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MAXIMUM ENTROPY ON THE MEAN APPROACH TO SOLVE
GENERALIZED INVERSE PROBLEMS WITH AN APPLICATION IN
COMPUTATIONAL THERMODYNAMICS

FABRICE GAMBOA?, CHRISTINE GUENEAU®, THIERRY KLEIN'?4
AND EVA LAWRENCED23*

Abstract. In this paper, we study entropy maximisation problems in order to reconstruct functions
or measures subject to very general integral constraints. Our work has a twofold purpose. We first make
a global synthesis of entropy maximisation problems in the case of a single reconstruction (measure or
function) from the convex analysis point of view, as well as in the framework of the embedding into
the Maximum Entropy on the Mean (MEM) setting. We further propose an extension of the entropy
methods for a multidimensional case.
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1. INTRODUCTION

In some problems coming from applied physics, a multidimensional function f taking values in R? ought
to be reconstructed given a set of observations. In thermodynamics, information on the function of interest,
namely the p components of the function f we wish to reconstruct, are indirectly available. In general the
available information consists in the value of integrals that involves the unknown function f and some known
weights ()\i)i:L,,,,p. For example, one can consider an interpolation problem when the integration measure
consists in Dirac masses. In this case we give at known locations the value of a scalar product between f and A,
see expression (1.2). In the present work, we need to consider more general constraints. Therefore we study a
reconstruction problem in which constraints are defined as integrals involving the unknown function f and the
weight function A against suitable measures ®, see expressions (1.1) and (1.3).

In the sequel we provide a general method for the reconstruction of a p-real valued function from partial
knowledge submitted to the general constraints previously discussed. We refer the interested reader to Chapter
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2 of [22] for the basic rules of thermodynamics and Chapter 5 of [22] for the description of functions which are
ordinarily considered for the reconstruction of thermodynamic quantities.

To be more precise, we consider a R? valued function f(z) = (fl(z),..., fP(z)) defined for all x in the
compact set U C R? (we assume the interior of U to be non-empty). We set our work in a probability space
(U,B(U), Py) where B(U) is the Borel o-algebra and Py is the given reference measure. In such framework,
we wish to reconstruct f over U and such that the reconstructed quantity satisfies the N following integral
constraints

/U Z)\i(sc)fi(x)dél(x) =z 1<I<N, (1.1)

where ®; are N positive (known) finite measures on (U, B(U)) and \? are known continuous weight functions.
The expression of integral constraints as in (1.1) allows to express a wide range of problems. For example,

one can consider some pairs (z;,2;) € U x R for [ = 1,..., N, and wish to solve the following interpolation
equations
p . .
Zx\l(xl)fl(xl) =z 1IN (1.2)
i=1

Expression (1.2) can be obtained from (1.1) by choosing d®,(z) = d,,(dz) the Dirac measure located at x; for
all ] =1,..., N. Therefore, the integral constraints (1.1) become interpolation constraints.

When U is a subset of R, one can also involves the [ first moments of f¢ by taking dPy(z) = dz and
d®;(z) = 2'dPy(z). Namely, integral constraints (1.1) become in this case

P
/ SN @) f@)aldPy(@) =5 1<I<N.
U =1

In our work, the z; represent N ideal real-valued measurements. In the case of noisy observations, a relaxed
version of problem (1.1) can be considered. The aim is then to reconstruct p real-valued functions on U such
that

/U ZAi(x)fi(:c)dcbl(x) €K, 1<I<N, (1.3)

where K; is an interval in R. In the sequel I will denote the product of the N intervals K;.
In the general case, problem (1.3) is ill-posed and has many solutions. In our work, we propose to choose
among the solutions the function f that maximises I, the y-entropy of the function f defined by

LU == [ 1 (@ @) P (1.4)

where + is a strictly convex function from R? to R. In this framework, the reconstruction problem we consider

can be rephrased as
max I,(f)

- i i (5.
.t. / SN (@) Fi(2)dD (@) € K. ﬁ
U =1

The resolution of problem (.7-'5) 7) is conducted in two steps. We consider a dual problem on (signed) measures
as a first step. The second step consists in solving a discrete approximation of the dual problem. This approach
is summarised in Figures 1 and 2 (see on the next page). The Figure 1 presents the approach in the case
p =1 and A(z) = 1, Vo € U, which has already been treated in [10]. Figure 2 presents the case p # 1, which
is the extension of [10] treated in this work. The resolution we propose involves the embedding into a more
complicated framework. Let us sketch the description of this framework. Let V' be a Polish space and Py be
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Case p = 1.
e Problem on function.
max I,(f)
]:1
I / flz)d®(z) € K. Fa)
U
1[ Transfer principle [8].
e Problem on signed measure [9], [6], [2].
min D, (F, Py)*
Ml
P / o(1)dF(t) € K. (M)
1%
Point-measure
Il approximation of F’
Z?:l %Katl
¢ Maximum Entropy on the Mean (MEM) [13].
min Dy (Q,T1%")°
1« (M)
. E — t;)Y;| € K. @
Q: Eq |~ ;w( )
%Integral criterion D, is defined by (7).
bCriterion D1, is defined by (6). Problem is explained in (8-11) and section 2.

FIGURE 1. Problems raised in the sequel, case p = 1. Such problems have already been studied,
see Section 2 for more details.

the reference measure on V. Unless it is specified, V' is a compact space. The resolution we propose involves a
transfer between U and V. A more precise description of such transfer will be given in Section 2 (unidimensional
case) and Section 3 (multidimensional case).

We first recall how the Maximum Entropy (ME) method is put in action. Originally, the ME method aims
at the reconstruction of a probability measure P when dealing with information on the expectation under P of
some random variables. We give below a first example.

Example 1.1. When V = R, one may want to reconstruct a probability measure P such that the quantity
[tEdP(t) for some k € N* is equal to given values my.

More precisely, define the entropy of a probability measure P with respect to the measure Py as

dpP . dP 1
S(P) = —/Vlog <dPV) dP if P« Py and log (dPV) e L'(P) (1.5)

—00 otherwise,

where P < Py means that P is absolutely continuous with respect to Pyy. ME method derives as solution the
probability PMP which maximises the entropy, provided that the information for the reconstructed probability
measure meets the information asked.
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Case p # 1.
e Problem on functions.
max I,(f)
P 4 P
f o / SN (#) £ (2)d(z) € K. (Fo,)
U i=1

]I Transfer principle.

e Problem on signed measures.
min D.,(F, Py)

F Z / t)dF'(t) € K. (M5.)

Point-measure
approximations
of the F".

¢ Maximum Entropy on the Mean.

min Dy (Q,11%")

P n
Q B |- M3 6| €k

i=1 j=1

(MET)

FIGURE 2. Problems raised in the sequel, p # 1. See Section 3 for the extension of the method
provided by [10] to solve inverse problems.

In information theory and statistics, one usually considers the opposite of the entropy, that is the so-called
Kullback—Leibler divergence of P with respect to Py which is defined by

dpP dpP 1
Dyw (P, Py) = /log <dPV)dP if P < Py and log(d V) e L'(P) (1.6)
+00 otherwise.

Equivalently the ME method derives as a solution the probability measure PM® which minimises the Kullback—

Leibler divergence from the reference measure Py under the constraints. Reference measure Py can be inter-
preted as a prior measure.

The Kullback—Leibler divergence defined in (1.6) is called the I-divergence in [6,7]. The author also calls
I-projection the probability measure that maximises the entropy (1.5) on a convex set of probability measures.
Further in [8] an axiomatic justification for the use of the ME method is provided.

In a more general case, the entropy problem can target a reconstruction of a signed measure. In this case,
the vy-divergence D.,, defined in the expression (1.7), is considered instead of the Kullback-Leibler divergence
D1, (1.6). The authors in [2,3] have studied the minimisation of the y-divergence D, under linear constraints.
Let F be a signed measure defined on V. The classical Lebesgue decomposition of F' with respect to Py is

F=F"+4F®

with F'* < Py the absolutely continuous part and £ the singular part. F'* is singular with respect to Py
means that it is concentrated on a set V' such that Py (V) = 0. We recall as well the Jordan decomposition of
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measure F'¢
Fs = Fs,—‘r _ S~

with F*% and F'*~ two positive measures mutually singular. The ~-divergence D, is then defined as follows

dFe

D,Y(F, PV) = / ol <> dPy + was’-i_(V) — awFS’_(V) (].7)
v \dPy

where the integrand - is a convex function and F'¢, F'** and F'*'~ are as defined previously. The scalar quantities

by and ay, with ay < by, are the endpoints of ¢ domain with ¢ the convex conjugate of - defined by

Y(t) = Sup {ty =)}

Taking back the Example 1.1, the reconstruction problem can be put in the frame of an optimisation problem
as (Mim) defined in Figure 1. In this example, the objective function is the Kullback-Leibler divergence Dk,
that is the criterion D, when « is the convex function defined on R} by y — ylog(y) —y — 1. The scalar
quantities a, and by are respectively equal to —oo and +oco which leads to a reconstruction with no singular
parts. The moment constraint can be written as [, ¢(t)dF(t) € K by taking K = {m;} and ¢ : ¢ — t*. Finally,
one has to add the constraint fv dF(t) =1 to ensure that the reconstructed measure is a probability measure.

Notice that the expression in (1.7) contains terms depending on the singular part F'® of measure F. Those
terms may not be considered in the -divergence (1.7) depending on the convex function + used, see [5] and
Example 1.1.

More generally the author in [18,19] studies the characterization of the optimal signed measure which min-
imises (1.7) under linear constraints. Integral functionals with normal convex integrand, i.e. integrals for which
the integrated function is strictly convex with respect to one of its variable, are studied. See more comments
on normal convex integrand in Chapter 14 of [28]. See also [20] for a systematic treatment of convex distance
minimisation.

We now recall that many usual optimisation problems (Mio,'y) can be set in an entropy maximisation problem
frame, as proposed in the early paper [23]. This general embedding in ME is called the Maximum Entropy on
the Mean (MEM) method and has been developed in [11,13]. The method is based on a suitable discretisation
of the working set V. The reference measure Py is approximated by a point-measure supported by n pixels,
t1,...,t, which are deterministic points in V' such that P, = % 22;1 d:, — Py . By associated to each pixel ¢;
a real random amplitude Y;, we defined the random point-measure F;, by

1 n
Fo= L3 v, (19
i=1

By construction F,, < P,. Notice that we choose to present the simple case of real random amplitudes Y; for
this introduction, but one can consider more complicated constructions. We will do so in the Section 3.3 where
the amplitudes Y; will be vectors in RP.

