Restrained Italian domination in graphs
RAIRO. Operations Research, Tome 55 (2021) no. 2, pp. 319-332

For a graph G = (V(G), E(G)), an Italian dominating function (ID function) f : V(G) → {0,1,2} has the property that for every vertex vV(G) with f(v) = 0, either v is adjacent to a vertex assigned 2 under f or v is adjacent to least two vertices assigned 1 under f. The weight of an ID function is ∑$$ f(v). The Italian domination number is the minimum weight taken over all ID functions of G. In this paper, we initiate the study of a variant of ID functions. A restrained Italian dominating function (RID function) f of G is an ID function of G for which the subgraph induced by {v ∈ V(G) | f(v) = 0} has no isolated vertices, and the restrained Italian domination number γ$$ (G) is the minimum weight taken over all RID functions of G. We first prove that the problem of computing this parameter is NP-hard, even when restricted to bipartite graphs and chordal graphs as well as planar graphs with maximum degree five. We prove that γrI(T) for a tree T of order n ≥ 3 different from the double star S2,2 can be bounded from below by (n + 3)/2. Moreover, all extremal trees for this lower bound are characterized in this paper. We also give some sharp bounds on this parameter for general graphs and give the characterizations of graphs G with small or large γ$$ (G).

DOI : 10.1051/ro/2021022
Classification : 05C69
Keywords: Restrained Italian dominating function, restrained Italian domination number, restrained domination number, trees, domination number, NP-hard
@article{RO_2021__55_2_319_0,
     author = {Samadi, Babak and Alishahi, Morteza and Masoumi, Iman and Mojdeh, Doost Ali},
     title = {Restrained {Italian} domination in graphs},
     journal = {RAIRO. Operations Research},
     pages = {319--332},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/ro/2021022},
     mrnumber = {4234142},
     zbl = {1468.05220},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021022/}
}
TY  - JOUR
AU  - Samadi, Babak
AU  - Alishahi, Morteza
AU  - Masoumi, Iman
AU  - Mojdeh, Doost Ali
TI  - Restrained Italian domination in graphs
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 319
EP  - 332
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021022/
DO  - 10.1051/ro/2021022
LA  - en
ID  - RO_2021__55_2_319_0
ER  - 
%0 Journal Article
%A Samadi, Babak
%A Alishahi, Morteza
%A Masoumi, Iman
%A Mojdeh, Doost Ali
%T Restrained Italian domination in graphs
%J RAIRO. Operations Research
%D 2021
%P 319-332
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021022/
%R 10.1051/ro/2021022
%G en
%F RO_2021__55_2_319_0
Samadi, Babak; Alishahi, Morteza; Masoumi, Iman; Mojdeh, Doost Ali. Restrained Italian domination in graphs. RAIRO. Operations Research, Tome 55 (2021) no. 2, pp. 319-332. doi: 10.1051/ro/2021022

[1] M. Chellali, T. W. Haynes, S. T. Hedetniemi and A. A. Mcraee, Roman { 2 } -domination. Discrete Appl. Math. 204 (2016) 22–28. | MR | Zbl | DOI

[2] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs. Discrete Math. 278 (2004) 11–22. | MR | Zbl | DOI

[3] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus, Restrained domination in graphs. Discrete Math. 203 (1999) 61–69. | MR | Zbl | DOI

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York, USA (1979). | Zbl

[5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998). | MR

[6] M. A. Henning and W. F. Klostermeyer, Italian domination in trees. Discrete Appl. Math. 217 (2017) 557–564. | MR | Zbl | DOI

[7] N. Jafari Rad and M. Krzywkowski, On the restrained Roman domination in graphs. Manuscript (2015).

[8] P. R. L. Pushpam and S. Padmapriea, Restrained Roman domination in graphs. Trans. Comb. 4 (2015) 1–17. | MR | Zbl

[9] J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial k -trees. SIAM J. Discrete Math. 10 (1997) 529–550. | MR | Zbl | DOI

[10] D. B. West, Introduction to Graph Theory, 2nd edition. Prentice Hall, USA (2001). | MR | Zbl

Cité par Sources :