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AN AXIOMATIC AND NON-COOPERATIVE APPROACH TO THE
MULTI-STEP SHAPLEY VALUE

Xianghui Li1,∗, Wei Zheng2 and Yang Li3

Abstract. Inspired by the two-step Shapley value, in this paper we introduce and axiomatize the
multi-step Shapley value for cooperative games with levels structures. Moreover, we design a multi-
step bidding mechanism, which implements the value strategically in subgame perfect Nash equilibrium
for superadditve games.
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1. Introduction

Many realistic situations can be modeled as cooperative games. A cooperative game consists of a finite player
set and a characteristic function which assigns to each coalition, i.e., a subset of the player set, a real number,
representing the aggregate benefit of players in it from cooperation. A central problem in the cooperative game
theory is how to distribute the gains of cooperation among all players in a reasonable way. One of the most
widely used single-valued solutions to this problem is the Shapley value [13].

Considering that players may partition themselves into disjoint coalitions before cooperation, Aumann and
Dreze [1] introduced a model of coalition structure. Once the coalition structure is determined, negotiations can
take place only within each of the coalitions that constitute the structure. Many solutions have been proposed
for this type of games with coalition structure, the most well known of which are the Owen value [11] and the
Aumann and Dreze value [1]. Later, Kamijo [7] proposed the two-step Shapley value. All of these values are
extensions of the Shapley value.

However, in many practical situations, a coalition structure can not adequately describe the external coop-
eration between the coalitions themselves, which might also be relevant for deciding the payoff distribution
between the players. Owen [11] generalized the coalition structure by considering these cases and introduced a
model of levels structure. A levels structure is a sequence of coalition structures, where each is obtained from
the previous one by unification of coalitions and represents the various forms of cooperation between coalitions
of the previous coalition structure. A levels structure value was also proposed as a generalization of the Owen
value.
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In this paper, we develop a distributive analysis of cooperative surplus among players when they have orga-
nized themselves into a levels structure before realizing cooperation. We define a new solution concept, called
a multi-step Shapley value, for cooperative games with levels structures. It can be interpreted as the result of
bargaining of the lower-level unions on the worth of the higher-level unions they join. Analogous to the various
axiomatizations [10, 13, 19] of the Shapley value, we provide several axiomatizations of the multi-step Shapley
value, too.

After a solution concept for cooperative games has been defined, it seems natural to ask question whether
there exists a non-cooperative framework to give rise to this value. Pérez-Castrillo and Wettstein [12] provided a
non-cooperative bidding mechanism and showed that the subgame perfect Nash equilibrium (SPNE) outcomes
of this mechanism always coincide with the vector of the Shapley value payoffs for zero-monotonic cooperative
games.

Later, some variants of the bidding mechanism emerge for implementing other solution concepts. Ju et al. [5]
designed a two-level bidding mechanism to implement the consensus value [5]. Ju and Wettstein [6] provided a
non-cooperative foundation to several cooperative solution concepts, such as the Shapley value and consensus
value, by using a class of bidding mechanisms that differ in the power awarded to the proposer chosen through
a bidding process. Van den Brink et al. [15] incorporated the possibility of breakdown of the negotiations into
the bidding mechanism in Pérez-Castrillo and Wettstein [12] and showed that the α-egalitarian Shapley value
defined by Joosten [4] is implemented as the equilibrium payoff. Van den Brink and Funaki [14] introduced
discounting in the bidding mechanism and the modified bidding mechanism yields the corresponding discounted
Shapley value in Joosten [4] as the payoff distribution in every subgame perfect Nash equilibrium. Vidal-Puga
and Bergantiños [16] gave a coalitional bidding mechanism which has two rounds and implements the Owen
value. Vidal-Puga [17] proposed a levels bidding mechanism which is played in several rounds and implements
the levels structure value. Based on these research, we proceed by establishing a multi-step bidding mechanism
such that players behave strategically and obtain as the final outcome the multi-step Shapley value in every
subgame perfect Nash equilibrium for superadditive games. In some respects, we provide a new non-cooperative
approach to the two-step Shapley value different to Kamijo [8] as well, since the multi-step Shapley value is
equal to the two-step Shapley value associated with the induced coalition structure when the levels structure
has the degree 2.

This paper is organized as follows. Section 2 is the basic information about cooperative games and levels
structures. In Section 3.1, we define a multi-step Shapley value and give its axiomatizations. In Section 4, we
give a multi-step bidding mechanism which implements the multi-step Shapley value for superadditive game.
Section 5 concludes.

2. Preliminaries

2.1. Cooperative games

A cooperative game can be described by a pair (N, v), where N = {1, 2, . . . . , n} is the set of players and
v : 2N → R with v(∅) = 0 is the corresponding characteristic function. Any subset S ⊆ N is called a coalition
and v(S) the worth of S. If there is no ambiguity, we identify the game (N, v) with its characteristic function v.
The set of all cooperative games over N is denoted by G(N). We use the notation | · | to represent the number
of members in a set.

The restriction of a game (N, v) to a coalition S ⊆ N , denoted by (S, vS), is defined as vS(T ) = v(T ) for all
T ⊆ S. For simplicity, we write (S, v) instead of (S, vS). A cooperative game (N, v) is called zero-monotonic if
v(S ∪ {i}) ≥ v(S) + v({i}) for any S ⊆ N\{i}, and called superadditive if for all S, T ⊆ N such that S ∩ T = ∅,
v(S ∪ T ) ≥ v(S) + v(T ).

A value for cooperative game (N, v) is a mapping φ : Gn → Rn. The famous Shapley value for cooperative
games is defined as

Shi(N, v) =
∑

T⊆N ;i∈T

(
|N | − |T |

)
!
(
|T | − 1

)
!

|N |!
[
v(T )− v(T\{i})

]
,
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for any i ∈ N .

2.2. Levels structures

Aumann and Dreze [1] introduced a simplest model of limited cooperation, coalition structure, which is
specified by a partition of the player set.

A collection {B1, B2, . . . , Bm} of subsets of N is called a partition on N iff B1∪· · ·∪Bm = N and Bk∩Bl = ∅
for k 6= l, k, l ∈ {1, 2, . . . ,m}.