In the MEM problem, one wants to determine the “optimal” distribution @) to generate vectors of n real
random amplitudes (Y7, ..., Y}, ). Optimal distribution @ must be such that the constraints considered in problem
(./\/liw) applied to the random point-measure F;, is met on average, that is that

Eq [ /V so(t)dmt)] ~Eq [}1 2_: p(t)Y,

Taking back Example 1.1, the constraints applied to the point-measure approximation become

AP

€k. (1.9)

n

%Z(m)’%

i=1

=1 and ]EQ = Mmg. (110)
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We assume that the random amplitudes are independent. Let II denote their prior distribution so that the
reference distribution for (Y1,...,Y,,) is the tensor measure II®". In order to build the optimal distribution,
we minimise the Kullback—Leibler divergence (1.6) with respect to the prior II®" under the constraints (1.9).
When such “optimal” distribution exists, we will denote the solution by QMEM. Then let FMEM be defined as
follows

1 n
FMEM _ E e ln Zl Y, (1.11)

Notice that unlike F},, the quantity FMEM is no longer random. Let the log Laplace transform of probability
measure II be denoted by ¥

Y (1) = log (/R exp (Ty) dH(y)) for all 7 € Dy, (1.12)

with Dy, the domain of 111. We denote by 11 the convex conjugate of the log-Laplace transform Y. We hope
that the reconstruction FMEM is a good approximation (in a sense we will further specify) of the solution of the
corresponding continuous problem (M;ﬁ), for which convex function + is the function 7. The properties of the
minimising sequence (F EM), have been studied in [13]. The authors in [14] deal with a multidimensional case,
that is estimating a vector of reconstructions when dealing with information on generalised moments of each
components. In [15], Bayesian and MEM methods are proposed to solve inverse problems on measures. More
details about the MEM method will be provided in Section 2 for the case p = 1 and Section 3.3 for the case
p # 1. In particular we explain how to choose reference probability measure II so that the criterion Dky, (-, [1®™)
for discrete problem (./\/l;rf-[) is a good alternative to criterion D. (-, Py) of continuous problem (Mg, ).

Back to the function reconstruction problem, an extension of the MEM method to solve generalised moment
problems for function reconstruction as in (]—"&W) is proposed by [10] in the case p = 1 and A(z) =1, Vz € U.
The method uses a transfer principle which links the function to reconstruct to a corresponding measure. The
transfer relies on the use of suitable kernels. Such transfer is particularly useful when considering measures ® in
the constraints equation (1.3) that might not all be absolutely continuous with respect to the reference measure
Py.

Our work has a twofold purpose. We first make a summary of entropy maximisation problems in order to
reconstruct a single measure and, by extension with the linear transfer, entropy maximisation problems in order
to reconstruct a single function. We propose a global synthesis of the entropy maximisation methods for such
reconstruction problems from the convex analysis point of view, as well as in the framework of the embedding
into the MEM setting. We then propose an extension of the entropy methods for a multidimensional case. Such
extension is the main contribution of this work. We study the MEM embedding for the function reconstruction
problem that is proposed in [10] in the extended case of inverse problems, that is when p # 1 and the A\’ are any
known bounded continuous functions. We provide a general method of reconstruction based on the y-entropy
maximisation for functions submitted to generalised moment and interpolation constraints as in (1.3).

This paper is organized as follows.

In Section 2, we recall in a global synthesis of entropy maximisation methods some results for the specific
case of a single function reconstruction problem (}"}m) or a single measure reconstruction problem (Mslaxy)'
First we describe how the transfer principle works, that is how a function problem (]-'éﬁ) can be linked to the
measure problem (Miory) in Section 2.1. Then we recall some results about the resolution of the vy-divergence
minimisation problem (/\/liw) in Section 2.2. In Section 2.3, we take a specific look at problem (M}oﬁ) when the
convex function v is the function y — ylog(y) —y — 1. This specific problem is the ME problem which will be
denoted by (Mi,ME) We then extend the class of studied optimisation problems by giving the construction of
the MEM problem setting and we provide some properties of the MEM reconstruction in Section 2.4. Finally in
Section 2.5, the setting of some usual optimisation problems into the entropy maximisation frame is reminded.

INotice that as 111 is a convex function, vy is also the convex conjugate of ~yy.
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The main contributions of this paper are the results presented in Section 3. It consists in the study of the
entropy methods for the reconstruction of a multidimensional function submitted to very general constraints
such as an integral inverse problem as in (1.3). We extend the approach of [10] for the case p # 1 and any known
bounded continuous functions A\*. We study the embedding of the functions reconstruction problem (fg} v) into
the MEM problem (MPT;) framework. Such study is stepped in three independent parts. First in Section 3.1, we
study the problem (]'—@,77) in a convex analysis framework. We express the optimal solution thanks to Fenchel
duality theorem. This first approach lacks to give a suitable reconstruction when constraint measures ® are
not absolutely continuous with respect to Py. To remedy this issue, we propose in Section 3.2 to transfer
the functions reconstruction problem (fgﬁ) to a corresponding measures reconstruction problem (M? ). The
transfer is performed using suitable continuous kernels. Finally in Section 3.3, we set problem (M? ) obtained
by the transfer into a MEM problem framework and we study the reconstructions given by problem (M’;%)

Applications will be presented in Section 4. We consider first some simple examples of single function recon-
structions and then a two-functions case study inspired by computational thermodynamics.

2. THE SPECIFIC 7-ENTROPY MAXIMISATION PROBLEM FOR A SINGLE RECONSTRUCTION

We give in this section some details about the y-entropy maximisation problem in the case of a single
reconstruction, that is that we are interested in a single function or a single measure reconstruction. Those
problems have already been studied, see for example in [10] for problem (.7-'41)77)7 in [3] for problem (M} ) and
in [13] for problem (ML%) Let us recall some results of these authors.

In Section 2.1 we are interested in the link between a function reconstruction problem (]—"éﬁ) and a measure
reconstruction problem (./\/13077). The function reconstruction problem is set as

max I, (f)
f'l
£i [ fave) ek (Fb-)
U
and the measure reconstruction problem as
min D’Y (Fa PV)
(M)

P /V P(H)dF(t) € K.

The idea is to set a transformation from measures on V to functions on U. Such transformation is the linear
transfer we will further describe in the Section 2.1.

We remind the reader that we consider a number N of constraints. Therefore ® and ¢ take values in RV, In
addition we will consider that ¢ is continuous.

In Section 2.2 we study the y-divergence minimisation problem under constraints, that is problem (M}Oﬁ).
We recall the results of [3] for the existence of an optimal solution to problem (M _).

We take a closer look in Section 2.3 at the Maximum Entropy (ME) problem. This problem corresponds to
problem (M}aﬁ) in the special setting when  is the function y — ylog(y) —y—1 and the v-divergence coincides
with the Kullback—Leibler divergence. We recall results on the existence of the optimum and its expression when
such minimiser exists.

In Section 2.4, we recall the setting of the nth MEM problem (M;Tﬁ)

min Dk, (Q, 1%")

1 n
Q: Eq [n 2 ¢(t)Ys
i=1

e K. o1l
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We give, when it exists, an expression for the minimiser QM of the nth problem. A function gM¥, related to the
expectation of the random amplitudes under QM¥. can be defined. We will see that under some assumptions,
it exists one particular v € RY such that the sequence (gM¥),, converges to a function gME(t) = of; ((v, o(t))).
This limit will be expressed.

Finally in Section 2.5, we give examples of some classical optimisation problems embedding into the MEM
framework.

2.1. Transfer principle

We briefly recall the idea of the transfer principle developed in [10], in order to put to work the y-entropy
methods in the case of a function reconstruction problem. Let us denote by (U, B(U), Py) the probability space
where U C R? is compact (non empty), B(U) is the associated Borel set and Py is the reference measure. In the
case of the reconstruction problem for a single function, one wants to reconstruct over U a function f taking
values in R such that f satisfies the integral constraints

| s ex. 2.1)
U

Let v be a given convex function taking values in R and D, C R its domain. Then the y-entropy is defined by

Mﬂ:fAVWMM%@%

for a function f defined on U and taking values in D,.
In order to chose among the functions that satisfy (2.1), we propose as a selection criterion to maximise the
~v-entropy. This means that we consider the optimisation problem (.7-'},,7)

max I,(f)

1
f / F(z)dd(z) € K. (Fs.,)
U
The method proposed by [10] is to transfer the function reconstruction problem to a measure reconstruction
problem thanks to some continuous kernel K. Such kernel links the function to reconstruct to a corresponding
signed measure. Recall that V is a Polish space and Py the reference probability measure on V. The idea is
that if one can reconstruct over V' a signed measure F' such that

/ p(t)dF(t) € K, (2.2)
14

then a regularized function fx can be reconstructed linked to the measure F'. To do so, we proceed as follows.

We denote by K a continuous kernel defined over U x V' taking values in R. The kernel K is such that measure
® of the integral constraint (2.1) is linked to a regularized function ¢k involved in an integral constraint as in
(2.2). The relation linking ® to ¢k is given by

wK(t)z/UK(x,t)d@(x), feV

Therefore, for any continuous kernel K, one can reconstruct the regularized function fx associated to F' by
defining

fr(z) = /‘/K(x,t)dF(t), xeU.

Hence as a consequence of Fubini theorem, if the measure F' satifies (2.2), the regularized function fx defined
above satisfies (2.1).
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2.2. «v-divergence minimisation problem

In this section, we recall the results provided by [3] for the 7-divergence minimisation problem for signed
measure reconstruction. We set our work on V. Let F' be a signed measure defined on V. The classical Lebesgue
decomposition of F' with respect to Py is

F=F*+F*

with F* < Py the absolutely continuous part and F'* the singular part. F'* singular with respect to Py means
that it is concentrated on a set V such that Py (V) = 0. Notice that F'® and F'*® are still signed measures. Recall
the Jordan decomposition of measure F'*

FS — FS,+ _ FS’7

with F'*T and F'®~ mutually singular. Let v be essentially strictly convex. We denote by 1 its convex conjugate,
that is

Y(t) = sup {ty —(y)}.

yeDw

Considering ay and by, with ay < by, the endpoints of ¢ domain, we define the y-divergence D., by

dF?
D,(FPy) = [ (S5 ) AP+ bFo (V) = ay P (v),
1% 1%

The problem we consider is the following

min D, (F, Py)

F: / e(t)dF(t) € K. M)
1%

The authors in [3] study the existence conditions of an optimal solution using convex analysis tools. Their
first result is to consider the following dual problem of (Mim) which relies on a Lagrange multiplier v € RY

sup {inf (0.0 = [ w0 ary o). (ML)

vERN cek

In addition, they give conditions for problems (M}pﬁ) and (M}a’:/) to have solutions. These results are recalled
in Theorem 2.1 below.

Theorem 2.1 ([3], Thm. 3.4).
(1) If there exists v' € RN such that (v',p(t)) € Dy then

inf D.(F,Py) = sup {inf (v,c}/Vw(@,ga(t)))de(t)}.

F: [, e(®)dF(t)eKk veRN | cEK

(2) If, in addition, [, ((v',¢(t))) APy (t) is finite and if it exists a signed measure F' such that [,, o(t)dF'(t) €

K, % is in the relative interior of D, and D~(F’, Py) is finite, then
inf D (F,Py) = min D (F, P
F: [, o(t)dF(t)ek 2(F ) F: [, o(t)dF(t)eK 2(F Py)
and

sup {inf (0} = [ 0 ((opton) apvio)} = max {00~ [ v (oo areo}.

veRN | ¢€ vERN | cEK
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The next theorem proposes a more precise characterisation of the solution for problem (M}pw) under the
same conditions specified in Theorem 2.1.

