Maximum Entropy on the Mean approach to solve generalized inverse problems with an application in computational thermodynamics
RAIRO. Operations Research, Tome 55 (2021) no. 2, pp. 355-393

In this paper, we study entropy maximisation problems in order to reconstruct functions or measures subject to very general integral constraints. Our work has a twofold purpose. We first make a global synthesis of entropy maximisation problems in the case of a single reconstruction (measure or function) from the convex analysis point of view, as well as in the framework of the embedding into the Maximum Entropy on the Mean (MEM) setting. We further propose an extension of the entropy methods for a multidimensional case.

DOI : 10.1051/ro/2021005
Classification : 90C25, 90C46, 62G07, 62P30
Keywords: Entropy maximisation problems, Bayesian statistics, application in engineering
@article{RO_2021__55_2_355_0,
     author = {Gamboa, Fabrice and Gu\'eneau, Christine and Klein, Thierry and Lawrence, Eva},
     title = {Maximum {Entropy} on the {Mean} approach to solve generalized inverse problems with an application in computational thermodynamics},
     journal = {RAIRO. Operations Research},
     pages = {355--393},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/ro/2021005},
     mrnumber = {4234138},
     zbl = {1472.90088},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021005/}
}
TY  - JOUR
AU  - Gamboa, Fabrice
AU  - Guéneau, Christine
AU  - Klein, Thierry
AU  - Lawrence, Eva
TI  - Maximum Entropy on the Mean approach to solve generalized inverse problems with an application in computational thermodynamics
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 355
EP  - 393
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021005/
DO  - 10.1051/ro/2021005
LA  - en
ID  - RO_2021__55_2_355_0
ER  - 
%0 Journal Article
%A Gamboa, Fabrice
%A Guéneau, Christine
%A Klein, Thierry
%A Lawrence, Eva
%T Maximum Entropy on the Mean approach to solve generalized inverse problems with an application in computational thermodynamics
%J RAIRO. Operations Research
%D 2021
%P 355-393
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021005/
%R 10.1051/ro/2021005
%G en
%F RO_2021__55_2_355_0
Gamboa, Fabrice; Guéneau, Christine; Klein, Thierry; Lawrence, Eva. Maximum Entropy on the Mean approach to solve generalized inverse problems with an application in computational thermodynamics. RAIRO. Operations Research, Tome 55 (2021) no. 2, pp. 355-393. doi: 10.1051/ro/2021005

[1] O. Barndorff-Nielsen, Information and Exponential Families: In Statistical Theory. John Wiley & Sons (1978). | MR | Zbl

[2] J. Borwein and A. Lewis, Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29 (1991) 325–338. | MR | Zbl | DOI

[3] J. Borwein and A. Lewis, Partially-finite programming in L 1 and the existence of maximum entropy estimates. SIAM J. Optim. 3 (1993) 248–267. | MR | Zbl | DOI

[4] L. M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7 (1967) 200–217. | MR | Zbl | DOI

[5] M. Broniatowski and A. Keziou, Minimization of ϕ -divergences on sets of signed measures. Stud. Sci. Math. Hung. 43 (2006) 403–442. | MR | Zbl

[6] I. Csiszár, I -divergence geometry of probability distributions and minimization problems. Ann. Probab. (1975) 146–158. | MR | Zbl

[7] I. Csiszár, Sanov property, generalized I -projection and a conditional limit theorem. Ann. Probab. (1984) 768–793. | MR | Zbl

[8] I. Csiszár, Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19 (1991) 2032–2066. | MR | Zbl | DOI

[9] I. Csiszár, Generalized projections for non-negative functions. Acta Math. Hung. 68 (1995) 161–186. | MR | Zbl | DOI

[10] I. Csiszár, F. Gamboa and E. Gassiat, MEM pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inf. Theory 45 (1999) 2253–2270. | MR | Zbl | DOI

[11] D. Dacunha-Castelle and F. Gamboa, Maximum d’entropie et problème des moments. Ann. Inst. Henri Poincaré Probab. Stat. 26 (1990) 567–596. | MR | Zbl | Numdam

[12] A. Dembo and O. Zeitouni, Large deviations techniques and applications. In: Vol. 38 of Stochastic Modelling and Applied Probability. Corrected reprint of the second (1998) edition. Springer-Verlag, Berlin (2010). | MR | Zbl | DOI

[13] F. Gamboa, Maximum d’entropie sur la moyenne. Ph.D. thesis, Université d’Orsay (1989).

[14] F. Gamboa and E. Gassiat, Maximum d’entropie et probléme des moments: cas multidimensionnel. Probab. Math. Stat. 12 (1991) 67–83. | MR | Zbl

[15] F. Gamboa and E. Gassiat, Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Stat. 25 (1997) 328–350. | MR | Zbl | DOI

[16] B. Jansson, Computer operated methods for equilibrium calculations and evaluation of thermochemical model parameters. Ph.D. thesis, Royal Institute of Technology (1984).

[17] J. H. B. Kemperman, Moment problems with convexity conditions, edited by J. S. Rustagi. In: Optimizing Methods in Statistics. Academic Press (1971). | MR | Zbl

[18] C. Leonard, Minimizers of energy functionals. Acta Math. Hung. 93 (2001) 281–325. | MR | Zbl | DOI

[19] C. Leonard, Minimizers of energy functional under not very integrable constraints. J. Convex Anal. 10 (2003) 63–88. | MR | Zbl

[20] F. Liese and I. Vajda, Convex Statistical Distances. Teubner (1987). | MR | Zbl

[21] Z.-K. Liu, First-principles calculations and CALPHAD modeling of thermodynamics. J. Phase Equilib. Diffus. 30 (2009) 517. | DOI

[22] H. L. Lukas, S. G. Fries and B. Sundman, Computational Thermodynamics: The CALPHAD Method. Cambridge University Press (2007) 663969016. | Zbl

[23] J. Navaza, On the maximum-entropy estimate of the electron density function. Acta Crystallogr. Sect. A 41 (1985) 232–244. | DOI

[24] O. Nikodym, Sur une généralisation des intégrales de M. J. Radon. Fundam. Math. 15 (1930) 131–179. | JFM | DOI

[25] H. Okamoto, M. E. Schlesinger and E. M. Mueller, Alloy Phase Diagrams. In Vol 3 of ASM Handbook. ASM International (2016).

[26] J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen. Hölder (1913) 39514488. | JFM

[27] R. T. Rockafellar, Convex Analysis. Princeton University Press (1970). | MR | Zbl | DOI

[28] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer-Verlag (1998). | MR | Zbl | DOI

[29] J. Shore and R. Johnson, Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 26 (1980) 26–37. | MR | Zbl | DOI

[30] P. J. Spencer, A brief history of CALPHAD. CALPHAD 32 (2008) 1–8. | DOI

Cité par Sources :