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MAXIMUM ENTROPY ON THE MEAN APPROACH TO SOLVE
GENERALIZED INVERSE PROBLEMS WITH AN APPLICATION IN

COMPUTATIONAL THERMODYNAMICS

Fabrice Gamboa1,2, Christine Guéneau3, Thierry Klein1,2,4

and Eva Lawrence1,2,3,∗

Abstract. In this paper, we study entropy maximisation problems in order to reconstruct functions
or measures subject to very general integral constraints. Our work has a twofold purpose. We first make
a global synthesis of entropy maximisation problems in the case of a single reconstruction (measure or
function) from the convex analysis point of view, as well as in the framework of the embedding into
the Maximum Entropy on the Mean (MEM) setting. We further propose an extension of the entropy
methods for a multidimensional case.
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1. Introduction

In some problems coming from applied physics, a multidimensional function f taking values in Rp ought
to be reconstructed given a set of observations. In thermodynamics, information on the function of interest,
namely the p components of the function f we wish to reconstruct, are indirectly available. In general the
available information consists in the value of integrals that involves the unknown function f and some known
weights (λi)i=1,...,p. For example, one can consider an interpolation problem when the integration measure
consists in Dirac masses. In this case we give at known locations the value of a scalar product between f and λ,
see expression (1.2). In the present work, we need to consider more general constraints. Therefore we study a
reconstruction problem in which constraints are defined as integrals involving the unknown function f and the
weight function λ against suitable measures Φ, see expressions (1.1) and (1.3).

In the sequel we provide a general method for the reconstruction of a p-real valued function from partial
knowledge submitted to the general constraints previously discussed. We refer the interested reader to Chapter

Keywords. Entropy maximisation problems, Bayesian statistics, application in engineering.
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2 of [22] for the basic rules of thermodynamics and Chapter 5 of [22] for the description of functions which are
ordinarily considered for the reconstruction of thermodynamic quantities.

To be more precise, we consider a Rp valued function f(x) = (f1(x), . . . , fp(x)) defined for all x in the
compact set U ⊂ Rd (we assume the interior of U to be non-empty). We set our work in a probability space
(U,B(U), PU ) where B(U) is the Borel σ-algebra and PU is the given reference measure. In such framework,
we wish to reconstruct f over U and such that the reconstructed quantity satisfies the N following integral
constraints ∫

U

p∑
i=1

λi(x)f i(x)dΦl(x) = zl 1 6 l 6 N, (1.1)

where Φl are N positive (known) finite measures on (U,B(U)) and λi are known continuous weight functions.
The expression of integral constraints as in (1.1) allows to express a wide range of problems. For example,

one can consider some pairs (xl, zl) ∈ U × R for l = 1, . . . , N , and wish to solve the following interpolation
equations

p∑
i=1

λi(xl)f i(xl) = zl 1 6 l 6 N. (1.2)

Expression (1.2) can be obtained from (1.1) by choosing dΦl(x) = δxl(dx) the Dirac measure located at xl for
all l = 1, . . . , N . Therefore, the integral constraints (1.1) become interpolation constraints.

When U is a subset of R, one can also involves the l first moments of f i by taking dPU (x) = dx and
dΦl(x) = xldPU (x). Namely, integral constraints (1.1) become in this case∫

U

p∑
i=1

λi(x)f i(x)xldPU (x) = zl 1 6 l 6 N.

In our work, the zl represent N ideal real-valued measurements. In the case of noisy observations, a relaxed
version of problem (1.1) can be considered. The aim is then to reconstruct p real-valued functions on U such
that ∫

U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N, (1.3)

where Kl is an interval in R. In the sequel K will denote the product of the N intervals Kl.
In the general case, problem (1.3) is ill-posed and has many solutions. In our work, we propose to choose

among the solutions the function f that maximises Iγ the γ-entropy of the function f defined by

Iγ(f) = −
∫
U

γ
(
f1(x), . . . , fp(x)