Theorem 2.2 ([3], Thm. 4.1). Under the assumptions of Theorem 2.1.
(1) The absolutely continuous part with respect to Py of solution F° of (./\/l}(m) is given by

dFe°
dPy

() =¢" ((v", (1))

where v* is the solution of

veERN | ceK

max {inf (v, ¢) /V¢(<v,<p(t)>)dpv(t)}.

(2) If, in addition, for allv € RY and for allt € V, (v, ¢(t)) is in the interior of Dy, the singular part vanishes.

It can be noted that when Dy = R, Theorem 2.2 always gives solutions that are absolutely continuous with
respect to Py. The condition to have Dy = R, is to consider a function « that is such that the ratio \¥| is

equal to oo on the edges of D, see Lemma 2.1 of [3].
We will see in Section 2.4 that the approach proposed by the embedding in the MEM framework boils down

to the same results provided by Theorem 2.2.

2.3. Maximum entropy problem

In this section we take a better look at the problem of maximising the entropy of a probability measure under
generalised moments constraints, that is the ME problem

min DKL (P, Pv)

1
P: / (t)dP(t) € K (Mg e)
1%
with ¢ defined on V and taking values in RY. We remind the reader that in this section, the first component
of function ¢ is the constant 1 and that K is the product {1} x K1 x -+ x Ky_;. Notice that for the results
recalled in this section only, V' does not need to be compact and ¢ has not to be continuous. The definition of
the Kullback—Leibler divergence D, is recalled below

dP dP
1 — |dP if PP d 1 — LY(P
Diw(P, Py) = /Vog<de) if P < Py an og(dpv>€ (P)
+o0 otherwise.

The problem proposed in Section 2.2 is a more general setting of the original ME problem. The reconstruction
provided by the ME method satisfies the following properties. Those are showed by Shore and Johnson in [29].

Proposition 2.3.

(1) Uniqueness: If the solution of ME problem exists, it is unique.

(2) Coordinate independence: The reconstruction is independent of coordinate system choice.

(3) System independence: If the probability space (V,B(V'), Py) consists in the product space of m probability
spaces, the reconstruction over the whole probability space is the tensor product of the reconstructions on
each probability space.

In other words, if Py = Q™ Py, where Py, is a reference probability measure on (V;, B(V;)) and (V,B(V), Py)
is the product space of all (V;, B(V;), Py,), then the reconstruction P on (V,B(V)) is given by @, P; where
P; is the reconstruction on (V;, B(V;)).
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(4) Subset independence: If probability space (V,B(V'), Py) consists in the union of m probability spaces, the
reconstruction over the global space leads to the same measure than the reconstruction problem conditioning
on each probability space.

In other words, it does not matter whether one treats the information as a subset V; of whole set V in a
conditional constraint or in the full system.

We recall in this section some results of [9,13] in order to solve problem (MLME). Results are stated without
any proof for the setting of our example.

We give first a definition of the generalised solution for problem (M;ME) This definition requires the use of
a minimising sequence of Dkr, (-, Py), defined as follows. Let (P,) be a sequence of probability measures. (P,)
is a minimising sequence of Dkp, (-, Py) if we have

lim DKL(Pn7 Pv) = I%f DKL(P, Pv). (23)

n—oo

Definition 2.4 ([9]). Let us consider a sequence of probability measures (P,)nen defined on (V,B(V)) such
that (P,) converges and is a minimising sequence of Dkr, (-, Py) and such that for all n, probability measure P,
satisfies

/ p(t)dP,(t) € K.
1%
Then we call generalised maximal entropy solution the measure PMEG that is such that

PMEG — Iim P, in total variation.

n—oo

If PMEG also meets the constraint, then it is called the maximal entropy solution of problem (M;’ME) denoted
by PME,

We will now recall some results on the existence of a generalised solution for problem (M;ME) and the shape
of the solution when it exists.

Let us first define Py the subset of probability measures that satisfy the constraints of the ME problem
(M \ip), that is

P = {P probability measure on V, such that / p(t)dP(t) € IC} .
%

With the previous definition of PMEG | we recall a result of [9] for the existence in our framework of the
generalised solution of problem (M;ME)

Lemma 2.5 ([9]). If infpep. DxL(P, Pv) < oo, then PMEC egists.

Let us now introduce several definitions involved in the characterisation of the problem (M}DME) solution.
For all v € RY, we define the quantity

Zpy o(v) = /V exp ({0, (1)) APy (¢) (2.4)

where (-,-) is the usual scalar product in RY. We denote the domain of Zpy o by Dp, ,, that is the subset of
vectors in RV that are such that Zp,, ,(-) is finite

Dp, o = {v ERN, Zp, ,(v) < oo}. (2.5)

The following definition describes the so-called exponential familly with respect to probability measure Py .
The interested reader may be referred to [1] for more details about exponential models.
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Definition 2.6. The p-Hellinger arc of Py is a family of measures P, that are defined by
APy (t) = (Zpy »(v) ™" exp (v, 0(1))) dPy (1) (2.6)

for all v € Dp,, .
The family of measures P, defined as in (2.6) for all v € Dp, , may also be called the exponential model
with respect to Py .

We recall below the Theorem 4 from [7] that characterises the generalised reconstruction PMES, This theorem
describes the reconstruction PMEG as an element of the p-Hellinger arc of Py,. More important, the reconstruc-
tion problem (MLME), which is infinite dimensional, is transformed into the finite dimension problem (2.7)
that considers the vectors v in Dp, ,, see expression (2.5).

Theorem 2.7 ([7], Thm. 4). The reconstruction PMEC belongs to the @-Hellinger arc of Py if and only if it
exists one measure P in Px such that P < Py .
Then, defines

Hpy o(0,K) = nf (v,¢) —log(Zpy p(v)), Vv & Dpyg
the reconstruction PMEC s obtained by determining v* € Dp,, , such that
Hp, ,(v*,K)= sup Hp, ,(v,K). (2.7)
vEDPy, o

The previous theorem does not ensure that the reconstruction PMFS will satisfy the constraints of problem

(M;ME) Of course, the reconstruction PMEG is more interesting when PMEG belongs to Pr. We then have
the following corollary for a reconstruction that satisfies the constraints. Such reconstruction is then denoted
by PME,

Corollary 2.8 ([13]). If there exists a measure P € Px such that P < Py and if Dp, , is an open set, then
PMEG s the reconstruction PME in Px and PME belongs to the p-Hellinger arc of Py .

As an illustration, we propose the following simple example of a probability measure reconstruction which
maximises the entropy with respect to the standard Gaussian distribution N(0,1). The added constraint is a
fixed valued for the first order moment. By giving the first order moment equal to m, the reconstruction we
obtain is, as one can expect, the Gaussian distribution centred in m and with unit variance.

Example 2.9. The working probability space is (R, B(R), N') where N is the standard Gaussian distribution
N(0,1). We wish to reconstruct the probability measure with given first order moment which minimises the
Kullback—Leibler divergence. Our problem is rewritten

min DKL(P, N)

s.t. /RdP(t) =1
/thP(t) =m.

Using the Theorem 2.7 recalled previously the problem becomes
max vm — log (/ exp(vt)dJ\/(t)> . (2.8)
veER R

Classical optimality criterion applied to the maximisation problem (2.8) gives v = m. Then, the Radon—
Nikodym derivative, see [24,26], with respect to A/ for the reconstructed probability measure PME g equal to

dPME() m?
—— () =exp| ——+mt ).
o= (g om)

PME ig therefore the Gaussian distribution A/(m, 1).
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2.4. Maximum Entropy on the Mean
We recall in this section how the MEM method works. Let us first recall the problem studied. We assume here

that V' is compact. V is discretised with a suitable deterministic sequence t1,...,t, such that point probability
measure P, = %22;1 0, approximates well the probability measure Py. We denote by @ a distribution that
generates a vector (Y7,...,Y,) of n real random amplitudes and by F,, the random point measure defined by
1 n
F, = ﬁthi. (1.8)
i=1
One wants to determine the “optimal” distribution ) to generate Y7, ...,Y,, such that point-measure F,, meets

on average the constraints defined as follows

Eq | [ w(tar.(0)] =Eq [n > e

with ¢ a continuous function taking values in R¥.

We set IT a given reference distribution on R and we study the Kullback—Leibler divergence between the joint
distribution @ and the tensor distribution II®" under some constraints. This is summed up in a more concise
way by the following problem

min DKL(Q, H®n)

- M
Q: Eq l; E ©(t:)Y; (M)
=1

e K.

We assume the support of II to be Ja;b] with —co < a < b < oo. The domain of the moment generating
function of II is denoted Dpy

b
Dp = {7’ eR: / exp(Ty)dII(y) < oo} .

We denote by ¥ the logarithm of the moment generating function of IT
b
Yn(r) = log/ exp(Ty)dII(y), V1 € Dyy. (2.9)

a

We recall below some results of [13] for the resolution of the nth MEM problem and the convergence of
the obtained solution. First Section III.3, Lemma 3.1 of [13] recalled below gives sufficient conditions for the
existence of a solution to the MEM problem (/\/l;%)

Lemma 2.10 ([13], Sect. IIL.3, Lem. 3.1). Let us assume the following

(H1): It exists at least one ¢ € K for which one can find yy, ..., yn with y; € |a;b[ fori=1,...,n, that are such
that & 320 ¢(ti)yi = c.

Then, for n sufficiently large, it always ezists a solution to the MEM problem (M;Tﬁ)
The Corollary 3.1 of Section III.3 from [13] describes the solution of the MEM problem (M;%) when it exists.

As for problem (M}O’ME), solving the reconstruction problem (ML%) consists in solving a finite dimension
problem that considers the vectors v in Dy, with Dy, the subset of RY defined in (H3).

Corollary 2.11 ([13], Sect. IIL.3, Cor. 3.1). Let us assume that assumption (H1) is satisfied and the following
(H2): The closed convex hull of TI support is [a;b].
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(H3): Let the set D, be a non empty open set where Dr , is defined by

Dn, = {UGR Zn,p(v / Hexp v, 0(t:))y:) dO®™ (y1, - . ., yn) <oo}.
[a;b]™

Then, for n sufficiently large, the solution QME to the MEM problem (M;%) 15

n

Q%E(yla cee 7yn) = (ZH,QO('U*))71 €xXp <Z<v*a SD(tz»yz) H®n(y17 cee 7yn)

i=1
where v* € Dy, C RY is the unique mazimiser of

Hi ,(v,K) = in}fC (v,¢) —log (Zm,ex(v)) .

ce

For the convergence result of the MEM reconstruction, we define the function gM® by

with M, (t) the subset of indices in [|1;n|] defined by
(0 = {3 € sl Jle= ol = i 1=}
i€[|1in]]

and $M,,(t) is the number of elements in M, ().
The next theorem requires the strong assumption denoted by (H6). The notation 9 of assumption (H6) refers
to the edge of the set.