A coalition structure on N is a partition B = {B1, B2, . . . , Bm} of N .
The restriction to S ⊆ N of a coalition structure B is denoted by B(S) = {Bk : Bk ⊆ S, k ∈ {1, 2, . . . ,m}}.
For a cooperative game with coalition structure (N, v,B), (M, vM ) is a game among coalitions where M =

{1, 2, . . . ,m} is a set of coalitional indices of the elements in B and vM (H) = v(
⋃
k∈H

Bk) for each H ⊆M .

Kamijo [7] defined a solution, called the two-step Shapley value for cooperative games with coalition struc-
tures.

Definition 2.1. (Kamijo [7]) A two-step Shapley value TS(N, v,B) for (N, v,B) is defined by

TSi(N, v,B) = Shi(Bk, v) +
Shk(M,vM )− v(Bk)

|Bk|
, ∀i ∈ Bk ∈ B.

The two-step Shapley value allocates the cooperative surplus by using the Shapley value in a two-step
bargaining process: one step within coalitions and one between coalitions. Moreover, the bargaining surplus,
i.e., Shk(M,vM )− v(Bk) of each coalition Bk is allocated among its members in an egalitarian way.

Winter [18] took into account the cooperation between coalitions and extends games with coalition structure
to the so called games with levels structure of cooperation. The levels structure means a sequence of coali-
tion structures, each obtained from the previous by unification of coalitions and each representing the various
cooperations between coalitions of the previous coalition structure. Each coalition structure is called a “level”.

A levels structure over N of degree h is a sequence of partitions B = (B0, B1, . . . , Bh) of N with B0 =
{{i}|i ∈ N} such that for any S ∈ Bk, k ∈ {0, 1, . . . , h− 1}, there is A ⊆ Bk−1 such that S =

⋃
T∈A

T .

In this paper, we only consider the case that the grand coalition will eventually form, i.e., Bh = {N}. The
set of levels structures on N is denoted by LSN . The levels structure B has h + 1 levels. Bk is called the kth
level of B and each S ∈ Bk is a union at level k.

The restriction of B to a union U ∈ Bk at level k is a levels structure B(U) on the player set U with
B(U) = (B1(U), B2(U), . . . , Bk(U)), where Bl(U),∀l ∈ {1, 2, . . . , k} is the restriction to U of coalition structure
Bl. For any T ∈ Bk and S ⊆ T , we use the notation BkS to represent the union at level k that contains the
subset S, i.e., BkS = T . When S = {i}, we omit the bracket in Bk{i}, i.e., Bki is the union at level k that includes
player i.

We call the elements in a partition B of N that constitute a coalition by acting as bargaining units the direct
members of this coalition, i.e., for any S =

⋃
T∈A

T for some A ⊆ B, NB(S) = {T : T ⊆ S, T ∈ B} is the set of

direct members of S with respect to B. For simplification, we write the set of direct members of S ∈ Bk+1 with
respect to the kth level of B as Nk(S).

We call B on N a trivial levels structure, denoted by N , if h = 1.
A triple (N, v,B), where (N, v) ∈ GN and B is a levels structure on N , represents a cooperative game with

levels structure, which describes the following cooperative situation. The players first organize themselves into
a coalition structure B1 (the first level of B) as pressure groups for the division of v(N); then the coalitions in
B1 as players organize themselves again into the coalition structure B2 (the second level of B); and so until the
final level of B is reached. The set of cooperative games with levels structures on N is denoted by LGN .
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Figure 1. B in Example 2.2.

Figure 2. B/B1 in Example 2.2.

A solution on N for cooperative games with levels structures is a real-valued function Ψ : LGN → Rn which
assigns to any cooperative game with levels structure an n-dimensional payoff vector.

For each k ∈ {0, 1, . . . , h}, we define a game with levels structure (Bk, v/Bk,B/Bk) on Bk, induced from
(N, v,B) by viewing unions at level k as individual players. Indeed, Bk is the set of players at level k in the
k-level game (Bk, v/Bk). The worth of a coalition of players at level k in the game (Bk, v/Bk) is defined in a
natural way, as the worth of the subset of all original players that it contains. Formally, the worth of the subset
{S1, S2, . . . , St} ⊆ Bk of players at level k is defined to be (v/Bk)({S1, S2, . . . , St}) = v(S1 ∪ S2 . . . ∪ St). Of
course, B/Bk = (Bk,0, Bk,1, . . . , Bk,h−k) is again a levels structure of degree h− k starting with the kth level of
B given by: for all r ∈ {0, 1, . . . , h−k}, Bk,r =

{
{U : U ∈ Bk, U ⊆ U ′} : U ′ ∈ Bk+r

}
. In order to try to simplify

the notations, we write (Bk, v/Bk) as (Bk, v), and (Bk, v/Bk,B/Bk) as (Bk, v,B), if there is no confusion.

Example 2.2. Let B = (B0, B1, B2, B3) be a levels structure of degree 3 given by B0 =
{
{1}, {2}, {3},

{4}, {5}, {6}
}

, B1 =
{
{1, 2}, {3, 4}, {5, 6}

}
, B2 =

{
{1, 2, 3, 4}, {5, 6}

}
, and B3 =

{
{1, 2, 3, 4, 5, 6}

}
showed

in Figure 1.
The restriction of B to the subset {1, 2, 3, 4} is a levels structure of degree 2, i.e., B({1, 2, 3, 4}) =

(
{
{1}, {2}, {3}, {4}

}
,
{
{1, 2}, {3, 4}

}
,
{
{1, 2, 3, 4}

}
).

The levels structure B by viewing the unions at the first level as individuals is B/B1 =
(B1,0, B1,1, B1,2) where B1,0 =

{
{{1, 2}} , {{3, 4}} , {{5, 6}}

}
, B1,1 =

{
{{1, 2}, {3, 4}} , {{5, 6}}

}
, and B1,2 ={

{{1, 2}, {3, 4}, {5, 6}}
}

, as depicted in Figure 2.



AN AXIOMATIC AND NON-COOPERATIVE APPROACH TO THE MULTI-STEP SHAPLEY VALUE 1545

3. The multi-step Shapley value and its axiomatizations

In this section we extend the two-step Shapley value [7] to cooperative games with levels structures and define
the multi-step Shapley value. Without special instructions, the levels structure B we mentiond in the following
context has the degree h, denoted as B = (B0, B1, . . . , Bh).