)
dPU (x) (1.4)

where γ is a strictly convex function from Rp to R. In this framework, the reconstruction problem we consider
can be rephrased as

max Iγ(f)

s.t.
∫
U

p∑
i=1

λi(x)f i(x)dΦ(x) ∈ K.
(FpΦ,γ)

The resolution of problem (FpΦ,γ) is conducted in two steps. We consider a dual problem on (signed) measures
as a first step. The second step consists in solving a discrete approximation of the dual problem. This approach
is summarised in Figures 1 and 2 (see on the next page). The Figure 1 presents the approach in the case
p = 1 and λ(x) = 1, ∀x ∈ U , which has already been treated in [10]. Figure 2 presents the case p 6= 1, which
is the extension of [10] treated in this work. The resolution we propose involves the embedding into a more
complicated framework. Let us sketch the description of this framework. Let V be a Polish space and PV be
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Figure 1. Problems raised in the sequel, case p = 1. Such problems have already been studied,
see Section 2 for more details.

the reference measure on V . Unless it is specified, V is a compact space. The resolution we propose involves a
transfer between U and V . A more precise description of such transfer will be given in Section 2 (unidimensional
case) and Section 3 (multidimensional case).

We first recall how the Maximum Entropy (ME) method is put in action. Originally, the ME method aims
at the reconstruction of a probability measure P when dealing with information on the expectation under P of
some random variables. We give below a first example.

Example 1.1. When V = R, one may want to reconstruct a probability measure P such that the quantity∫
tkdP (t) for some k ∈ N? is equal to given values mk.

More precisely, define the entropy of a probability measure P with respect to the measure PV as

S(P ) =

−
∫
V

log
(

dP
dPV

)
dP if P � PV and log

(
dP

dPV

)
∈ L1(P )

−∞ otherwise,
(1.5)

where P � PV means that P is absolutely continuous with respect to PV . ME method derives as solution the
probability PME which maximises the entropy, provided that the information for the reconstructed probability
measure meets the information asked.
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Figure 2. Problems raised in the sequel, p 6= 1. See Section 3 for the extension of the method
provided by [10] to solve inverse problems.

In information theory and statistics, one usually considers the opposite of the entropy, that is the so-called
Kullback–Leibler divergence of P with respect to PV which is defined by

DKL(P, PV ) =


∫
V

log
(

dP
dPV

)
dP if P � PV and log

(
dP

dPV

)
∈ L1(P )

+∞ otherwise.
(1.6)

Equivalently the ME method derives as a solution the probability measure PME which minimises the Kullback–
Leibler divergence from the reference measure PV under the constraints. Reference measure PV can be inter-
preted as a prior measure.

The Kullback–Leibler divergence defined in (1.6) is called the I-divergence in [6, 7]. The author also calls
I-projection the probability measure that maximises the entropy (1.5) on a convex set of probability measures.
Further in [8] an axiomatic justification for the use of the ME method is provided.

In a more general case, the entropy problem can target a reconstruction of a signed measure. In this case,
the γ-divergence Dγ , defined in the expression (1.7), is considered instead of the Kullback–Leibler divergence
DKL (1.6). The authors in [2,3] have studied the minimisation of the γ-divergence Dγ under linear constraints.
Let F be a signed measure defined on V . The classical Lebesgue decomposition of F with respect to PV is

F = F a + F s

with F a � PV the absolutely continuous part and F s the singular part. F s is singular with respect to PV
means that it is concentrated on a set Ṽ such that PV (Ṽ ) = 0. We recall as well the Jordan decomposition of
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measure F s

F s = F s,+ − F s,−

with F s,+ and F s,− two positive measures mutually singular. The γ-divergence Dγ is then defined as follows

Dγ(F, PV ) =
∫
V

γ

(
dF a

dPV

)
dPV + bψF

s,+(V )− aψF s,−(V ) (1.7)

where the integrand γ is a convex function and F a, F s,+ and F s,− are as defined previously. The scalar quantities
bψ and aψ, with aψ < bψ, are the endpoints of ψ domain with ψ the convex conjugate of γ defined by

ψ(t) = sup
y
{ty − γ(y)} .