Theorem 2.12 ([13], Sect. II1.4, Thm. 3.1). Under assumptions (H1), (H2) and

(H4): Dy is a non empty open set and it exists v € R¥ such that for allt € V, (v, ¢(t)) € Dy.
(H5): D(IL, ) = {v e RNVt €V, (v,¢(t)) € D} is non empty.
(H6): Vv € D11, ), we hcwe limye p(rm,p), uv |fv o)1 ((u, p(t))) dPy (t)| = +00.
Then gM® converges to gMF
s (1) = ¥ ((v*, (1))

where v* maximises

i (0.) = inf (0.6) = [ v (o0l 4P (1)

Remark 2.13. Let the real random sequence (X,,) be defined by X, = 2 3" | Yip(t;) and let us denote by
@y, the law of X,,. Under the assumptions (H1) and (H2) and provided that ¢ is sufficiently regular, one can
characterise the asymptotic behaviour of @),,. As n tends to infinity, Q,, tends to concentrate on the events that
belong to the compact set K. That is, let € KC, we have that

Qn(Xng>a,l=1,...,N) =~ exp(—nl(z)) (2.10)

where the rate function is () = sup,cp~ {(v,2) — [, ¥n ((v,¢(t))) dPy (t)} . Here, the approximation is related
to the classical large deviations property, see [12].

This remark is more formally given in Section II1.4, Corollary 3.5 of [13] as the large deviation property of
the sequence (Q,).
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Thereafter in the Section 3, we aim to reconstruct the p components of a vectorial measure F' subject to the
following integral constraints

N

p
Z/ Pit)dFi(t) e K, 1<I<N.
=17V

We will follow the MEM construction given in the present section. For the multidimensional case, the random
measure F,, will then be vectorial and the sequence (Y;);=1,... » will be a sequence of vectorial amplitudes in R?.

2.5. Connection with classical minimisation problems

One can notice that the link between the 7-entropy maximisation problem (M}pﬁ) and MEM problem

ML), Indeed if one chooses the convex function + involved in problem (MY _) to be the convex conjugate of
@,I1 @Y
1, we have that
m HE = inf D., (F, P
ax  Hi,(v,K) A4 D (F,Py)

veD, ¢, py;

where Hyy, is the function defined in the Theorem 2.12.
In this section we detail some classical minimisation problems set in the MEM embedding. We set our work
under the assumptions of Theorem 2.12.

Poisson distribution and Kullback—Leibler divergence minimisation

Let the reference distribution IT be a Poisson distribution P(6) with parameter 6 €]0; +o00[. The support of
IT is N. The log-Laplace transform 1 of a Poisson distribution P(6) is

VYpo)(7) = 0(e” — 1)

with domain Dy = R.
Its convex conjugate is the following function

vpo)(y) = ylog (y) —y(1 +log(0)) + 0, foryeR,.

The associated convex criterion to minimise for problem (M:o ) becomes

dPy
+00 otherwise.

dF
log | —— |dF — (14+1og(§)) F(V)+6, if F< Py and 3£ >0
D’YP(&) (Fv PV) = /V & ( ) ( g( )) ( ) v dby

Such criterion gives the Kullback-Leibler divergence when 6 =1

dF . dF
+00 otherwise.

Gaussian distribution and least squares minimisation

Let the reference distribution IT be a Gaussian distribution A'(m,c?), o2 > 0. The support of II is Ja; b[ =
] — 00; +00]. The log-Laplace transform v of a Gaussian distribution N'(m, o?) is

,7_20_2

M)N(m,zﬂ) (T) = +Tm

with domain Dy = R.
Its convex conjugate is the function
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The associated convex criterion to minimise for problem (M:Q ) becomes

1 [ dF 2
— = - dP if ' < P
’Y?D(e)(FaPV): /‘/202 (dPV m) v ! <
400 otherwise

D

which gives the minimisation problem consisting in finding the least squares deviation of Radon—Nikodym
derivative W from constant m.

Exponential distribution and Burg entropy minimisation

Let the reference distribution IT be an exponential distribution £(#) with mean 6, (where 6 > 0). The support
of IT is [0; +o00[. The log-Laplace transform v of the exponential distribution £(6) is

Ve (o) (1) = —log(1 — 70)
with domain Dy = {T < %}
Its convex conjugate is the function

0
Ye)(y) = log( )—l—g 1, foryeR}.

The associated convex criterion to minimise for problem (Mg, ) becomes

)
F F
1og(9)—/1og(ddp >dPV+(0V)—1, if F< Py and F* >0

+o00 otherwise.

D'YP(G) (£, PV) =

Such criterion gives the Burg-entropy of F' when 6 = 1, which is the reverse Kullback—Leibler divergence of Py
with respect to F'

dF
/log<dP )dPV+F(V)—1, if F< Py and F* >0

+oo otherwise.

Dxyn(Py,F) =

3. THE v-ENTROPY MAXIMISATION PROBLEM FOR THE RECONSTRUCTION OF A
MULTIDIMENSIONAL FUNCTION

In this section we propose to study the y-entropy maximisation method for the reconstruction of p real-valued
functions with domain U (with U compact and non-empty) when they are subjected to very general constraints
such as

/U Y N@S @R €k 1<I<N. (3.1)

This study is performed in three independent parts.
First in Section 3.1, we study in the convex analysis framework the problem (F} 7) recalled below

max f/U'y(fl,...,fp)dPU

(Fa.-)
f: /ZA 2)d®(z) € K, 1=1,...,N.

We detail the construction of a dual problem of finite dimension. We are able to express an optimal solution
thanks to Fenchel duality theorem when the constraint measures ®; are absolutely continuous with respect
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to Py. However, we show that this first approach does not give a suitable reconstruction when the constraint
measures P; are not absolutely continuous with respect to Py .

To remedy this issue, we propose in Section 3.2 to transfer the functions reconstruction problem (]-'31';7 'y) to a
corresponding reconstruction problem (Mgﬁ) on signed measures. Such problem is recalled below

min D.,(F, Py)
F: Z/ t)dF(t) € K. (M)

The linear transfer is performed by means of suitable continuous kernels.

Finally in Section 3.3, we set the problem (Mﬁw) obtained with the linear transfer into a MEM prob-
lem framework. We detail the construction of a sequence of random point-measures for the multidimensional
framework. We study the reconstructions given by problem (MZ?I)

3.1. The v-entropy maximisation problem for the multidimensional case in the convex
analysis framework

In this section we study the way to reconstruct a multidimensional function subject to an inverse problems
by a ~-entropy maximisation approach. We propose to study such approach within the framework of convex
analysis. We recall some general definitions and properties further used in the Appendix A.

We frame our work in a probability space (U, B(U), Py) where U is compact (non empty) and Py is the
reference probability measure. We aim at the reconstruction of p real-valued functions such that

/Z’V 2)dd(z) e K, 1<I<N. (3.2)

As there exists many solutions fitting the previous constraints, we wish to choose among them the solution of a
convex problem under constraints. Given a closed convex function v : R? — [0; +00], we decide to characterize
the optimal solution f° = (f1°,..., f7°) that maximises the y-entropy defined by

_/y(fl(x),...,fp(x)) dPy(x)
U

provided that f° satisfies the constraints stated in (3.2). We denote by I,(-) the opposite of the v-entropy that
is
LU= [ 20 @ @) aP ).

To put it in a more concise way, we study problem (}'gﬁ)

max —I,(f)

ro ) SN @ K =1 #3,)
or equivalently

min I,(f)

7z /ZX DAB@) €Kiy = 1o N, 2.

We denote by ¥ the convex conjugate of v, which is defined by

Y(t) = Sup {ty =)}
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The domain of v (respectively of ¢) is denoted by D., (respectively D,,). We will further make the following
assumption denoted by Hj.

Hi: v (respectively its convex conjugate 1) is a differentiable, closed, essentially strictly convex function for all
interior points on its domain y € int D (respectively in D.).
The minimum of ¥(y) is 0 and is attained at some yo = (y3,...,v5) such that yo € int D,

The convex function 7 is such that the ratio % tends to infinity on the edges of D.,.

As in the case of the single function reconstruction (recalled in the Sect. 2), we will need to define the
multidimensional analogue of the y-divergence of signed measures. Such ~-divergence features some terms that
depend on the singular parts. As in the case in one dimension, the singular part vanishes when 2@ tends to

Myl
infinity on the edges of D,,. The assumption on the ratio W) §5 then taken for the sake of simplicity.

[yl
Let E be a convex set of measurable RP-valued functions, the minimum of I,(-) on the convex E will be
denoted as

1,(B) = min I, (f)

The first result we have is a characterisation of the minimum of I, (-) over E with respect to a specific convex
functional. Define f; and f2 two functions. Provide (f1) and ~(f2) are finite Py-a.s., we define the y-Bregman
distance (see [4]) of function f; and f2 on U as

B )= [ [0 =) = (T (1 = )] aPo. (33)

One can remark that B,(fi, fa) > 0, Vfi, fo with finite I, values by the convexity of 7. The next theorem
characterises the minimum of I, (-) over a convex set E of functions with respect to the Bregman distance.

Theorem 3.1. Given any convex set E of measurable functions on U, such that I,(E) is finite, there exists a
differentiable function f° not necessarily in E such that for all f € E with I,(f) < oo

L(f) = I,(E) + By(f, ) (3-4)

In addition, f° is unique Py-a.s. and any sequence of functions f, € E, for which I,(f,) — I,(E), converges
to f° in Py.

Proof. We adapt the proof of [9] in the multidimensional case proposed in this section. The proof relies on an
identity that holds for all function f € E with finite I,(-) value and that a I,-minimising sequence of function
is in some weak sense a Cauchy sequence. In the following, ||.]| will denote the Euclidean norm on R?.

First notice that for all & €]0;1[ and all f, fi € E such that L,(f) and L,(f1) are finite, the following equality

holds
aly,(f) + (1 =)y (f1) = Iy (af + (1 =) f1) + aBy (f,af + (1 —a)fi)
+ (1 —a)B, (fi,af + (1 —a)f1).

Let denote by fo the function fo = af 4+ (1 — «)f1. One can first notice that by developing and rearranging
those terms, we have that

(3.5)

a(VY(f2)" (f = f2) + (1= ) (VA(f2))" (f1 = f2) = 0.
Therefore, only the I, (-) parts remain in the sum of aB, (f, f2) and (1 — ) B, (f1, f2), that is
aBb, (f, f2) + (1 — a)Bv (fi, f2) = O‘Iv(f) +(1 - O‘)Iv(fl) + I, (f2)

and equality (3.5) holds.