Definition 3.1. The multi-step Shapley value MS(N, v,B) for all (N, v,B) ∈ LGN is defined by

MSi(N, v,B) = Shi(B1
i , v) +

h∑
k=2

ShBk−1
i

(Nk−1(Bki ), v)− v(Bk−1
i )

k−1∏
l=1

|Nl−1(Bli)|

for all i ∈ N , where (Nk−1(Bki ), v) is the restriction to the subset of players Nk−1(Bki ) of the k − 1 level game.

We can interpret the multi-step Shapley value by the following multi-step bargaining process.
In the first step, all the players forming the union S1 ∈ B1 at the first level bargain for the worth of S1 and

agree that v(S1) is distributed by the Shapley value of the game restricted to the subset S1. So, each player
i ∈ S1 receives Shi(S1, v) in this step.

In the step k (k ∈ {2, 3, . . . , h− 1}), all the unions at level k − 1 act like single players. They agree that the
worth of each formed union Sk ∈ Bk at level k is distributed among its direct members by the Shapley value,
i.e., each member Sk−1 ∈ Nk−1(Sk) receives ShSk−1(Nk−1(Sk), v). However, players in Sk−1 have already got
a total of v(Sk−1) in the previous k − 1 steps. So, the generated surplus ShSk−1(Nk−1(Sk), v) − v(Sk−1) is
allocated among all the original players in Sk−1 in a way that each union at a certain level is treated equally,
i.e., each player gets the proportion 1

k−1∏
l=1
|Nl−1(Bl

i)|
of the surplus.

Finally, the sum of the payments received by each player over all steps is its multi-step Shapley value.

Remark 3.2. In particular, when the degree of the levels structure B on N is 2, i.e., B = (B0, B1, B2), B
corresponds to the coalition structure B1. The difference is that in the model of coalition structure [11], B1 is a
partition that divides the player set N into disjoint groups, which can cooperate, but in the levels structure, the
cooperation between these disjoint groups needs to be described by the last level B2 = {N}. Hence, the multi-
step Shapley value for (N, v,B) where B = (B0, B1, B2), coincides with the two-step Shapley value of the game

(N, v,B1) with the coalition structure B1, i.e., for any i ∈ N , MSi(N, v,B) = Shi(B1
i , v) +

Sh
B1

i
(B1,v)−v(B1

i )

|B1
i |

=
TSi(N, v,B1).

In the following proposition, we state that the sum of the multi-step Shapley values of players in a union at
a level is the payoff of this union when we treat it as a unit.

Proposition 3.3. For any S ∈ Bk, k ∈ {1, 2, . . . , h− 1},∑
i∈S

MSi(N, v,B) = MSS(Bk, v,B)

holds.

Proof. Let S ∈ Bk, k ∈ {1, 2, . . . , h− 1}. According to Definition 3.1, on one hand, we have
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∑
i∈S

MSi(N, v,B) =
∑

T1∈Nk−1(S)

∑
T2∈Nk−2(T1)

. . .
∑

Tk−1∈N1(Tk−2)

∑
i∈Tk−1

MSi(N, v,B)

=
∑

T1∈Nk−1(S)

∑
T2∈Nk−2(T1)

. . .
∑

Tk−1∈N1(Tk−2)

[
ShTk−1(N1(Tk−2), v)

+
h∑

m=3

ShBm−1
Tk−2

(Nm−1(BmTk−2
), v)− v(Bm−1

Tk−2
)

m−1∏
l=2

|Nl−1(BlTk−2
)|



=
∑

T1∈Nk−1(S)

ShT1(Nk−1(S), v) +
h∑

m=k+1

ShBm−1
S

(Nm−1(BkS), v)− v(Bm−1
S )

m−1∏
l=k

|Nl−1(BlS)|


= ShS(Nk(Bk+1

S ), v) +
h∑

m=k+2

ShBm−1
S

(Nm−1(BmS ), v)− v(Bm−1
S )

m−1∏
l=k+1

|Nl−1(BlS)|

= ShS(Nk(Bk+1
S ), v) +

h−1∑
m=k+1

ShBm
S

(Nm(Bm+1
S ), v)− v(BmS )

m∏
l=k+1

|Nl−1(BlS)|
.

On the other hand,

MSS(Bk, v,B) = ShS(Nk(Bk+1
S ), v) +

h−k∑
m=2

ShBk+m−1
S

(Nk+m−1(Bm+k
S ), v)− v(Bk+m−1

S )
m−1∏
l=1

|Nk+l−1(Bk+lS )|

= ShS(Nk(Bk+1
S ), v) +

h−1∑
m=k+1

ShBm
S

(Nm(Bm+1
S ), v)− v(BmS )

m∏
l=k+1

|Nl−1(BlS)|
,

where the first equality holds due to Definition 3.1.
Therefore,

∑
i∈S

MSi(N, v,B) = MSS(Bk, v,B). �

Now we present several properties for a solution Ψ on LGN as below.
Efficiency.

∑
i∈N

Ψi(N, v,B) = v(N) for all (N, v,B) ∈ LGN .

Additivity. Ψ(N, v + w,B) = Ψ(N, v,B) + Ψ(N,w,B) holds for all (N, v,B), (N,w,B) ∈ LGN .
Level balanced contributions. Let k ∈ {1, 2, . . . , h} and S ∈ Bk. For any T1, T2 ∈ Nk−1(S),

ΨT1(Nk−1(S), v, B)− ΨT1(Nk−1(S)\{T2}, v/Bk−1, Nk−1(S)\{T2})
= ΨT2(Nk−1(S), v, B)− ΨT2(Nk−1(S)\{T1}, v/Bk−1, Nk−1(S)\{T1}),

where (Nk−1(S), v/Bk−1) is the restriction to the subset Nk−1(S) of players in the game of level k − 1,
Nk−1(S) is the trivial levels structure on the set Nk−1(S) and Nk−1(S)\{T1} (Nk−1(S)\{T2}) is the trivial
levels structure on the set Nk−1(S) after deleting T1 (T2) for all (N, v,B) ∈ LGN . In the following con-
text, we will write (Nk−1(S), v/Bk−1) as (Nk−1(S), v), (Nk−1(S), v/Bk−1, Nk−1(S)) as (Nk−1(S), v, B), and
(Nk−1(S)\{T}, v/Bk−1, Nk−1(S)\{T}) as (Nk−1(S)\{T}, v, B) for any T ∈ Nk−1(S), if there is no confusion.
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This property is a generalization of the coalitional balanced contributions defined by Calvo and Gutiérrez [2].
It says that for each union at a level, the amount that a direct member would obtain or lose from the withdrawal
of another direct member is equal.
Internal surplus equality. Let k ∈ {1, 2, . . . , h} and S ∈ Bk. For any S1, S2 ∈ Nk−1(S),∑

