An axiomatic and non-cooperative approach to the multi-step Shapley value
RAIRO. Operations Research, Tome 55 (2021) no. 3, pp. 1541-1557

Inspired by the two-step Shapley value, in this paper we introduce and axiomatize the multi-step Shapley value for cooperative games with levels structures. Moreover, we design a multi-step bidding mechanism, which implements the value strategically in subgame perfect Nash equilibrium for superadditve games.

DOI : 10.1051/ro/2021073
Classification : 91A10, 91A12
Keywords: Multi-step shapley value, levels structure, implementation, SPNE
@article{RO_2021__55_3_1541_0,
     author = {Li, Xianghui and Zheng, Wei and Li, Yang},
     title = {An axiomatic and non-cooperative approach to the multi-step {Shapley} value},
     journal = {RAIRO. Operations Research},
     pages = {1541--1557},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/ro/2021073},
     mrnumber = {4270857},
     zbl = {1468.91011},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021073/}
}
TY  - JOUR
AU  - Li, Xianghui
AU  - Zheng, Wei
AU  - Li, Yang
TI  - An axiomatic and non-cooperative approach to the multi-step Shapley value
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 1541
EP  - 1557
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021073/
DO  - 10.1051/ro/2021073
LA  - en
ID  - RO_2021__55_3_1541_0
ER  - 
%0 Journal Article
%A Li, Xianghui
%A Zheng, Wei
%A Li, Yang
%T An axiomatic and non-cooperative approach to the multi-step Shapley value
%J RAIRO. Operations Research
%D 2021
%P 1541-1557
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021073/
%R 10.1051/ro/2021073
%G en
%F RO_2021__55_3_1541_0
Li, Xianghui; Zheng, Wei; Li, Yang. An axiomatic and non-cooperative approach to the multi-step Shapley value. RAIRO. Operations Research, Tome 55 (2021) no. 3, pp. 1541-1557. doi: 10.1051/ro/2021073

[1] R. J. Aumann and J. H. Dreze, Cooperative games with coalition structures. Int. J. Game Theory 3 (1974) 217–237. | MR | Zbl | DOI

[2] E. Calvo and E. Gutiérrez, Solidarity in games with a coalition structure. Math. Social Sci. 60 (2010) 196–203. | MR | Zbl | DOI

[3] S. Hart and A. Mas-Colell, Bargaining and value. Econometrica 64 (1996) 357–380. | MR | Zbl | DOI

[4] R. Joosten, Dynamics, equilibria and values. dissertation, Maastricht University, The Netherlands (1996).

[5] Y. Ju, P. Borm and P. Ruys, The consensus value: a new solution concept for cooperative games. Social Choice Welfare 28 (2007) 685–703. | MR | Zbl | DOI

[6] Y. Ju and D. Wettstein, Implementing cooperative solution concepts: a generalized bidding approach. Econ. Theory 39 (2009) 307–330. | MR | Zbl | DOI

[7] Y. Kamijo, A two-step Shapley value for cooperative games with coalition structures. Int. Game Theory Rev. 11 (2009) 207–214. | MR | Zbl | DOI

[8] Y. Kamijo, The collective value: a new solution for games with coalition structures. Top 21 (2013) 572–589. | MR | Zbl | DOI

[9] B. Moldovanu and E. Winter, Core Implementation and increasing returns to scale for cooperation. J. Math. Econ. 23 (1994) 533–548. | MR | Zbl | DOI

[10] R. B. Myerson, Conference structures and fair allocation rules. Int. J. Game Theory 9 (1980) 169–182. | MR | Zbl | DOI

[11] G. Owen, Values of games with a priori unions, edited by R. Henn and O. Moeschlin. In: Essays Math. Econ. Game Theory (1977) 76–88. | MR | Zbl | DOI

[12] D. Pérez-Castrillo and D. Wettstein, Bidding for the surplus: a non-cooperative approach to the Shapley value. J. Econ. Theory 100 (2001) 274–294. | MR | Zbl | DOI

[13] L. S. Shapley, A value for n -person games, edited by H. Kuhn and A. Tucker. In: Contributions to the Theory of Games. Princeton University Press 28 (1953) 307–317. | MR | Zbl

[14] R. Van Den Brink and Y. Funaki, Implementation and axiomatization of discounted Shapley values. Social Choice Welfare 45 (2015) 329–344. | MR | Zbl | DOI

[15] R. Van Den Brink, Y. Funaki and Y. Ju, Reconciling marginalism with egalitarianism: Consistency, monotonicity, and implementation of egalitarian Shapley values. Social Choice Welfare 40 (2013) 693–714. | MR | Zbl | DOI

[16] J. Vidal-Puga and G. Bergantiños, An implementation of the Owen value. Games Econ. Behav. 44 (2003) 412–427. | MR | Zbl | DOI

[17] J. Vidal-Puga, Implementation of the levels structure value. Ann. Oper. Res. 137 (2005) 191–209. | MR | Zbl | DOI

[18] E. Winter, A value for cooperative games with levels structure of cooperation. Int. J. Game Theory 18 (1989) 227–240. | MR | Zbl | DOI

[19] H. P. Young, Monotonic solutions of cooperative games. Int. J. Game Theory 14 (1985) 65–72. | MR | Zbl | DOI

Cité par Sources :