MEM APPROACH TO SOLVE GENERALIZED INVERSE PROBLEMS 373

Let (fn) C E be a minimising sequence of I, and such that for all n, I,(f,) < co. Then (f,) is a Cauchy
sequence in probability, that is

ohim Py ({2 ¢ [|fn() = fm(@)] > }) =0 Ve>0.

See Lemma C.1 for the proof.
Then, there exists a subsequence (f,,) of (f,) in R? such that f,, converges a.s. to a function f° in Py
measure and such f° satisfies the inequality in (3.4). Indeed by replacing f; by fn, in (3.5), it becomes

11—«

L) = I (af + (L= a)fu) = =L (fa) + By (Fraf + (1= a)fu)
F 0B (s af + (L= a)f) (36)

L (B — L)),

2 I,(E) + By(f,af + (1 — a)fn,) +

the last inequality coming from the positivity of the Bregman distance and from the fact that af+(1—a) f,, € E
by the convexity of E and therefore I,(af + (1 — @) fn,) = I,(E).

As fy, is a I,-minimising sequence, the last term in (3.6) tends to 0 when & goes to infinity.

Finally, taking a sequence (ay) converging slower than f,, to 0, by Fatou’s lemma

lim inf B, (f, aoef + (1= ) fu,) > By (f. 1°).

This proves the existence of f° in inequality (3.4). O

Given N real-valued positive measures ®1, ..., Py, their Lebesgue decompositions are given by ®; = ¢; Py +
3y, for I =1,..., N where their Radon-Nikodym derivatives with respects to Py are denoted by ¢;. Measures
> are singular with respect to Py which means that they are concentrated on a set U such that PU(U )=0.
We denote Fy x the subset of functions as follows

P
Bowi= {f = (oo, [ Y N@F @a@)dPue) € K 1=1,... N}, (3.7)

U i=1
The next theorem leads to a description of the optimal function (f,..., fP°) which is solution on Ey x

of I,(-) minimisation problem. The result is obtained thanks to Fenchel’s duality theorem for convex functions
and is a generalisation in higher dimension of Theorem II1.2 from [10].

Theorem 3.2. Suppose there exists a RP-valued function f € Eg x and such that it satisfies
f(x)=(f,...,f?) €int D,, Py-as.

Let L be the subspace of R such that for given (¢1,...,oN)

P
L= {v eRYN .y = / Zx\i(x)fi(x)qbl(x)dPU(x),l =1,...,N, for some f:U — ]Rp}
Ui=1
and m be the following application
m(v) = / ¥ (7@, 0),. .., 7 (,0)) APy (@), (3.8)
U

with 7¢(z,v) = 2511 N(z) vy (x). The minimum of I,(-) over the set Ey xc can be expressed by
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I, (E = inf — . .
Eo) = s { g, 0.0 =i} (39
Then, for v° € RN which mazimises (3.9), the minimiser of I,(-) over Ey x is
; 0
foox) = 8w (T (2, v°), ..., TP (z,0%), Vi=1,...,p (3.10)
Ti

and such fo = (fo1 ..., foP) satisfies (3.4).

Proof. Outline of the proof is as in [10] with a multidimensional approach:

(1) Expression of the minimum in (3.9) is given thanks to Fenchel’s duality theorem.

(2) Letting 7i(z,v) = Zf\il N (z)vyéy(z) and v° the vector of RY which maximises (3.9), one must verify that
(! (z,v°) ... TP (x, vo))T belongs to the interior of Dy.

(3) Candidate function f" must be such that it satisfies the Bregman inequality (3.4) of the Theorem 3.1.

Let k(z) :=inf{I,(f) : [, Y0_, X(x)f"(x)¢(x)dPy(x) = z}. Function k is a convex function with dom k C
L. Let h be such that

3.11
+ oo else. ( )

Then I,(Ey k) = inf.cx k(2z) = inf,cgn {k(2) + h(2)}.

In order to apply Fenchel duality theorem, we need that dom k N dom h # (). Equivalently, that means that
there exists zg € dom k such that zp € £ N L. From Theorem 3.2 assumptions, there exists f € D, N Eg k. By
applying Lemma 3.3 there exists a closed convex set D included in D, and a function f such that 1t belongs to
DNEyx. As f € D, y(f) is well-defined and I, (f) < oo. Let 2y € ]RN be defined by

0 ifzekNL
h(z):{

zo,lz/ZA’ (z)dPy(z), I=1,...,N. (3.12)

By definition z¢ € L, as L,(f) < 00, 20 € dom k and as f € E, k., 20 € K. Therefore dom k£ N dom h # () and
Fenchel-Moreau duality theorem can then be applied, see [27,28].

With the superscript * denoting the convex conjugate, using Fenchel-Moreau duality theorem, we have the
following equality

inf {k(2) + h(2)} = max {~k"(0) = h*(~v)) (313)

and then I, (Ey ) = max,cgny {—k*(v) — h*(—v)}.
The convex conjugate of k£ can be expressed as follow:

E*(v) = sup {{v,z) — k(2)}

7 AL /ﬂf)dpv}

- sup{< / ZAZ f{@)$(@)dPy (e >> /Uv(ﬁdPU}

= sup {/U > i) {Z Ul)\i(x)@(x)} - v(f(x))dPU(m)}

i=1

N

:/[J¢<Zlel(x) Zvl/\p >dPU( )
=1

= / P (7'1(:5, v),...,7°(z,v)) dPy(z),

U
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with 7 (z,v) = ST X(z)véy ().

By definition of h, its convex conjugate is:

h*(—v) = —v,c) = — inf :
(v)= sup {~v,c)=— inf (v,¢)

Therefore we have equality (3.9)

L (Es ) = mm‘AVUMHJ

fE€EE4 .k
= max {~k"(v) = A"(~0)} (3.14)
= oeRN {cei;%ﬁf”’ ¢ = m(v)} '

Let us denote by v°, the vector in RY which realises the maximum of {inf.cxnr (v, c) — m(v)}.
We remind that

= / P (Tl(a:,v), .., (z,v)) dPy ()

with 7° Z A () vy (a2
From the assumptions on 1, 7¢(z,v°) belongs to the interior of D, and therefore one can differentiate ¢ at
74 (x,v°).
Let us now demonstrate that fo = (f1°,..., f7°) with

; 0
fl7o( ) a:_/) ( ({E UO))"'an(x»vo))v Vi = ]-7"'apa

satisfies the Bregman inequality in (3.4) for E = E4 x and for any f such that I,(f) < co. Equivalently, it boils
down to showing that for any f with I,(f) < oo

/Z(xv—%wuﬂw%%ﬂmmmva (3.15)

Inequality (3.15) comes by using (3.14) and noticing that for any 7 € Dy,
7 (Vip(r)) = 77 Vp(r) — 9(7) (3.16)

and that for any f with I,(f) < oo

/ZT z,v°) f(x)dPy(x) = é%£L<vo,z>.

Let us denote by Dy the set of v gradient
Dy ={V~y(y),y € int D4}.

For 7° = (71(x,v°),...,7P(z,v°)) € int Dy, using (3.16) we have Vv (Vi (7°)) = 7° and then (3.15) stands
with equality. When 7° € RP \ (int Dy ), let u € J(D~) such that Vy(u) defined below is the projection of 7°
on 0Dy

Vy(u) :== lim V~(y).

Yy—u
YyEint D
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At such 7°, we have ¢(7°) = u?7° — y(u) and so V¢(7°) = u. Therefore

VA(f?) = VA(Ve(r?))
= V7(u)

and )
£74 = (VLT

= U;.

If, for i € {1,...,p}, we have 7%(z,v°) < (V7(u)),, then u; < f* for any f such that I,(f) < +oo. Therefore
both terms of the product in (3.15) are negative. Conversely, if we have 7¢(z,v°) > (Vv(u)),, then u; > f* for
any f such that I,(f) < 4+o00. Then optimal solution f° satisfies Bregman inequality. O

To apply Fenchel duality Theorem in the previous Theorem 3.2, one needs to prove that the domains of the
two convex conjugates functions k& and h defined in the proof do not have an empty intersection. In order to
prove so, the following lemma is required. Lemma 3.3 features a function f which belongs to a closed convex set
D in the interior of ¥ domam Given a function f in the interior of D., we prove the existence of f for which the

constraint values [, Y27 | X(x) fi(x)¢i(x)dPy(x) are equal to the constraints values obtained with function f.
Lemma 3.3. Let ¢1,...,0n be given integrable functions. Assume there exists a measurable function f: U —
R? such that

f eint D,

ZAZ () e LY(Py), l=1,...,N.

Then, there exist f and D such that f is a function defined on U, f € D and

/UZM(I)fi(x z)d Py (z /ZA’ ) [ (x) i (z)dPy(x), I=1,...,N (3.17)

with D a closed convex set of RP such that D & int D.,,.

Proof. Let L be the subset of vectors of RV defined by

L—{v: /Z/\ (z)dPy (x), 1—1,...,N,h:U—>RP}.

Let (D,,) be a sequence of closed convex sets such that for all n, D,, G int D, 1, meaning that D,, is strictly
growing to its limit D.. Let T,, = {x € U : f(z) € D,}.
Let L,, be the subset of vector in RN such that

P
L,= {v Do :/ Z)\i(m)hi(x)qﬁl(x)dPU(w), l=1,...,N, hbounded on T},, h=0on Tﬁ}
Uiz

then there exists ng such that for all n > ng, L, = L. Indeed, if L,, is a proper subset of L, there exists v,, with

||| # O such that
N
Z’Un,l (/ Z)\l (z)dPy(z )) -0
=1
/UZAi(x)hi(x) (Z Un,zsbz(x)) dPy(z) = 0.
i=1 =1
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That implies that Zl]il Un,1¢1(x) = 0 Py-a.s. on T,,. Taking a convergent subsequence vy, with limits v such
that ||v|| # 0, we have Zf\il vgi(z) = 0 Py-a.s. on U which goes against ||v|| # 0.
For § > 0, defines C? by

p
Cc’ = {v: vy :/ > X(@)hi(x)gu(2)dPy(x), I=1,...,N, ||h]| <6 on T,,, h=0on Tgo}.
Ui=1

The affine hull of C° equals L and 0 € int C? in the relative topology of L

We denote by f, the projection onto D, of f at x. Therefore [, (@) (fi(x) = fYx))pu(x)d Py ()
approaches 0 as n tends to infinity. For § > 0 there exists then nl(é) such that for all n > ny(J),
I z)(fi(x) — fi(x))¢gi(x)dPy(x) belongs to CO. Therefore, it exists h defined on U such that ||h]| < &
on Tno and h =0on 77 and such that

P
| X @f@) - Fanatare = [ ZAZ (2)dPy (2).
i=1
For such h, we set f = fn+ h. f belongs to D with D = D, N DfLO and

Dy, ={f(2): [If(x) = fao(2)l| <5}
O

The next proposition describes under which conditions the infimum of the Theorem 3.2 is reached for an
optimal function in Fy k.

Proposition 3.4. For a function m defined as in (3.8) and for v° which mazimises (3.9). If v° is an interior
point of m domain, then optimal solution f°, with components f*° as in (3.10), belongs to Ey k.

