In this paper, we study entropy maximisation problems in order to reconstruct functions or measures subject to very general integral constraints. Our work has a twofold purpose. We first make a global synthesis of entropy maximisation problems in the case of a single reconstruction (measure or function) from the convex analysis point of view, as well as in the framework of the embedding into the Maximum Entropy on the Mean (MEM) setting. We further propose an extension of the entropy methods for a multidimensional case.
Keywords: Entropy maximisation problems, Bayesian statistics, application in engineering
@article{RO_2021__55_2_355_0,
author = {Gamboa, Fabrice and Gu\'eneau, Christine and Klein, Thierry and Lawrence, Eva},
title = {Maximum {Entropy} on the {Mean} approach to solve generalized inverse problems with an application in computational thermodynamics},
journal = {RAIRO. Operations Research},
pages = {355--393},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {2},
doi = {10.1051/ro/2021005},
mrnumber = {4234138},
zbl = {1472.90088},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2021005/}
}
TY - JOUR AU - Gamboa, Fabrice AU - Guéneau, Christine AU - Klein, Thierry AU - Lawrence, Eva TI - Maximum Entropy on the Mean approach to solve generalized inverse problems with an application in computational thermodynamics JO - RAIRO. Operations Research PY - 2021 SP - 355 EP - 393 VL - 55 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2021005/ DO - 10.1051/ro/2021005 LA - en ID - RO_2021__55_2_355_0 ER -
%0 Journal Article %A Gamboa, Fabrice %A Guéneau, Christine %A Klein, Thierry %A Lawrence, Eva %T Maximum Entropy on the Mean approach to solve generalized inverse problems with an application in computational thermodynamics %J RAIRO. Operations Research %D 2021 %P 355-393 %V 55 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro/2021005/ %R 10.1051/ro/2021005 %G en %F RO_2021__55_2_355_0
Gamboa, Fabrice; Guéneau, Christine; Klein, Thierry; Lawrence, Eva. Maximum Entropy on the Mean approach to solve generalized inverse problems with an application in computational thermodynamics. RAIRO. Operations Research, Tome 55 (2021) no. 2, pp. 355-393. doi: 10.1051/ro/2021005
[1] , Information and Exponential Families: In Statistical Theory. John Wiley & Sons (1978). | MR | Zbl
[2] and , Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29 (1991) 325–338. | MR | Zbl | DOI
[3] and , Partially-finite programming in and the existence of maximum entropy estimates. SIAM J. Optim. 3 (1993) 248–267. | MR | Zbl | DOI
[4] , The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7 (1967) 200–217. | MR | Zbl | DOI
[5] and , Minimization of -divergences on sets of signed measures. Stud. Sci. Math. Hung. 43 (2006) 403–442. | MR | Zbl
[6] , -divergence geometry of probability distributions and minimization problems. Ann. Probab. (1975) 146–158. | MR | Zbl
[7] , Sanov property, generalized -projection and a conditional limit theorem. Ann. Probab. (1984) 768–793. | MR | Zbl
[8] , Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19 (1991) 2032–2066. | MR | Zbl | DOI
[9] , Generalized projections for non-negative functions. Acta Math. Hung. 68 (1995) 161–186. | MR | Zbl | DOI
[10] , and , MEM pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inf. Theory 45 (1999) 2253–2270. | MR | Zbl | DOI
[11] and , Maximum d’entropie et problème des moments. Ann. Inst. Henri Poincaré Probab. Stat. 26 (1990) 567–596. | MR | Zbl | Numdam
[12] and , Large deviations techniques and applications. In: Vol. 38 of Stochastic Modelling and Applied Probability. Corrected reprint of the second (1998) edition. Springer-Verlag, Berlin (2010). | MR | Zbl | DOI
[13] , Maximum d’entropie sur la moyenne. Ph.D. thesis, Université d’Orsay (1989).
[14] and , Maximum d’entropie et probléme des moments: cas multidimensionnel. Probab. Math. Stat. 12 (1991) 67–83. | MR | Zbl
[15] and , Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Stat. 25 (1997) 328–350. | MR | Zbl | DOI
[16] , Computer operated methods for equilibrium calculations and evaluation of thermochemical model parameters. Ph.D. thesis, Royal Institute of Technology (1984).
[17] , Moment problems with convexity conditions, edited by . In: Optimizing Methods in Statistics. Academic Press (1971). | MR | Zbl
[18] , Minimizers of energy functionals. Acta Math. Hung. 93 (2001) 281–325. | MR | Zbl | DOI
[19] , Minimizers of energy functional under not very integrable constraints. J. Convex Anal. 10 (2003) 63–88. | MR | Zbl
[20] and , Convex Statistical Distances. Teubner (1987). | MR | Zbl
[21] , First-principles calculations and CALPHAD modeling of thermodynamics. J. Phase Equilib. Diffus. 30 (2009) 517. | DOI
[22] , and , Computational Thermodynamics: The CALPHAD Method. Cambridge University Press (2007) 663969016. | Zbl
[23] , On the maximum-entropy estimate of the electron density function. Acta Crystallogr. Sect. A 41 (1985) 232–244. | DOI
[24] , Sur une généralisation des intégrales de M. J. Radon. Fundam. Math. 15 (1930) 131–179. | JFM | DOI
[25] , and , Alloy Phase Diagrams. In Vol 3 of ASM Handbook. ASM International (2016).
[26] , Theorie und Anwendungen der absolut additiven Mengenfunktionen. Hölder (1913) 39514488. | JFM
[27] , Convex Analysis. Princeton University Press (1970). | MR | Zbl | DOI
[28] and , Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer-Verlag (1998). | MR | Zbl | DOI
[29] and , Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 26 (1980) 26–37. | MR | Zbl | DOI
[30] , A brief history of CALPHAD. CALPHAD 32 (2008) 1–8. | DOI
Cité par Sources :