Taking back the Example 1.1, the reconstruction problem can be put in the frame of an optimisation problem
as (M1

ϕ,γ) defined in Figure 1. In this example, the objective function is the Kullback–Leibler divergence DKL,
that is the criterion Dγ when γ is the convex function defined on R?+ by y → y log(y) − y − 1. The scalar
quantities aψ and bψ are respectively equal to −∞ and +∞ which leads to a reconstruction with no singular
parts. The moment constraint can be written as

∫
V
ϕ(t)dF (t) ∈ K by taking K = {mk} and ϕ : t→ tk. Finally,

one has to add the constraint
∫
V

dF (t) = 1 to ensure that the reconstructed measure is a probability measure.
Notice that the expression in (1.7) contains terms depending on the singular part F s of measure F . Those

terms may not be considered in the γ-divergence (1.7) depending on the convex function γ used, see [5] and
Example 1.1.

More generally the author in [18, 19] studies the characterization of the optimal signed measure which min-
imises (1.7) under linear constraints. Integral functionals with normal convex integrand, i.e. integrals for which
the integrated function is strictly convex with respect to one of its variable, are studied. See more comments
on normal convex integrand in Chapter 14 of [28]. See also [20] for a systematic treatment of convex distance
minimisation.

We now recall that many usual optimisation problems (M1
ϕ,γ) can be set in an entropy maximisation problem

frame, as proposed in the early paper [23]. This general embedding in ME is called the Maximum Entropy on
the Mean (MEM) method and has been developed in [11,13]. The method is based on a suitable discretisation
of the working set V . The reference measure PV is approximated by a point-measure supported by n pixels,
t1, . . . , tn which are deterministic points in V such that Pn = 1

n

∑n
i=1 δti → PV . By associated to each pixel ti

a real random amplitude Yi, we defined the random point-measure Fn by

Fn =
1
n

n∑
i=1

Yiδti . (1.8)

By construction Fn � Pn. Notice that we choose to present the simple case of real random amplitudes Yi for
this introduction, but one can consider more complicated constructions. We will do so in the Section 3.3 where
the amplitudes Yi will be vectors in Rp.

In the MEM problem, one wants to determine the “optimal” distribution Q to generate vectors of n real
random amplitudes (Y1, . . . , Yn). Optimal distribution Q must be such that the constraints considered in problem
(M1

ϕ,γ) applied to the random point-measure Fn is met on average, that is that

EQ
[∫

V

ϕ(t)dFn(t)
]

= EQ

[
1
n

n∑
i=1

ϕ(ti)Yi

]
∈ K. (1.9)

Taking back Example 1.1, the constraints applied to the point-measure approximation become

EQ

[
1
n

n∑
i=1

Yi

]
= 1 and EQ

[
1
n

n∑
i=1

(ti)kYi

]
= mk. (1.10)
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We assume that the random amplitudes are independent. Let Π denote their prior distribution so that the
reference distribution for (Y1, . . . , Yn) is the tensor measure Π⊗n. In order to build the optimal distribution,
we minimise the Kullback–Leibler divergence (1.6) with respect to the prior Π⊗n under the constraints (1.9).
When such “optimal” distribution exists, we will denote the solution by QMEM

n . Then let FMEM
n be defined as

follows

FMEM
n = EQMEM

n

[
1
n

n∑
i=1

Yiδti

]
. (1.11)

Notice that unlike Fn, the quantity FMEM
n is no longer random. Let the log Laplace transform of probability

measure Π be denoted by ψΠ

ψΠ(τ) = log
(∫

R
exp (τy) dΠ(y)