i∈S1

Ψi(N, v,B)− ΨS1(Nk−1(S), v, B) =
∑
i∈S2

Ψi(N, v,B)− ΨS2(Nk−1(S), v, B),

for all (N, v,B) ∈ LGN .
This property states that the direct members of a union at a level must have an equal share of the surplus

earned by the union as a unit.
Level strong monotonicity in unions. Let k ∈ {1, . . . , h} and T be a direct member of S ∈ Bk with respect
to Bk−1, i.e., T ∈ Nk−1(S). If for all A ⊆ Nk−1(S)\{T}, (v/Bk−1)(A ∪ {T})− (v/Bk−1)(A) ≥ (w/Bk−1)(A ∪
{T})− (w/Bk−1)(A), then

ΨT (Nk−1(S), v, B) ≥ ΨT (Nk−1(S), w,B)

for all (N, v,B), (N,w,B) ∈ LGN .
This property states that when the direct players of a union at some level bargain for its worth, the division

of the direct member whose marginal contribution increases should not be decreased.
Internal symmetry in unions. Let k ∈ {1, 2, . . . , h} and S ∈ Bk. For any S1, S2 ∈ Nk−1(S), if for all
A ⊆ Nk−1(S)\{S1, S2}, (v/Bk−1)(A ∪ {S1})− (v/Bk−1)(A) = (v/Bk−1)(A ∪ {S2})− (v/Bk−1)(A) holds, then∑

i∈S1

Ψi(N, v,B) =
∑
i∈S2

Ψi(N, v,B)

for all (N, v,B) ∈ LGN .
This property says that the symmetric direct members of a union at any level receive equal payoffs.

Level null coalition property. Let k ∈ {1, 2, . . . , h} and S ∈ Bk. For some T ∈ Nk−1(S), if for all A ⊆
Nk−1(S)\{T}, (v/Bk−1)(A ∪ {T})− (v/Bk−1)(A) = 0, then

ΨT (Nk−1(S), v, B) = 0

for all (N, v,B) ∈ LGN .
This property claims that the direct member of a union at a level, who has no contribution to the worth of

this union, receives zero from this union.
The theorem below gives a characterization of the multi-step Shapley value for cooperative games with levels

structures.

Theorem 3.4. The multi-step Shapley value is the unique allocation rule for cooperative games with levels
structures satisfying efficiency, level balanced contributions, and internal surplus equality.

Proof. Let (N, v,B) be a cooperative game with levels structure. We first prove that the multi-step Shapley
value MS(N, v,B) satisfies efficiency, level balanced contributions, and internal surplus equality.
Efficiency. According to Definition 3.1 and Proposition 3.3, we have∑

i∈N
MSi(N, v,B) =

∑
S∈Bh−1

∑
i∈S

MSi(N, v,B)

=
∑

S∈Bh−1

MSS(Bh−1, v,B)

=
∑

S∈Bh−1

ShS(Bh−1, v) = v(N).
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Level balanced contributions. For any S ∈ Bk, k ∈ {1, 2, . . . , h}, by the definition of the multi-step Shapley
value, MS(Nk−1(S), v, B) = Sh(Nk−1(S), v) because Nk−1(S) is a trivial levels structure. Adding the balanced
contributions of the Shapley value [10], we can easily verify the level balanced contributions property of the
multi-step Shapley value.

Internal surplus equality. Let k ∈ {1, 2, . . . , h} and S ∈ Bk. We have

∑
i∈T

MSi(N, v,B) = ShT (Nk−1(S), v) +
h−1∑
m=k

ShBm
S

(Nm(Bm+1
S ), v)− v(BmS )

m∏
l=k

|Nl−1(BlS)|
, (3.1)

for any T ∈ Nk−1(S) by the proof of Proposition 3.3. Therefore, for any S1, S2 ∈ Nk−1(S),∑
i∈S1

MSi(N, v,B)−
∑
i∈S2

MSi(N, v,B) = ShS1(Nk−1(S), v)− ShS2(Nk−1(S), v)

= MSS1(Nk−1(S), v, B)−MSS2(Nk−1(S), v, B),

where the first equality holds because of Equation (3.1) and the second equality holds by Definition 3.1.
Next, we prove the uniqueness of the allocation rule Ψ satisfying the efficiency, level balanced contributions,

and internal surplus equality. Define |Nk−1(S)| = l, we first prove that Ψ(Nk−1(S), v, B) = Sh(Nk−1(S), v) by
induction on l.

If l = 1, we can easily verify that Ψ(Nk−1(S), v, B) = Sh(Nk−1(S), v, B). Assume that when |Nk−1(S)| = l,
Ψ(Nk−1(S), v, B) = Sh(Nk−1(S), v, B).

Suppose |Nk−1(S)| = l + 1. It follows from level balanced contributions that

ΨT1(Nk−1(S), v, B)− ΨT2(Nk−1(S), v, B) = ΨT1(Nk−1(S)\{T2}, v, B)− ΨT2(Nk−1(S)\{T1}, v, B).

Using this equation and efficiency iteratively, we obtain that Ψ(Nk−1(S), v, B) is unique and equal to
Sh(Nk−1(S), v, B). Further, in the case of k = h, using internal surplus equality and efficiency iteratively,
we have that

∑
i∈S

Ψi(N, v,B) for each S ∈ Bh−1 is unique. Continue this operation from k = h to k = 1, we can

finally prove that Ψ(N, v,B) is unique.
Therefore, the multi-step Shapley value is the unique allocation rule for cooperative games with levels struc-

tures satisfying efficiency, level balanced contributions, and internal surplus equality. �

By replacing level balanced contributions with level strong monotonicity in unions and internal symmetry in
unions in Theorem 3.4, we derive another characterization of the multi-step Shapley value.

Theorem 3.5. The multi-step Shapley value is the unique allocation rule for cooperative games with levels struc-
tures satisfying efficiency, internal surplus equality, level strong monotonicity in unions and internal symmetry
in unions.