Proof. Recall that
I,(Ey x) = max (—k*(v) — h*(—v))

vERN

with k*(v) = [;;¢(7)dPy and h*(—v) = —inf.cxnr (v, 2).
v° belongs to the interior of dom m implies that k* is differentiable in v° with its gradient d with components
d; defined for alll =1,..., N by

/ZM Vg, (@07, 7 (@,0%) di(@)d Py ().

By Corollary 23.5.3 of [27], the subgradient of h*(—v) at v = v°, denoted by Oh* is included in (—K). As the
relative interiors of dom h* and dom k* have a non-empty intersection set, Theorem 23.8 of [27] implies on the
sum of convex function subgradients that dg = {d} + Oh*. As g reaches its maximum at v°, dg is a subset which
contains 0, which implies that d € K.

Then, with f4°(x) = g—fi (71 (z,v°), ..., 7P(x,v°)) foralll=1,...,N,

/Zx ) F0(2)n (2)dPy (z) € K.

Therefore, f° € Ey k. |
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The following Corollary is deduced from the Theorem 3.2 when dealing with measures ® that are not abso-
lutely continuous with respect to Py .

Let us define the analogue of Fy x for measures ® that are not absolutely continuous with respect to Py.
Eg x is the set of function

Em;:{f:(f s fP) / Zx 2)d®;(z) € Ky, l:1,‘..,N}‘

As a result, we see that when considering measures ® with a singular part, the optimum function defined in
the Theorem 3.2 does not meet in fact the constraints (3.2). The corollary stresses on the fact that the problem
is ill-posed when dealing with measures ® which are not absolutely continuous with respect to the reference
measure Py.

Corollary 3.5. Suppose there exists a function f € Eg x and such that it satisfies

f(x) = (f*(x),...,fP(z)) €int D,, Py-as.

Let L, m be as defined in the Theorem 3.2 and & = ¢ Py +X. The minimum of I,(-) over Eg x can be expressed
by

b (Eex) = max { inf (0.6) = m(o)} (3.18)

for some K different of K.
Therefore the optimal solution f° defined in (3.10) no longer meets the constraints in (3.2).

Proof. Let ko(c) =inf {I,(f): [, z)f (z)d®(z) = ¢} and ® = ¢Py + X. Then,

L(Bax) = inf {1,(f)} = inf ke(c)
mf{ /Z)\ fi@)p(z)dPy (x /Z)\ d¥(z) = ¢, cEIC}
1nf{ /Zx fix)p(x)dPy (x —c—/ZAZ dx(z), CEK}
=inf{fv(f)¢ /ZM £ ()o(a)dPy (2)e. aefé} = L(E, ),

where K = K+ {cs € RV ¢ ey = [, X0 Xi(2) fi(2)dE(2) } .
We apply the Theorem 3.2 to get expressmn (3.18). (Il

Corollary 3.5 points out the necessity of a different approach for solving problem described in (3.2), partic-
ularly when dealing with ® not absolutely continuous with respect to the reference measure on U, as it is the
case for solving interpolation problems.

3.2. Linear transfer principle for the multidimensional case

Following equivalence of problem solutions introduced in [10], the inverse problem on functions described in
(3.2) can be treated as an inverse problem on measures. Sets and generic elements will be distinguished with
V and t when discussing the measure reconstruction problem. Measures considered thereafter are always finite
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real-valued measures. The set of all finite measures on a set V will be denoted by M(V). The aim is then to
reconstruct p real-valued measures F* € M(V) such that

p
Z/ pit)dF'(t) e, 1=1,...,N (3.19)
i=17V

with ¢! being given real-valued functions on V, K; CR, foralli=1,...,pand [ =1,...,N.
Let us first denote the following assumption

Ho: V is a compact metric space, Py is a probability measure having full support, all (p% are continuous and for
eachi=1,...,p, (p})i=1, .~ are linearly independent.

Given the assumption Hj, a solution to problem (3.19) can then be chosen by taking as optimal solution
(FYe, ... FP°) the p-real valued measure which minimises the y-divergence with respect to the reference mea-
sure Py provided that F'° meets the constraints (3.19). The opposite of the y-entropy I, and the 7y-divergence
are linked by the following relation ([3], Thm. 2.7)

dF! dFP
D.(F, P :/ < a,...,“)dP
'y( V) V’Y dPy aPy Vv

where F! are measures absolutely continuous with respect to Py .
Let us denote the set of p-real valued measure with F1,... FP € M(V) meeting the constraints described
in (3.19) by the set

Sy x = {(Fl,...,Fp): i/ Qi) AF (t) € Ky, | = 1,...,N}. (3.20)
i=17V

The Theorem 3.6 below describes the y-divergence minimiser (F%!,..., F°P) such that (Fo!, ... FoP)
belongs to S, k. The Theorem 3.6 is the analogue of the Theorem 3.2 when dealing with measure reconstruction.

Theorem 3.6. Under assumption Ha, suppose we have p measures absolutely continuous with respect to Py
such that (F',...,FP)T € S, x and such that they satisfy

1 p
<g§v(t), ce ((L};‘/(t)) € int Dy, Py-a.s.

Then there exist p real-valued measures F1:°, ... FP° absolutely continuous with respect to Py and such that
(FYo, ..., FP°) minimises D, (-, Py) over S, . Their Radon—Nikodym derivatives f“° with respect to Py are
defined by
_ o
o7t

feo(t) (Tl(t,vo),...,Tp(t,’Uo)), Vi=1,...,p

with T¢(t,v) = S21C vl (t) and with v° such that it mazimises

D, (S, c, Pv) := max {inf (v, z) — /vw (' (t,v),..., TP (t,v)) dPV(t)} .

veRN | zeK
Proof. Direct from the Theorem 3.2. (]

Having recovered the p measures F*° described in Theorem 3.6, a regularized reconstruction f° is possible
via the linear transfer principle. As a matter of fact, one can linearly transfer the constraints (3.2) to the
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constraints (3.19) by using suitable kernel K. Let K*(-,-) be measurable bounded real-valued functions on
UxV fori=1,...,p such that

:/Ki(x,t)dw‘(t) Vi=1,...,p
v (3.21)
oi(t) = /U,\Z( 2)K'(x,t)d®;(z) Vi=1,...,p,Vl=1,...,N.

Then the Fubini theorem links the two sets of constraints as it follows

/ Z)\’ ) fic (2)d®; (x Z / N (x ( / Ki(x,t)dFi(t)) dd;(x)

/ </ o) K (2,t)dd; (x )) dF(t)
/ t)dF(t).

It is then clear that if (F°,..., FP°) is a solution for problem (M? ), then fg = ( 11{’0,..., 20)is a
regularized solution to problem (fg,,y). The components of f7. are defined by

3

:/ Ki(z,t)dF>°(t) Vi=1,...,p
|4

with (Fbo, ... FP©) defined as in Theorem 3.6.

The advantage of the kernel transfer method is that if it occurs that some measures ® are not absolutely
continuous with respect to the reference measure — as it is the case when considering Dirac measures for example
—, the linear transfer principle provides continuous functions ¢ for problem (3.19) by choosing kernel K to be
continuous.

The choice of K is influenced by the prior knowledge on expected properties for the regularized solution frx,
see the applications in Section 4 for some examples.

3.3. The embedding into the MEM framework for the multidimensional case

In this section we study the MEM method in the multidimensional case. We first detail the construction of
the random point-measure involved in the reconstruction problem.
As before in Section 2, define a sequence of discrete probability measures (P,),, as follows

1 n
P, =~ Z; 5, (3.22)
]:

with (¢;)j=1,...» a deterministic sequence of points in V such that the weak limit of probability measures P, is
the reference probability measure Py . For each ¢ = 1,...,p, a real valued random variable Y} is associated to
tj. The random variable Y} can be seen as a random amplitude for a signed measure F* at location ¢;. Then let
F! fori=1,...,p be p random measures such that F} < P, and such that they are defined for all ¢t € V by

1.
== D Y6, (1)
j=1
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For all j = 1,...,n the p real-valued vector of random variables Y; = (Y yeee Yp )T is sampled from a reference
distribution II and we denote by II®" the joint distribution of the n 1ndependent identically sampled vectors
Y, of dimension p. Replacing F* by the discretised measure F!, the measure constraint (3.19) can be rewritten

in the following way
P

fZngf Yieki 1<l

Jj=11i=1

N

N. (3.23)

MEM method consists then in finding the optimal joint distribution QM*M such that it minimises the diver-
gence from the reference distribution II®" and such that the discrete constraints (3.23) are met on average. The
MEM problem can be rewritten as

min D ®m). 3.24

QEQZ,;C KL (Qa ) ( )

where Q7 - defines the set of distributions () which generates n x p random amplitudes Y]z such, under @, the
constraints are satisfied on average, that is

n

1 LA ,
k=2 (Y1i,....Yn) ' ~Q: Eq ﬁzzw;(tj)y; ek, I1=1,...,N3,
j:

1i=1
where Yj is the jth sample (Y}, ..., Y}) of amplitudes for the p random measures F,, ..., FF.
Let us denote the following assumption

‘Hs: function v considered in the y-divergence problem (Fg} 7) is the function ~py that is such that its conjugate

function 9 has its domain equal to RP and corresponds to the logarithm of the moment generating function
of IT

(i, ..., 7p) = log/ exp (TTy) dI(y). (3.25)
R
Notice that the components of Vi are then
%n = T drt 3.26
aTi (Tla"'vTP)_ Y; €Xp (T yillz[}H(Tla"'an)) (y) ( . )

Provided that it exists y; = (yj1 e y;-))T in the interior of II domain for j = 1,...,n such that

n p

—ZZ@} yJEICl, I=1,...,N, (3.27)

Jj=11i=1

by standard theory of the ME method the minimiser QMEM of K(Q,1®") exists and it belongs to the exponential
family through II®" spanned by the statistics + Z] D> )y; for I =1,...,N. Its expression is given by

QMEM (1. yn) = exp Z TJTyj — ¢ (m5) | 0¥ (y1, ., yn) (3.28)
j=1
where 7; = (71(¢;,09),...,72(t;,v9)) and Ti(t,v) = Z;\;l vpi(t) and v is the maximiser of the discrete dual
problem
H,(v) = inf (v,) - —Z¢H L(tj,0), ..., 7P(t5,0)) . (3.29)
We define the vector of measures FMEM = (FT}’MEM, oo, FPMEMOT with each component defined by

FMEM = Boveu [F] . (3.30)
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The next theorem describes the convergence of (FMEM)

sation problem on signed measures (M?, ).