)
for all τ ∈ DψΠ , (1.12)

with DψΠ the domain of ψΠ. We denote by γΠ the convex conjugate of the log-Laplace transform ψΠ
1. We hope

that the reconstruction FMEM
n is a good approximation (in a sense we will further specify) of the solution of the

corresponding continuous problem (M1
ϕ,γ), for which convex function γ is the function γΠ. The properties of the

minimising sequence (FMEM
n )n have been studied in [13]. The authors in [14] deal with a multidimensional case,

that is estimating a vector of reconstructions when dealing with information on generalised moments of each
components. In [15], Bayesian and MEM methods are proposed to solve inverse problems on measures. More
details about the MEM method will be provided in Section 2 for the case p = 1 and Section 3.3 for the case
p 6= 1. In particular we explain how to choose reference probability measure Π so that the criterion DKL(·,Π⊗n)
for discrete problem (M1,n

ϕ,Π) is a good alternative to criterion Dγ(·, PV ) of continuous problem (M1
ϕ,γ).

Back to the function reconstruction problem, an extension of the MEM method to solve generalised moment
problems for function reconstruction as in (F1

Φ,γ) is proposed by [10] in the case p = 1 and λ(x) = 1, ∀x ∈ U .
The method uses a transfer principle which links the function to reconstruct to a corresponding measure. The
transfer relies on the use of suitable kernels. Such transfer is particularly useful when considering measures Φ in
the constraints equation (1.3) that might not all be absolutely continuous with respect to the reference measure
PU .

Our work has a twofold purpose. We first make a summary of entropy maximisation problems in order to
reconstruct a single measure and, by extension with the linear transfer, entropy maximisation problems in order
to reconstruct a single function. We propose a global synthesis of the entropy maximisation methods for such
reconstruction problems from the convex analysis point of view, as well as in the framework of the embedding
into the MEM setting. We then propose an extension of the entropy methods for a multidimensional case. Such
extension is the main contribution of this work. We study the MEM embedding for the function reconstruction
problem that is proposed in [10] in the extended case of inverse problems, that is when p 6= 1 and the λi are any
known bounded continuous functions. We provide a general method of reconstruction based on the γ-entropy
maximisation for functions submitted to generalised moment and interpolation constraints as in (1.3).

This paper is organized as follows.
In Section 2, we recall in a global synthesis of entropy maximisation methods some results for the specific

case of a single function reconstruction problem (F1
Φ,γ) or a single measure reconstruction problem (M1

ϕ,γ).
First we describe how the transfer principle works, that is how a function problem (F1

Φ,γ) can be linked to the
measure problem (M1

ϕ,γ) in Section 2.1. Then we recall some results about the resolution of the γ-divergence
minimisation problem (M1

ϕ,γ) in Section 2.2. In Section 2.3, we take a specific look at problem (M1
ϕ,γ) when the

convex function γ is the function y → y log(y)− y − 1. This specific problem is the ME problem which will be
denoted by (M1

ϕ,ME). We then extend the class of studied optimisation problems by giving the construction of
the MEM problem setting and we provide some properties of the MEM reconstruction in Section 2.4. Finally in
Section 2.5, the setting of some usual optimisation problems into the entropy maximisation frame is reminded.

1Notice that as ψΠ is a convex function, ψΠ is also the convex conjugate of γΠ.
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The main contributions of this paper are the results presented in Section 3. It consists in the study of the
entropy methods for the reconstruction of a multidimensional function submitted to very general constraints
such as an integral inverse problem as in (1.3). We extend the approach of [10] for the case p 6= 1 and any known
bounded continuous functions λi. We study the embedding of the functions reconstruction problem (FpΦ,γ) into
the MEM problem (Mp,n

ϕ,Π) framework. Such study is stepped in three independent parts. First in Section 3.1, we
study the problem (FpΦ,γ) in a convex analysis framework. We express the optimal solution thanks to Fenchel
duality theorem. This first approach lacks to give a suitable reconstruction when constraint measures Φ are
not absolutely continuous with respect to PU . To remedy this issue, we propose in Section 3.2 to transfer
the functions reconstruction problem (FpΦ,γ) to a corresponding measures reconstruction problem (Mp

ϕ,γ). The
transfer is performed using suitable continuous kernels. Finally in Section 3.3, we set problem (Mp

ϕ,γ) obtained
by the transfer into a MEM problem framework and we study the reconstructions given by problem (Mp,n

ϕ,Π).
Applications will be presented in Section 4. We consider first some simple examples of single function recon-

structions and then a two-functions case study inspired by computational thermodynamics.

