ve,w) for any w € V(Gs) \ {u}, one has S; NSy = ().

Choose w € Ng, (u). Let x = 2(G’), then by Lemma 3.1, we have z,, + x, — x,, > 0 for i = 1, 2.

As we pass from G to G', for i = 1,2, the distance between a vertex of S; and a vertex of V(G1) is decreased
by 1, the distance between a vertex of S; and v; is increased by 1, and the distance between any other vertex
pair is decreased or remains unchanged. So

S(0(C) — (@) 2 32T (D(C) ~ D)

> ZUG’(Si) (06 (G1) — Tv,)

2
> " 06(8i) (T + Ty — 20,)
=1
>0,

and thus p(G) > p(G"). O
The following is Lemma 3.4 of [3].

Corollary 3.8. Let G be a connected graph with a chain C of odd length £, where £ > 5. Let uvy and uvy be
two edges on the chain C. Suppose that deg(u) > 3. If G’ = G — {viw : w € Ng(v1) \ {u}} — {vew : w €
No(v2) \ {u}} + {uw s w € (Na(v1) U Na(v2)) \ {u}}, then p(G) > p(G).

Proof. Let G be the component of G — E(C) containing u, and G5 be the subgraph of G induced by V(G) \
(V(G1)\{u}). Let w € V(G2) \ {u}. Denote by z the vertex on C such that its distance to w is minimum among
all vertices of C. It is evident that z = w if w lies on C. Then dg(v1,w) — dg(ve, w) = dg(v1, 2) — dg(ve, ). As
C' is a chain, the shortest path connecting vy (v, respectively) and z contains only vertices on C. Let P (Q,
respectively) be the shortest path connecting vy (vg, respectively) and z in G. If P and @ are edge disjoint, then
de(v1,2) +dg(ve, z) = £—2, and as £ is odd, we have dg(v1, z) # dg(va, 2). Otherwise, |dg(v1, 2) —dg(ve, 2)| =
dg(vi,v3) = 2, so dg(v1,2) # dg(ve,2). In either case, dg(vi,w) # dg(ve,w). So the result follows from
Theorem 3.7. ]

Corollary 3.9. Let H be a graph consisting of two nontrivial connected graphs Hi and Hy sharing a unique
vertex u such that E(H) = E(Hy,) U E(Hs). Suppose that uvy,...,uvy are pendant edges in Hy, where k > 2
and that Ny, (u) = N1 U No, where N1, Ny # () and Ny N Ny = (. Let

G=H—{uw:wée Np,(u)} + {vg—1w: w € N1} + {vpw : w € Nao}.

For any verter w € V(Hs) \ {u}, if all the paths from u to w with length dg(u,w) pass only through Ny or pass
only through Na, then p(G) > p(H).

Proof. Let Gy = Hy — {vg_1,vx} and let Gy be the subgraph of G induced by V(Hs) U {vg_1, vk }. Suppose
that z € V(G2) \ {u}, i.e., z € (V(Hz) \ {u}) U{vk_1,v}. Note that any shortest path from u to z in Hs goes
through only vertices in N7 or N,. Correspondingly, any shortest path from u to z in Ga goes through only
vertices in N7 or N. Consequently, dg(vk—1, 2) # da(vk, 2). Now by Theorem 3.7, p(G) > p(H). O

We remark that Corollary 3.9 and Theorem 3.7 are equivalent. If k£ > 3, then Corollary 3.9 is just Theorem 2.3
of [16].
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4. GRAPHS MINIMIZING THE DISTANCE SPECTRAL RADIUS

First we determine the graphs that minimize the distance spectral radius among all homeomorphically irre-
ducible unicylic graphs on n > 6 vertices.

Lemma 4.1 ([9]). Fork >2 and 1 < a1 < az — 2, let G be a graph obtained from a connected graph Gy with
two vertices uy and ug such that Ng,(u1) \ {u2} € Ng,(u2) \ {u1}, by attaching a; pendant vertices to u; for
each i = 1,2. Let G’ be the graph obtained from G by moving one pendant edge at us from us to uy. Then

p(G) < p(G").

Let U, be a unicylic graph on n vertices obtained from a triangle K3 with V(K3) = {v1,v2,v3}, by attaching
a pendant vertex to v; for i = 1,2, respectively, and attaching n — 5 pendant vertices to vs.

Theorem 4.2. Let G be a homeomorphically irreducible unicylic graph on n > 6 vertices. Then p(G) > p(Uy,)
with equality if and only if G =2 U,.

Proof. Let G be a homeomorphically irreducible unicylic graph on n vertices that minimizes the distance spectral
radius.