Proof. Let (N, v,B) be a cooperative game with levels structure. We first prove that the multi-step Shapley
value MS(N, v,B) satisfies the properties mentioned in this theorem. Efficiency and internal surplus equality of
MS(N, v,B) have been proven in Theorem 3.4. Level strong monotonicity in unions of the multi-step Shapley
value is obvious due to for any S ∈ Bk, k ∈ {1, . . . , h}, MS(Nk−1(S), v, B) = Sh(Nk−1(S), v).

Internal symmetry in unions. Let k ∈ {1, 2, . . . , h}, S ∈ Bk and S1, S2 ∈ Nk−1(S). On one hand, because
of symmetry of the Shapley value [13], if for all A ⊆ Nk−1(S)\{S1, S2}, (v/Bk−1)(A ∪ {S1})− (v/Bk−1)(A) =
(v/Bk−1)(A ∪ {S2})− (v/Bk−1)(A), then

ShS1(Nk−1(S), v)− ShS2(Nk−1(S), v) = 0.
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On the other hand, by Proposition 3.3,

∑
i∈S1

MSi(N, v,B) = ShS1(Nk−1(S), v) +
h−1∑
m=k

ShBm
S

(Nm(Bm+1
S ), v)− v(BmS )

m∏
l=k

|Nl−1(BlS)|
,

∑
i∈S2

MSi(N, v,B) = ShS2(Nk−1(S), v) +
h−1∑
m=k

ShBm
S

(Nm(Bm+1
S ), v)− v(BmS )

m∏
l=k

|Nl−1(BlS)|
.

Therefore, ∑
i∈S1

MSi(N, v,B)−
∑
i∈S2

MSi(N, v,B) = ShS1(Nk−1(S), v)− ShS2(Nk−1(S), v) = 0.

Next, let Ψ be the allocation rule for (N, v,B) satisfying efficiency, internal surplus equality, level strong
monotonicity in unions and internal symmetry in unions.

Now we prove the uniqueness of Ψ(N, v,B), by first showing that for any S ∈ Bk(k ∈ {1, 2, . . . , h}),
Ψ(Nk−1(S), v, B) = Sh(Nk−1(S), v). It is known that any game can be expressed by the unanimity games,
i.e., v/Bk−1 =

∑
∅⊆A⊆Nk−1(S)

αAuA, and ShT (Nk−1(S), v) =
∑

T∈A,A⊆Nk−1(S)

αA

|A| , where for the unanimity game

uA, uA(E) is equal to 1 if A ⊆ E ⊆ Nk−1(S) and 0 otherwise.
Define the index I of v/Bk−1 to be the minimal number of non-zero items in the expression v/Bk−1 =∑

∅⊆A⊆Nk−1(S)

αAuA, Ψ(Nk−1(S), v, B) = Sh(Nk−1(S), v) is proved by induction on I.

If I = 0, then v/Bk−1 = 0 and so Ψ(Nk−1(S), v, B) = 0 = Sh(Nk−1(S), v).
If I = 1, then v/Bk−1 = αAuA for some A ( Nk−1(S). Following internal symmetry in unions and efficiency,

ΨT (Nk−1(S), v, B) is equal to αA

|A| for any T ∈ A. For any T ∈ Nk−1(S), since (v/Bk−1)(A∪{T})−(v/Bk−1)(A) =
0 for all A ⊆ Nk−1(S)\{T}, it follows from level strong monotonicity that ΨT (Nk−1(S), v, B) = 0. So
Ψ(Nk−1(S), v, B) = Sh(Nk−1(S), v).

Assume Ψ(Nk−1(S), v, B) = Sh(Nk−1(S), v) whenever the index of v/Bk−1 is at most I, and let v/Bk−1 has

the index I + 1 with the expression v/Bk−1 =
I+1∑
k=1

αAk
uAk

, all αAk
6= 0.

Let A = ∩I+1
k=1Ak and suppose that T /∈ A. Define the game w/Bk−1 =

∑
k;T∈Ak

αAk
uAk

. The index of w/Bk−1 is

at most I and (v/Bk−1)(A∪{T})−(v/Bk−1)(A) = (w/Bk−1)(A∪{T})−(w/Bk−1)(A) for all A ⊆ Nk−1(S)\{T}.
So by level strong monotonicity and induction it follows that ΨT (Nk−1(S), v, B) = ΨT (Nk−1(S), w,B) =∑
k:T∈Ak

αAk

|Ak| = ShT (Nk−1(S), v, B). For T ∈ A = ∩I+1
k=1Ak, ΨT (Nk−1(S), v, B) = ShT (Nk−1(S), v, B) by effi-

ciency and internal symmetry in unions. Therefore, Ψ(Nk−1(S), v, B) = Sh(Nk−1(S), v, B) is proved.
Further, we can adopt the same method in Theorem 1 using internal surplus equality and efficiency repeatedly

to show that Ψ(N, v,B) is unique and equal to MS(N, v,B).
Therefore, the multi-step Shapley value is the unique allocation rule satisfying the efficiency, internal surplus

equality, level strong monotonicity in unions and internal symmetry in unions for cooperative games with levels
structures. �

If additivity and level null coalition property in Theorem 3.5 are substituted by level strong monotonicity in
unions, we have the following theorem.

Theorem 3.6. The multi-step Shapley value is the unique allocation rule for cooperative games with levels
structures satisfying efficiency, internal surplus equality, internal symmetry in unions, additivity, and level null
coalition property.
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Proof. Efficiency, internal surplus equality and internal symmetry in unions of the multi-step Shapley value
have been proven in Theorem 3.4. Additivity can be easily observed from Definition 3.1. Level null coalition
property is obtained by the fact of MS(Nk−1(S), v, B) = Sh(Nk−1(S), v) for any S ∈ Bk, k ∈ {1, 2, . . . , h} and
null player property (see Shapely [13]) of the Shapley value.

Given an allocation rule Ψ for (N, v,B) that satisfies the properties in this theorem. It is not difficult to
prove that for any S ∈ Bk, k ∈ {1, 2, . . . , h}, Ψ(Nk−1(S), v, B) = Sh(Nk−1(S), v) holds from efficiency, internal
symmetry in unions, additivity and level null coalition property by the aid of the axiomatization of the Shapley
value in Shapley [13], and we omit the proof. Thus, applying the internal surplus equality for all S ∈ Bk, k ∈
{1, 2, . . . , h}, and efficiency, we can derive that Ψ(N, v,B) is equal to the multi-step Shapley value.