n sequence to the solution of the ~-divergence minimi-

Theorem 3.7. Under assumptions Ho and Hs, suppose there exists p measures (F1,... FP)T ¢ S such
that they satisfy

dF! dF?P
—(t),..., == (¢ int D Py-as.
(450 Gp0) et Dy Proas
Then the sequence (FMEM) converges weakly to (FY°, ..., FP°) the minimiser of D (S, i, Pv) which Radon—
Nikodym derivatives f° with respect to Py are defined by
oy

foot) = BT’( L, UO),...,T”(t,UO)), Vi=1,...,p

with T4 (t,v) = leil vt (t) and with v° such that it mazimises

D, (S, c, Pv) := max {inf (v, z) — /vw (' (t,v),..., TP (t,v)) dPV(t)} .

veRN | zeK

To link the problem studied previously with the constraint of function reconstruction problem (F% 'y) recalled
below

/ZAZ 2)d®(x) €K 1<I<N,

one can consider the analogue of constraint (3.23) for the function to reconstruct.
As problem (.7-';7) and problem (M?, ) can be linked by the linear transfer studied in the Section 3.2, there

exists a regularized function fi , associated to the reconstructed measure F* and chosen kernel K', that is
defined by

:/ K, 0)dFi(t)  Yi=1,....p. (3.31)
1%

Then the function of interest fi can be approximated by a random function f¢ defined for all x € U by
filo) = | Ki@0F )
1%
L i i
n Z YiK'(z,t;)
j=1

For QMEM the solution of problem (3.24), the regularized function fMEM has its components f’ MEM Jefined
by

(3.32)

) ) 1< .
f:b’g[(EM(.r) = EQ%EL& [f:z($)j| = EQ%EM E ZYle(x,tj) . (333)

Then if distribution QMFM is a solution of problem (M’:; ), the regularized solution fMEM defined above meets
an approximation of the constraints of problem (1.3). Such approximation is given by

n p
ZZ%@)YJ €Ki, l=1,...,N. (3.34)

1i=1

:\*—‘

From previous expression, it is easy to see that properties of the solution fil’ 1% dlrectly depends on the

n
random amplitudes (YJI) jen properties and on the kernel K i properties.
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4. APPLICATIONS

4.1. Application in the case p =1

We consider in this section simple examples of functions reconstruction of one or two variables. The first
example considered is the reconstruction of a real-valued convex function of one variable, f : [-1;1] — R which
is solution of an interpolation problem. The second example considered is the reconstruction of a polynomial
function of two variables, f : [0;1] x [0;1] — R which is solution of an interpolation problem.

4.1.1. Reconstruction of an univariate convex function

The first example considered is the reconstruction of a real-valued convex function of one variable, f : U — R
which is solution of an interpolation problem with U = [—1;1]. We give N = 3 interpolation constraints. The
function has a minimal value yo which is reached for a value z¢ €] — 1; 1[. The pair (z,yo) consists in the first
interpolation constraint. The two other points will be denoted by (x1,y1) and (x2,y2) where z; and z2 belong
respectively to the interval | — 1; z¢[ and ]zo; 1[, where the reconstructed function will be respectively decreasing
and increasing. The set of interpolation values will be denoted by z = (y1 — yo, y2 — yo). For a reason explained
in the following, the interpolation constraints are expressed as the increment from the minimum value.

In this example, we consider the log Laplace transform associated with the Poisson distribution

7/173(1)(7') =(e"—1)

for the convex criterion to minimise. The objective function (3.29) associated with the MEM problem becomes

Hao) = (0.2) = = > tpin) (0, 9(0))

J

Il
_

(4.1)

S

Il
-

= (v,2) - (exp ((v, ¢ (t5))) = 1)

J

The objective function (4.1) has an analytic minimum when the number of discretisation points n is equal to

1. The analytic solution is
1 zZl
vo7llog( ), le{1;2}.
@u(t) ei(t) t:2}

Otherwise, one can use the polynomial approximation of the exponential function. Solving the MEM problem
is then reduced to finding the root of a polynomial.
In [17] the authors proved that

(x —t)ym1

K (z,t) = m—1)

Lagia)(t), ¢ € [=1;1]
is a kernel which leads by the linear transfer to an increasing convex function with m — 1 derivatives and which
is equal to 0 in zg. In our frame, the kernel used for the linear transfer is

K(z,t) = KL (2, )15, (2) + K, (2, )10, (z), t€V =[-1;1]

where
m—1

KT?L(‘/L.7 t) = ml[m;mo] (t)

This will lead to a reconstructed function which reaches its minimum value 0 in g, which is decreasing on the
interval [—1; o] and increasing on the interval [z¢;1].
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FIGURE 3. Poisson Log Laplace. Reconstruction of a convex function f : [-1;1] — R twice

differentiable everywhere with 3 interpolation constraints. The minimum of the function is
assumed to be known.

In the end, the reconstructed function is given by

n N
[k () =yo + % ZK(x,tj) exp (Z Uo,ZSOZ(tj)) :
=1 =1

The reconstructed function we obtain is displayed in Figure 3.

4.1.2. Reconstruction of a bivariate polynomial function

The second example considered is the reconstruction of a polynomial function of two variables, f : U — R
which is solution of an interpolation problem with U = [0;1] x [0;1]. We will choose an increasing number N
of interpolation points thanks to a Latin Hypercube Sampler in [0; 1] x [0; 1], the domain of f. We denote by z
the values of function f to interpolate at the design points.

In this example, we consider the log Laplace transform associated with the standard Gaussian distribution

N(0,1)

7.2

Yao(T) = 5

2
for the convex criterion to minimise. The objective function (3.29) associated with the MEM problem becomes

Ha(o) = (0,2) = = > o (0, 0(0))

Jj=1

" (4.2)
1 2
={v,2) - o~ > ((w,0(t)))?
j=1
We choose n = 100 and the n discretising points are sampled from a Latin Hypercube Sampler in V' =

[0;1] x [0;1]. The objective function (4.2) has an analytic solution provided that the number of discretising
points n is much larger than the number of constraints N. Notice that it is also required that the N components
of the moment function ¢ are linearly independent. However this condition is already an assumption in Hs used
for the Theorem 3.6. Optimal v is solution of the linear problem

Av ==z
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where matrix A is

1 n
A== ot elt)"
j=1
We consider the symmetric gaussian kernel

Kaotuw) =ep (<5 ). (uw € 1) <011

which is largely used as a covariance kernel in krieging problems which leads to solutions infinitely differentiable.
The kernel we use for a pair of points x and ¢ where (z,t) € U% x V? = [0;1]? x [0;1]? is the following product
of gaussian kernels

K@(Z‘, t) = KG791 (1‘1, tl) KG792 (l‘g, tg)

() (25)

The best parameter 6 is chosen using cross-validation, namely we choose the value of # which minimises

N 2
> (f%? (k) — Zk)

k=1

with z; the kth value in the interpolation problem located at point x; and fl(é) is the reconstructed function
obtained in removing (zy, zx) from the data set. This leads to a two step optimisation problem as matrix A
depends on the value of # and so does the optimal multiplier v. Therefore in the following matrix A will be
denoted with a subscript Ay.

In order to determine the optimal parameter 6, we solve iteratively the following two stage problem

Step 1: ”5:3-1
solve Agfn)v =z® forallk=1,...,N.
Step 2: 011

N
minimise Z (ff:j_l,Kg () — Zk)Q.

k=1

The superscript *) is used to note that the kth experiment has been removed, that is that the kth line has been

removed from Ay for the matrix Agjj and the kth value from z for the vector of observation z(*). The notation

féf}rl K, corresponds to the reconstructed function at the mth iteration which is solution of the interpolation
problem in which the kth experiment has been removed.
The reconstructed function we obtain is displayed in Figure 4.

4.2. Applications in the case p # 1

We consider thereafter some toy models inspired from computational thermodynamics. At first we explain
how to compute the so-called phase diagram. Then two toy models are solved using the method described in
Section 3.

4.2.1. Phase diagram description in Computational Thermodynamics

The application considered here derived from the assessment problem in Thermodynamics and the CALPHAD
(CALculation of PHAse Diagram) method [16,21,22,30].
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FIGURE 4. Gaussian Log Laplace. Reconstructed functions f : [0;1] x [0;1] — R with the
gaussian kernel for an increasing number of interpolation constraints. Figures 4a, 4c and 4e
display the design points used for the interpolation problem. Figures 4b, 4d and 4f display the
evolution of the reconstructed function with respect to its first component z; for several values
of the second component x5. 9 varies from 0 to 1 with a 0.1 step. (a) N = 4. Location of points
used for training. (b) N = 4. Reconstructed function. (¢) N = 10. Location of points used for
training. (d) N = 10. Reconstructed function. (e¢) N = 20. Location of points used for training.
(f) N = 20. Reconstructed function.

The CALPHAD method consists in the parametric reconstruction from partial information of thermodynamic
quantities, which are Gibbs energy functions and their derivatives. Data at hand for the reconstruction are ther-
modynamic quantities and phase diagram data. The thermodynamic quantities consist in linear transformations
(e.g. first or second derivative) of the function which is ought to be reconstructed.

The phase diagram is a map of the chemical species spatial arrangements. The internal energy of such

arrangements varies with state variables, which are the chemical composition, the temperature and the pressure.
Establishing the phase diagram of a chemical system means to partition the domain of permissible state variables
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FIGURE 5. Connections between the phase diagram (f) of a system A and B with two phases
(the phase a for low temperature and the phase L for high temperature) and the inner energy
(a)—(e) for each phase for different temperature values. Figures (a)-(e) display the Gibbs energy
for phases o and L at a given temperature with respect to the relative composition of chemical
element B over the sum of chemical elements A and B. For temperature 17 and 715, phase L
has the lowest energy whereas for temperature 7y and T5 phase « has the lowest energy. At
temperature T3, there exists a common tangent to the two energy functions. Therefore between
composition C7 and Cs, a combination of phases a and L is the most stable. Figure reference
[25].

in several areas, each area featuring one or several stable phases. A stable phase is the phase with the lowest
energy.

Figure 5 displays an example of a phase diagram. In order to determine the different divided areas of the
diagram, one must compute the minimising convex hull of the list of the p functions involved in the system.
This problem is performed for all temperature range. For the composition range where the minimising convex
hull is confounded with a single energy function f?, the corresponding area is the stability area of phase i. Such
area is labelled by ¢ in the phase diagram.

The phase diagram in Figure 5 is for a binary system A and B. Such phase diagram is called binary phase
diagram as it features two chemical elements: A and B. In this example, the state variables which can vary are
the temperature and the relative composition of B with respect to the total composition (that is of A and B),
from solely element A at the left edge to solely element B at the right edge. The pressure is fixed.

The phase diagram data consist in locations in the map of stable phases, namely either temperatures or
compositions where a change in the set of stable phases occurs or information on the stable phases for a given
composition and a given temperature.

The novelty of the work presented here is that the reconstruction occurs in a non-parametric frame, contrarily
as the usual reconstruction frame in thermodynamics.
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1&2

Temperature

Relative compositon

FIGURE 6. Phase diagram corresponding to an ideal solution. There are two phases: the phase
1 is the stable phase for low temperature and the phase 2 for the high temperature. Behaviour
with respect to the temperature of phases 1 and 2 are known when the composition is 0 or 1
for the temperature range they are respectively the stable phase.