Let g be the girth of the unique cycle C' of G. Let u be a vertex on C. Since G is a homeomorphically
irreducible unicylic graph, we have degx(u) > 3. Let v1,v2 be two neighbors of v on C.

Suppose that g > 4. Suppose that g is even. Let G’ be the graph obtained from G by moving all the edges
at v1 except wvy from vy to u. Note that G’ is a homeomorphically irreducible unicylic graph on n vertices. By
Theorem 3.2 or Corollary 3.4, p(G’) < p(G), a contradiction. Thus g is odd. Let G” be the graph obtained from
G by moving all the edges at v; except uv; from v; to u for each ¢ = 1,2. Obviously, G is a homeomorphically
irreducible unicylic graph on n vertices. By Theorem 3.7 or Corollary 3.8, we have p(G”) < p(G), also a
contradiction. It thus follows that g = 3.

Suppose that G has an edge, say vw, outside C' that is not a pendant edge. Evidently, vw is a cut edge of G.
Let G* be the graph obtained from G by moving all the edges at w except vw from w to v. It is obvious that G*
is a homeomorphically irreducible unicylic graph on n vertices. By Theorem 3.2 or Corollary 3.3, p(G*) < p(G),
a contradiction. Thus, every edge of G outside C is a pendant edge. That is, G is a unicylic graph obtainable
from a triangle K3 with V(K3) = {v1,vs,v3} by attaching a; pendant vertices to v; for ¢ = 1,2,3, where
1<a1 <az <as.

If n==6,7, then G 2 U,. B

Suppose that n > 8 and az > 2. Let G be the graph obtained from G' by moving one pendant edge at vo
from vy to v3. Obviously, G is a homeomorphically irreducible unicylic graph on n vertices. By Lemma 4.1,

p(G) < p(G), a contradiction. So az = 1. That is, a; = ap = 1 and ag =n — 5, i.e., G 2 U,. O

In the following, we determine the trees that minimize the distance spectral radius among all trees on n
vertices with given number of vertices of degree two.

Let G be a connected graph with v € V(G). For k,¢ > 0, let G(v, k, ¢) be the graph obtained from G by
attaching two paths Py and P, at one end vertices to v. The following lemma was established in [13], for which
a simple argument was given in [15].

Lemma 4.3. Let G be a connected graph withv € V(G). If k > £ > 1, then p(G(v,k,£)) < p(G(v,k+1,£—1)).

A tree is called starlike if it has exactly one vertex of degree at least three; this vertex is called the branching
vertex. If the branch vertex has degree s, we call it an s-starlike tree. For an s-starlike tree T' on n vertices
with branching vertex u, each path connecting u and a pendant vertex is called a leg. Denote by a1, ..., as the
lengths of the s legs of T. Then ay +---+as = |E(T)| = n—1. Assume that a; > -+ > as. If a3 —as = 0,1, then
the multiset {a1,...,as} composes of L"—:lj + 1 with multiplicity » and L"—:lj with multiplicity s — r, where
r=n—1-— SL”T_lJ In this case, we call it an s-starlike tree of almost equal leg lengths, denoted by S, .
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Let T be a tree on n vertices with ¢ vertices of degree two. If ¢t = n — 2, then T' = P,. Note that ¢t =
n — 3 is impossible, since T has at least two pendant vertices, and the remaining unique vertex has degree
2n—=1)—-2(n-3)—1-2=2.

Theorem 4.4. Let T be a tree on n vertices with t vertices of degree two, where 0 <t < n —4. Then p(T) >
P(Snn—t—1) with equality if and only if T = Sy p_t—1.

Proof. Let T be a tree on n vertices with ¢ vertices of degree two that minimizes the distance spectral radius.
Since 0 <t < n — 4, the maximum degree of T is at least three.

Suppose that there are at least two vertices of degree at least three in T'. Then we choose two such vertices,
say u and v, by requiring that the distance between them is as small as possible. Let P be the path connecting
u and v. If u and v are not adjacent, then each vertex on P except u and v has degree two. Let w be the vertex
adjacent to v on P (w = u if u and v are adjacent). Let 7" be the tree obtained from T by moving all the
edges at v except wv from v to u. It is easily seen that T” possesses ¢ vertices of degree two. By Theorem 3.6,
p(T") < p(T), a contradiction. Thus, T" has exactly one vertex of degree at least three. That is, T" is an s-starlike
tree for some s. Assume aq,...,as are the lengths of the legs, where a; > --- > a,. Then Ele a; =n—1 and
SF (a;—1)=t.Sos=n—t—1. By Lemma 4.3, a; — a,—4—1 = 0,1. That is, T is an (n —t — 1)-starlike tree

=1

of almost equal leg lengths, or T'= S, ,_;_1. O
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