Therefore, the multi-step Shapley value is the unique allocation rule that satisfies efficiency, internal surplus
equality, internal symmetry in unions, additivity and level null coalition property for cooperative games with
levels structures. �

4. A non-cooperative approach the multi-step Shapley value

In this section, we design a non-cooperative multi-step bidding mechanism that implements the multi-step
Shapley value for games with levels structures, inspired by the bidding mechanism of Pérez-Castrillo and
Wettstein [12], and the levels bidding mechanism of Vidal-Puga [17].

Our mechanism is played in several rounds and defined recursively. Once we know the rules of multi-step
bidding mechanism when the levels structure has at most degree h, we know define the mechanism for levels
structure with degree h. In the first round, the players in each union at the first level simultaneously bargain
for the resources of their own coalition. Let Bp ∈ B1. Each player i ∈ Bp announces a bid bij ∈ R for any
j ∈ Bp\{i}. The bid bij can be seen as the amount that player i is willing to pay to player j as the cost of being
elected as the proposer. The net bid of a player is the difference between what it gives to others and what it
receives from others. The player, say αp, in Bp who makes the highest net bid will be chosen as the proposer. If
several players make the highest net bid, the proposer is chosen randomly among them. The proposer αp pays
the promised bids to players in Bp\{i}. Then, the proposer αp makes an offer yαp to the other players in Bp. If
all the players in Bp\{αp} accept the offer, the proposer αp becomes a representative of the coalition Bp, i.e.,
αp goes to Round 2 with all the resources of Bp. If at least one player in Bp\{αp} rejects the offer, the proposer
αp leaves the game and other players in Bp\αp continue to play the game (Bp\{αp}, v, Bp\{αp}) (If there is
no confusion, in the following context, we abbreviate (Bp\{αp}, v, Bp\{αp}) as (Bp\{αp}, v, B)). When there is
only one player in Bp, the player becomes the representative of itself.

After finishing Round 1, denote by R the set of the remaining players after removing all the players in the
unions at the first level that do not have their own representatives.

Let U be a maximal coalition that can be formed by the players in R, i.e., U ∈ Bk for some k ∈ {1, 2, . . . , h}
is a subset of R and there exists no U ′ ∈ Bm for some m ∈ {1, 2, . . . , h} such that U ( U ′, since the formation
of a coalition requires the participation of all its members.

In the second round, all the coalitions in N1(U) act as individual players and play (B1(U), v/B1,B(U)/B1(U))
following the same procedure as before. Proceed this until in some round, there is only one player who plays
alone and obtains its individual worth.

Now we formally describe the multi-step bidding mechanism and proceed by the induction on the degree h
of levels structure B as follows.

If there is only one player, then this player obtains the worth of its stand-alone coalition.
If h = 1, the players play a single round. This round comprises the bidding mechanism (Pérez-Castrillo and

Wettstein [12]) associated with the game (N, v).
Suppose that we know the multi-step bidding mechanism when the degree of B is less than h (h > 1). For

the levels structure with degree h, the multi-step bidding mechanism proceeds as follows:

Round 1. Let Bp ∈ B1.
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Stage 1. Each player i ∈ Bp makes bids bij ∈ R for each j ∈ Bp\{i}. Hence, at this stage, a strategy for player
i ∈ Bp is a vector bi ∈ R|Bp|−1. Calculate the net bid

Bi =
∑

j∈Bp\{i}

bij −
∑

j∈Bp\{i}

bji

for each i ∈ Bp. Let αp be the player with the highest net bid among players in Bp (αp is randomly chosen in
case of a non-unique maximizer). Then αp becomes the proposer in the next stage.

Stage 2. The proposer αp makes an offer yαp

i to each player i ∈ Bp\{αp}. Therefore, at this stage a strategy
for αp is a vector yαp ∈ R|Bp|−1.

Stage 3. The players of Bp\{αp} either accept or reject the offer. If at least one player rejects it, then we call
the offer rejected. Otherwise, we call the offer accepted.

If the offer is rejected, player αp pays b
αp

i to each i ∈ Bp\{αp} and leaves the non-cooperative game
with the payoff v({αp}) −

∑
i∈Bp\{αp}

b
αp

i . The other players in Bp\{αp} play the multi-step bidding mecha-

nism (Bp\{αp}, v, B). Any player i ∈ Bp\{αp} obtains as its final payoff the sum of the received bid b
αp

i and
the outcome of the multi-step bidding mechanism corresponding to (Bp\{αp}, v, B).

If the offer is accepted, αp receives P 1
αp

= −
∑

i∈Bp\{αp}
(bαp

i + y
αp

i ) in this round and becomes a representative

of Bp. That is, player αp goes to Round 2 with all resources of Bp. Each i ∈ Bp\{αp} leaves the non-cooperative
game with a final payoff b

αp

i + y
αp

i .
After finishing Round 1, let R1 be the set of remaining players after removing the players of unions at the

first level which do not have their own representatives and U∗ be a maximal coalition that can be formed by
players in R1.

Round 2 through h. The representatives involved in the coalition U∗ play the multi-step bidding mechanism
associated with (

B1(U∗), v/B1(U∗),B(U∗)/B1(U∗)
)
,

where the representative αp of Bp ∈ B1(U∗) takes the role of Bp. These rounds are well defined by induction
on h. Denote by p2

αp
,. . . , phαp

, the outcome of the representative αp in these rounds.
The final payoff of the proposer αp is the sum of its obtained payoffs over all rounds, i.e., p1

αp
+ p2

αp
+ phαp

.
In order to characterize the SPNE outcomes of the multi-step bidding mechanism, the following result will

be helpful.

Proposition 4.1. Let (N, v,B) be a cooperative game with levels structure where (N, v) is superadditive. For
any Bp ∈ B1,

v({j})−
∑

i∈Bp\{j}

[MSi(N, v,B)−MSi(Bp\{j}, v, B)] ≤MSj(N, v,B),

for all j ∈ Bp.

Proof. By efficiency of the multi-step Shapely value, we have∑
i∈Bp\{j}

MSi(Bp\{j}, v, B) = v(Bp\{j}).

Then we only need to prove that
∑
i∈Bp

MSi(N, v,B)− v(Bp\{j}) ≥ v({j}).