Thereafter, the reconstruction of thermodynamic quantities is expressed as the inverse problem (fgﬁ). The
constraints that the solution (f,..., fP) must satisfy is recalled below

P
/U Z)\Z(z)fl(x)d@l(x) €K 1<I<N.
i=1

The functions to recover f?, i = 1,...,p are the Gibbs energy functions of the p stable phases which occur
in the phase diagram. The functions \* represent the phase diagram data for each phase i = 1,...,p and are
supposed to be known all over the domain of permissible state variables. In the example considered thereafter,
there are bounded, continuous functions but not necessary differentiable.

In this frame, x is a (d + 1)-tuple of positive bounded quantities. First component is the temperature in
Kelvin with values in [To; Tiax], transposed to [0; 1] without loss of generality. The d following components are
composition data with values in [0;1]¢. Kernels K¢, for all i = 1,...,p, considered for the linear transfer, will
be chosen as products of d + 1 component-wise kernels. In the examples considered in the following d = 1 or 2.

4.2.2. Phase diagram with an ideal solution

In this section we study the case of a phase diagram with an ideal solution. It consists in the reconstruction
of two functions, wiz. the Gibbs energy functions associated with the two phases, outside of the domain where
they are known.

The inverse problem associated to the functions to reconstruct is built in accordance with the phase diagram.
The phase diagram with an ideal solution is usually displayed as in Figure 6. It features two phases and three
divided area. The first area at the bottom of the diagram is the area associated with phase 1 which is the stable
phase at low temperature. The second area at the top of the diagram is the area associated with phase 2 which
is the stable phase at high temperature. The last area between the two first areas features a mix of phase 1 and
phase 2.

Such problem may not be well-posed as there can exist an infinity of pairs of functions leading to the
same phase diagram. In the following the univariate case is treated, which corresponds to the case of a given
temperature value. Then functions solely depend on the relative composition of element B with respect to the
total composition.

In the univariate case, the pair of functions (f!(z), f%(z)) is ought to be reconstructed for all z € [0;1]. In
this case, the phase diagram constraints reduce to the following definition. Given z1,x2 € [0;1] with z1 < xs.
The interval [z1; z2] consists in the compositions for which phase 1 and phase 2 coexist. Therefore functions A!
and A\? are defined as follows

1 if v <xy
M(z) = % if x € [x1; 2]
2~ T1

0 else
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FIGURE 7. Bivariate Poisson Log Laplace. Reconstruction of two convex functions f! : [-1;1] —
R and f? : [-1;1] — R, twice differentiable everywhere. The minimum is assumed to be known

for both functions.

and
0 if x <xy
M) =< 1-A(2) ifx € [zg;29]
1 else.

Observations for x < x7 give values of solely f! and for x > x5 give values of solely f2. In the interval [z1; 23],
one can observe

N (@) fH (1) + A2 (2) f2(w2) (4.3)

which does not provide direct information about the behaviour of f! nor f2 on this interval.

The two functions to be reconstructed ought to be convex twice differentiable. Therefore the same assumptions
are taken than in the case treated in Section 4.1.1 and the same method is applied. Figure 7 displays the results
obtained for the reconstruction of the target functions.

Function f' is well reconstructed in this example but there exists a set of possible reconstructions for function
2. An extra constraint is required to have a unique solution for f2.

APPENDIX A. SOME GENERAL DEFINITIONS AND PROPERTIES
Definition A.1. General definitions.

(1) We call domain of a function v the subset on which ~ is finite, i.e.
dom v = {z: v(x) < c0}.

(2) A function ~ is said to be closed (lower semicontinuous) if for each « € R, the sublevel set {x € dom = :
~v(z) < a} is a closed set.

Definition A.2. Convex analysis definitions. See for example [27] for more details.
(1) A convex function v from R? to R satisfies
Vo,y € R, e 0,1, y(nz + (1= n)y) <ny(x) + (1= n)y(y). (A1)

~ is called strictly convex when equality in (A.1) occurs only when z = y.
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(2) We call subgradient at « € RP of a convex function v — and write 0, — all vectors s in RP which satisfy

Yy € RP, y(y) = v(x) + (s,y — ).

(3) A function 7 is essentially strictly convex if v is strictly convex on all convex subset of its subgradient
domain.

(4) A function + is essentially smooth if the interior of v domain D, is not empty, v is differentiable on the
interior of D, and its gradient ||V~|| tends to infinity when approaching to the edge of D,.

(5) The convex conjugate v of a function v is defined by

(7)== sup {{y,7) =v(y)} .

yERP
Proposition A.3. Convex analysis property.

(1) If v is closed conver, then its biconjugate, that is the conjugate of convexr conjugate 1, is vy itself.
(2) A function v being essentially strictly convez is equivalent to its convexr conjugate being essentially smooth.
(3) Let v be a convex function and let its domain be not empty. If v: RP — R is such that

v(y)
[yl veon,

then its convex conjugate has full domain, that is Dy = RP.

APPENDIX B. BREGMAN DISTANCE BOUNDS
This section generalises some results of [9] on the bounds of Bregman distance between two functions f and
f1 in the case of RP-valued functions.

Lemma B.1. Let (U, B(U),Py) be a probability space and E be a convex set of functions with values in RP.
Recall the expression of I,(f) = fU ~v(f)dPy and one of the Bregman distance for f1, fa having finite I, values

B )= [ [100) =) = (T (5 = )] aPo.

Ve > 0, K > 0, it exists ¢ > 0 such that for all f1, fo € E and C € B(U) for which mingec (|| f1(x)|], || f2(z)]]) <
K, then
Py (Cod{z: ||fi(z) = fo(@)ll = €}) < v By(f1, f2). (B.1)

Proof. Let fi and f> be two functions in F with finite I, values. Let denote by b, the integrand of B, that is

by (f1(2), o)) = 1(Fi(@) = 1(f2(2) = (VA(F2(2))) " (f1(w) = falw)).
Let C € B(U) be such that mingec(||f1(2)]|], ||f2(2)]]) < K. For = € C, if || f1(z) — f2(2)|| = &, then

by (fo(x) + e,fQ(x))> _ 1

bo(ile). o) > min (| min by () (o) + 0 L

, min
zeC if |[f2(2)[|SK

with ¢ > 0. Therefore, for C € B(U) for which mingec (|| f1 (@), ||f2(z)]]) < K
By (i) = [ 02 Sl AP ()

> by (f1(2), f2(2))d Py (2)

/Cﬁ{zrlfl (z)=f2(@)]| 2}

1
/ ~dPy(2)
Cn{z:|| f1(z)— fa(x)|| =€} t

Py (Cndz:||fi(x) - fal@)l| = €})

>

P

~ | =
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which gives the result. O

Lemma B.2. Let (U, B(U),Py) be a probability space and E be a convez set of functions with values in RP.
v is an essentially strictly convex twice differentiable function on RP and its Hessian matriz is strictly definite
positive on RP. Recall the Bregman distance for fi, fa having finite I, values

B(fifo) = [ [10) =) = (928 (5 = )] aPo.
VK >0, it exists 3 > 0 such that for all f1, fo € R and C € B(U) with C C {x : ||f2(x)|| < K}, then
PU(Cﬂ{x:||f1(x)||>L})<%Bv(fl,f2), if L >2K. (B.2)

Proof. Let denote by b, the integrand of B,, that is by(f1, f2) = v(f1) — v(f2) — (VA(f2)" (f1 = f2). Let
CeBU)be CC{x:||fo(x)]] < K}.

Let ug and v, two vector from R? such that ||uk|| = K and v belongs to the p-ball of center ux and of radius
K, denoted by B(ug, K). Then, using Taylor’s theorem for the decomposition of «v(v) centered in ug, we have

(v) = y(ux) + (Vy(u)" (v = uk) + Ry (v, uk)
where R, (v, ur) is the remainder term of order o(X).

Then for all x € C
by (f1(x), f2(z))

=

2 ’y(QUK; uK)
2 'y(zuKauK)

> 5 lluxlPeq.x

=Nl = By

WV

ngE%K

where €,  is the smallest eigen value of v Hessian matrix located at any point of B(uk, K'). Given the assump-
tions on v, €4 k is strictly positive.
Therefore, for all x € C for which || fo(2)|| < K

By(fi. f2) = /U by(f1(2), f2(2))dPy (2)

> | by(f1(2). fol2)) APy (2)
Cn{z:||f1(z)||=L}

2
> / 8L
cnfa:l| fi@)||>L} €7 K

2 p@n(esfi@l > LY
K

2
> 2P (o A > L)

dPy(z)

>

which gives the result. O

APPENDIX C. CAUCHY RESULT FOR BREGMAN DISTANCE MINIMISING SEQUENCE

Lemma C.1. Let (U ,B(U), Py) be a probability space and E be a convex set of functions with values in RP.
Recall the expression of I,(f) = [, v(f)dPy and the Bregman distance for f1, f2 two functions having finite I,
values

Byt f) = [ i) =28 = (930" (= o)) aP.
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Let (fn) C E be a I,-minimising sequence, then (f,) is a Cauchy sequence in probability Py, meaning that

lim Py ({z:||fn(x) — fm(x)]| >€}) =0 Ve > 0. (C.1)

n,m— 00
Proof. Let n > 0 and K such that for f € RP
Pu({z: [[f(2)]| > K}) <n.

By applying Lemma B.2 with f; = %, fo=fand C={z:||f(x)|] < K}, we have

fn(x)‘Ffm(-r)H 2[/}) < ﬁB’Y (fn"’fm f)

P (s 1@l < Ky o ]| 20 3

if L > 2K. Choosing 8 and L such that

%Bw (fn;fm,o <.

Py ({x‘

Now applying Lemma B.1 with f; = f,,, fo = % and C' = {x : ‘

that
Py ({x ‘

meaning that

it follows that

WH”}) <

fn(@)+fm(z)
2

‘ < L}, there exists ¢ such

fn(x);fm(x)H <L}ﬁ{x: Hfm(x)_ fn(w);fm(x)“ 25}) <. B, (fm,fn‘;fm>

Py ({fﬂ Hfm(fﬂ)—w“ 25}) <20+ By (fm,f”—gfm)

fn+fm>

Py (< o) = o)l > 21 < 2040 By (s 225

By taking n as small as possible, when n and m go to infinity, it ends up that

Py (o o) = @ > 260 =m0 B ()

n,Mm— 00 2

Let (fn) C E be a I,-minimising sequence with f, having finite I, values. By the positivity of B,, we have

By the convexity of F, % belongs to £ and therefore I, <%) > I,(E).
Using the following identity when n,m tend to infinity

L(fa) + Iy (fm) = 21, (f" ”’”) B, (fn, In *f’") 1B, (fm, fn *fm> , (2)

2
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it implies that

lim B, (fm, f"+fm> =0

n,m-— 00 2

lim B, (fnf"Jrf’”> =0

n,m-—o0 2

which proves that (f,) is a Cauchy sequence in probability Py. O
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