2. The specific γ-entropy maximisation problem for a single reconstruction

We give in this section some details about the γ-entropy maximisation problem in the case of a single
reconstruction, that is that we are interested in a single function or a single measure reconstruction. Those
problems have already been studied, see for example in [10] for problem (F1

Φ,γ), in [3] for problem (M1
ϕ,γ) and

in [13] for problem (M1,n
ϕ,Π). Let us recall some results of these authors.

In Section 2.1 we are interested in the link between a function reconstruction problem (F1
Φ,γ) and a measure

reconstruction problem (M1
ϕ,γ). The function reconstruction problem is set as

max Iγ(f)

f :
∫
U

f(x)dΦ(x) ∈ K
(F1

Φ,γ)

and the measure reconstruction problem as

min Dγ(F, PV )

F :
∫
V

ϕ(t)dF (t) ∈ K.
(M1

ϕ,γ)

The idea is to set a transformation from measures on V to functions on U . Such transformation is the linear
transfer we will further describe in the Section 2.1.

We remind the reader that we consider a number N of constraints. Therefore Φ and ϕ take values in RN . In
addition we will consider that ϕ is continuous.

In Section 2.2 we study the γ-divergence minimisation problem under constraints, that is problem (M1
ϕ,γ).

We recall the results of [3] for the existence of an optimal solution to problem (M1
ϕ,γ).

We take a closer look in Section 2.3 at the Maximum Entropy (ME) problem. This problem corresponds to
problem (M1

ϕ,γ) in the special setting when γ is the function y → y log(y)−y−1 and the γ-divergence coincides
with the Kullback–Leibler divergence. We recall results on the existence of the optimum and its expression when
such minimiser exists.

In Section 2.4, we recall the setting of the nth MEM problem (M1,n
ϕ,Π)

min DKL(Q,Π⊗n)

Q : EQ

[
1
n

n∑
i=1

ϕ(ti)Yi

]
∈ K.

(M1,n
ϕ,Π)
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We give, when it exists, an expression for the minimiser QME
n of the nth problem. A function gME

n , related to the
expectation of the random amplitudes under QME

n , can be defined. We will see that under some assumptions,
it exists one particular v ∈ RN such that the sequence (gME

n )n converges to a function gME
∞ (t) = ψ′Π (〈v, ϕ(t)〉).

This limit will be expressed.
Finally in Section 2.5, we give examples of some classical optimisation problems embedding into the MEM

framework.

2.1. Transfer principle

We briefly recall the idea of the transfer principle developed in [10], in order to put to work the γ-entropy
methods in the case of a function reconstruction problem. Let us denote by (U,B(U), PU ) the probability space
where U ⊂ Rd is compact (non empty), B(U) is the associated Borel set and PU is the reference measure. In the
case of the reconstruction problem for a single function, one wants to reconstruct over U a function f taking
values in R such that f satisfies the integral constraints∫

U

f(x)dΦ(x) ∈ K. (2.1)

Let γ be a given convex function taking values in R and Dγ ⊂ R its domain. Then the γ-entropy is defined by

Iγ(f) = −
∫
U

γ (f(x)) dPU (x),

for a function f defined on U and taking values in Dγ .
In order to chose among the functions that satisfy (2.1), we propose as a selection criterion to maximise the

γ-entropy. This means that we consider the optimisation problem (F1
Φ,γ)

max Iγ(f)

f :
∫
U

f(x)dΦ(x) ∈ K.
(F1

Φ,γ)

The method proposed by [10] is to transfer the function reconstruction problem to a measure reconstruction
problem thanks to some continuous kernel K. Such kernel links the function to reconstruct to a corresponding
signed measure. Recall that V is a Polish space and PV the reference probability measure on V . The idea is
that if one can reconstruct over V a signed measure F such that∫

V

ϕ(t)dF (t) ∈ K, (2.2)

then a regularized function fK can be reconstructed linked to the measure F . To do so, we proceed as follows.
We denote by K a continuous kernel defined over U×V taking values in R. The kernel K is such that measure

Φ of the integral constraint (2.1) is linked to a regularized function ϕK involved in an integral constraint as in
(2.2). The relation linking Φ to ϕK is given by

ϕK(t) =
∫
U

K(x, t)dΦ(x), t ∈ V.