Since superadditivity of (N, v) implies the superadditivity of the game (Nk−1(S), v) for any S ∈ Bk, k ∈
{1, 2, . . . , h}, and the Shapley value of a superadditive game satisfies individual rationality, we have that for any
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k ∈ {1, 2, . . . , h}, ShBk−1
i

(Nk−1(Bki ), v) ≥ v(Bk−1
i ). Furthermore,

∑
i∈Bp

MSi(N, v,B) =
∑
i∈Bp

[Shi(Bp, v) +
h∑
k=2

ShBk−1
i

(Nk−1(Bki ), v)− v(Bk−1
i )

k−1∏
l=1

|Nl−1(Bli)|
] ≥ v(Bp).

Applying superadditivity of (N, v), we obtain that∑
i∈Bp

MSi(N, v,B)− v(Bp\{j}) ≥ v(Bp)− v(Bp\{j}) ≥ v({j}).

�

In order to implement the multi-step Shapley value, throughout the rest of this section, inspired by Moldovanu
and Winter [9] and Hart and Mas-Colell [3], we give the following two assumptions.

(a) Each player prefers to be a member of a larger coalition.
(b) A player will choose to accept if he is indifferent to accepting or rejecting a offer.

Theorem 4.2. The multi-step bidding mechanism implements the multi-step Shapley value in every SPNE for
superadditive games.

Proof. The proof relies on induction on the degree of the levels structure. When h = 1, the multi-step Shapley
value is equal to the Shapley value and the multi-step bidding mechanism is reduced to the bidding mechanism of
Pérez-Castrillo and Wettstein [12]. Thus, the multi-step bidding mechanism implements the multi-step Shapley
value in SPNE by the fact that the bidding mechanism implements the Shapley value for zero-monotonic games
by Theorem 1 in Pérez-Castrillo and Wettstein [12].

Assume the result is true when the levels structure has the degree h−1 (h > 1) or less, we now prove that the
result is still true when the degree is h. First, we prove that the multi-step Shapley value is indeed an SPNE
outcome. We explicitly construct an SPNE that yields the multi-step Shapley value. Consider the following
strategies:

Round 1. Let Bp ∈ B1.

Stage 1. Each player i ∈ Bp announces bids

bij = MSj(N, v,B)−MSj(Bp\{i}, v, B)

for every j ∈ Bp\{i}.
Stage 2. A proposer, player αp, offers

y
αp

j = MSj(Bp\{i}, v, B)

to every j ∈ Bp\{αp}.
Stage 3. Each player j ∈ Bp\{αp} accepts any offer not less than

MSj(Bp\{i}, v, B)

and rejects any offer strictly less than
MSj(Bp\{i}, v, B).

Round 2 through h. The proposers αp in all Bp ∈ B1 as representatives play the game (B1, v,B) according

to strategies of some SPNE with the associated payoff MS(B1, v,B). We can find such an SPNE by the
induction hypothesis on h.
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Now, we prove that these strategies yield the multi-step Shapley value. Note that the offers of αp for any
Bp ∈ B1 in Round 1 are accepted by players in Bp\{αp}, then the payoff of i ∈ Bp\{αp} is

b
αp

i + y
αp

i = MSi(N, v,B)−MSi(Bp\{αp}, v, B) +MSi(Bp\{αp}, v, B)
= MSi(N, v,B).

The final payoff of proposer αp is

−
∑

i∈Bp\{αp}

(bαp

i + y
αp

i ) +MSBp
(B1, v,B) = −

∑
i∈Bp\{αq}

MSi(N, v,B) +
∑
i∈Bp

MSi(N, v,B)

= MSαp(N, v,B)

by Proposition 3.3.

Next, we prove that these strategies are an SPNE. It has been easily known that these strategies yields
an SPNE by induction on h after Round 2. Therefore, we only need to prove that these strategies induce an
SPNE in Round 1. Let Bp ∈ B1.

Stage 3. Assume that some player i ∈ Bp\{αp} rejects the offer of the proposer αp. The game (Bp\{αp}, v, B)
is played and the outcome is

MS(Bp\{αp}, v, B)

by the induction hypothesis on h because the degree of Bp\{αp} is less than h. Hence, it is optimal for player i
to accept any offer not less than

MSi(Bp\αp, v, B).

Stage 2. If αp makes an offer to some i ∈ Bp\{αp} less than MSi(Bp\{αp}, v, B), the offer will be rejected
and therefore, αp finally obtains

v({αp})−
∑

i∈Bp\{αp}

[MSi(N, v,B)−MSi(Bp\{αp}, v, B)].

By Proposition 4.1, this payoff is not greater than MSαp
(N, v,B), saying that the proposer αp can not improve.

If αp offers at least MSi(Bp\{αp}, v, B) to any player i ∈ Bp\{αp}, the offer will be accepted and αp gets at
most MSi(Bp\{αp}, v, B).

Stage 1. We first get that Bi = 0 for any i ∈ Bp since

Bi =
∑

j∈Bp\{i}

(bij − b
j
i )

=
∑

j∈Bp\{i}

[MSj(N, v,B)−MSj(Bp\{i}, v, B)]

−
∑

j∈Bp\{i}

[MSi(N, v,B)−MSi(Bp\{j}, v, B)]
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=
∑

j∈Bp\{i}

[Shj(Bp, v)− Shj(Bp\{i}, v)]

−
∑

j∈Bp\{i}

[Shi(Bp, v)− Shi(Bp\{j}, v)]

= 0,

where the second equality holds due to Definition 3.1 and the last equality holds because the fact that Shapley
value satisfies the balanced contributions property in Myerson [10].

Assume that player i ∈ Bp makes different bids and B∗i is its net bid. If B∗i > 0, player i becomes a proposer,
but he must pay extra B∗i to other players of Bp\{i}, which leads to its final payoff lower than MSi(N, v,B).
If B∗i ≤ 0, player i cannot improve.

Therefore, the multi-step Shapley value is indeed an SPNE outcome.
Next, we prove that the outcome in any SPNE of the multi-step bidding mechanism is equal to the multi-step

Shapley value. Let Bp ∈ B1.

Claim 1. In any SPNE, all players in Bp\{αp} for any Bp ∈ B1 accept the offer of the proposer αp if

y
αp

i ≥MSi(Bp\{αp}, v, B),

and reject the offer of αp if
y
αp

i < MSi(Bp\{αp}, v, B).

Consider that if player i ∈ Bp\{αp} accepts the offer of αp, i will receive

b
αp

i + y
αp

i ,

whereas if he rejects the offer, he will receive

b
αp

i +MSi(Bp\{αp}, v, B)

by induction on h. Therefore, in any SPNE, it is optimal for i ∈ Bp\{αp} to accept the offer of αp if

y
αp

i > MSi(Bp\{αp}, v, B),

and i will also accept the offer of αp if

y
αp

i = MSi(Bp\{αp}, v, B)

because of the assumption (a). Therefore, the Claim 1 holds

Claim 2. In any SPNE outcome, the offer of the proposer αp will be accepted by all other players in Bp.
Assume that the offer yαp of the proposer αp is rejected by some player in Bp\{αp}. In this case, αp will

obtain w = v({αp})−
∑

i∈Bp\{αp}
b
αp

i .

Now assume the proposer proposes the offer

zαp = MS(Bp\{αp}, v, B)

to players in Bp\{αp}, the offer zαp will be accepted by all players in Bp\{αp} by Claim 1 and then the proposer
αp will obtain the payment

w̃ = −
∑

i∈Bp\{αp}

[bαp

i +MSi(Bp\{αp}, v, B)] +MSBp(B1, v,B).
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According to Proposition 4.1, we know that w ≤ w̃. If w < w̃, it says that to offer a rejected offer is not an
optimal strategy for the proposer. If w = w̃, it says that the proposer is indifferent to offering yαp or zαp and
then by the assumption (b), the proposer αp will prefer to offer zαp . Therefore, each player in Bp\{αp} will
accept the offer of the proposer αp in every SPNE outcome.
Claim 3. In any SPNE, the offer from the proposer αp to each i ∈ Bp\{αp} is

y
αp

i = MSi(Bp\{αp}, v, B).

According to Claim 2, the proposer αp ∈ Bp will give the offer

y
αp

i ≥MSi(Bp\{αp}, v, B)

to player i ∈ Bp\{αp}. If for some j ∈ Bp\{αp},

y
αp

j > MSj(Bp\{αp}, v, B),

that must induce a lower payoff for the proposer because he has to pay more to others.
Claim 4. In Round 1 of any SPNE, Bi = 0 for any i ∈ Bp.

It is easy to derive that
∑
i∈Bp

Bi = 0. Denote Ω = {i ∈ Bp : Bi = max
j∈Bp

Bj}, we have that if Ω = Bp, the result

is true because
∑
i∈Bp

Bi = 0.

Supposing, to the contrary, that Ω 6= Bp, it implies that Bi > 0 for some i ∈ Ω. Take some player j ∈ Bp\Ω
and Bj = max

k∈Bp\Ω
Bk. Let player i change its bids by announcing b̃ik = bik + δ for any k ∈ Ω\{i}, b̃ij = bij − |Ω|δ,

and b̃ik = bik for any k ∈ Bp\(Ω ∪ {j}), where δ is a positive real number. Then, the new net bids are: for all
k ∈ Ω, B̃k = Bk − δ, B̃j = Bj + |Ω|δ, and for all l ∈ Bp\(Ω ∪ {j}), B̃l = Bl.

Since Bj < Bi, we can find a δ > 0 which is small enough such that Bj + |Ω|δ < Bi− δ. Further, Ω does not
change because Ω̃ = {k ∈ Bp : B̃k = max

l∈Bp

B̃l} = Ω. Each player in Ω has the equal probability to be chosen as

the proposer. So, by making the new bid b̃i, if player i is not the proposer, then his payoff does not change and
if player i is the proposer, then he will receive δ units more than making the bid bi.
Claim 5. In Round 1 of any SPNE, the payoff of each player i ∈ Bp is the same regardless of who is chosen
as the proposer.

By Claim 4, we know that Bi = 0 for all i ∈ Bp in any SPNE. However, in order (not) to be a proposer,
player i have to slightly increase (decrease) its bids to others, which is impossible in an SPNE.
Claim 6. In any SPNE outcome, the final payment of each player coincides with its multi-step Shapley value.

By Claims 1-3, we know that if |Bp| = 1, each player i ∈ Bp obtains the final payoff MSB1
i
(B1, v,B) =

MSi(N, v,B). If |Bp| > 1 and player i ∈ Bp is the proposer in Round 1, it will obtain the final payoff
−

∑
j∈Bp\{i}

[bij + MSj(Bp\{i}, v, B)] + MSBp
(B1, v,B). If |Bp| > 1 and j 6= i is the proposer, the final pay-

off of i is bji +MSi(Bp\{j}, v, B).
Denote by pi(N, v,B) the final payoff of player i ∈ Bp ∈ B1 in an SPNE. Since in an SPNE, player i is

indifferent to all possible choices of proposers, by Claim 5 we have that

|Bp|pi(N, v,B) = −
∑

j∈Bp\{i}

[bij +MSj(Bp\{i}, v, B)] +MSBp
(B1, v,B)+

+
∑

j∈Bp\{i}

[bji +MSi(Bp\{j}, v, B)]

= −
∑

j∈Bp\{i}

MSj(Bp\{i}, v, B) +MSBp(B1, v,B)+
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+
∑

j∈Bp\{i}

MSi(Bp\{j}, v, B)

=
∑

j∈Bp\{i}

[MSi(Bp\{j}, v, B)−MSj(Bp\{i}, v, B)]+

+
∑
i∈Bp

MSi(N, v,B)

=
∑

j∈Bp\{i}

[MSi(Bp, v, B)−MSj(Bp, v, B)] +
∑
i∈Bp

MSi(N, v,B)

=
∑

j∈Bp\{i}

[MSi(N, v,B)−MSj(N, v,B) +
∑
i∈Bp

MSi(N, v,B)

= |Bp|MSi(N, v,B).

The penultimate and antepenultimate equations hold because of balanced contributions [10] of the Shapley
value and internal surplus equality.

Therefore, pi(N, v,B) = MSi(N, v,B). �

5. Conclusions

In this paper, we first define and axiomatize multi-step Shapley values for cooperative games with levels
structures by extending the two-step Shapley value for cooperative games with coalition structures. Second, we
develop a non-cooperative mechanism to achieve the multi-step Shapley values for superadditive games, which
is different from the implementation of the two-step Shapley value in Kamijo [8] when the levels structure has
the degree 2.
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