Therefore, for any continuous kernel K, one can reconstruct the regularized function fK associated to F by
defining

fK(x) =
∫
V

K(x, t)dF (t), x ∈ U.

Hence as a consequence of Fubini theorem, if the measure F satifies (2.2), the regularized function fK defined
above satisfies (2.1).



MEM APPROACH TO SOLVE GENERALIZED INVERSE PROBLEMS 363

2.2. γ-divergence minimisation problem

In this section, we recall the results provided by [3] for the γ-divergence minimisation problem for signed
measure reconstruction. We set our work on V . Let F be a signed measure defined on V . The classical Lebesgue
decomposition of F with respect to PV is

F = F a + F s

with F a � PV the absolutely continuous part and F s the singular part. F s singular with respect to PV means
that it is concentrated on a set Ṽ such that PV (Ṽ ) = 0. Notice that F a and F s are still signed measures. Recall
the Jordan decomposition of measure F s

F s = F s,+ − F s,−

with F s,+ and F s,− mutually singular. Let γ be essentially strictly convex. We denote by ψ its convex conjugate,
that is

ψ(t) = sup
y∈Dγ

{ty − γ(y)} .

Considering aψ and bψ, with aψ < bψ, the endpoints of ψ domain, we define the γ-divergence Dγ by

Dγ(F, PV ) =
∫
V

γ

(
dF a

dPV

)
dPV + bψF

s,+(V )− aψF s,−(V ).

The problem we consider is the following

min Dγ(F, PV )

F :
∫
V

ϕ(t)dF (t) ∈ K.
(M1

ϕ,γ)

The authors in [3] study the existence conditions of an optimal solution using convex analysis tools. Their
first result is to consider the following dual problem of (M1

ϕ,γ) which relies on a Lagrange multiplier v ∈ RN

sup
v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}
. (M1,?

ϕ,γ)

In addition, they give conditions for problems (M1
ϕ,γ) and (M1,?

ϕ,γ) to have solutions. These results are recalled
in Theorem 2.1 below.

Theorem 2.1 ([3], Thm. 3.4).

(1) If there exists v′ ∈ RN such that 〈v′, ϕ(t)〉 ∈ Dψ then

inf
F :
∫
V

ϕ(t)dF (t)∈K
Dγ(F, PV ) = sup

v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}
.

(2) If, in addition,
∫
V
ψ (〈v′, ϕ(t)〉) dPV (t) is finite and if it exists a signed measure F ′ such that

∫
V
ϕ(t)dF ′(t) ∈

K, dF ′

dPV
is in the relative interior of Dγ and Dγ(F ′, PV ) is finite, then

inf
F :
∫
V

ϕ(t)dF (t)∈K
Dγ(F, PV ) = min

F :
∫
V

ϕ(t)dF (t)∈K
Dγ(F, PV )

and

sup
v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}

= max
v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}
.
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The next theorem proposes a more precise characterisation of the solution for problem (M1
ϕ,γ) under the

same conditions specified in Theorem 2.1.

Theorem 2.2 ([3], Thm. 4.1). Under the assumptions of Theorem 2.1.

(1) The absolutely continuous part with respect to PV of solution F o of (M1
ϕ,γ) is given by

dF o

dPV
(t) = ψ′ (〈v?, ϕ(t)〉)

where v? is the solution of

max
v∈RN

{
inf
c∈K
〈v, c〉 −

∫
V

ψ (〈v, ϕ(t)〉) dPV (t)
}
.

(2) If, in addition, for all v ∈ RN and for all t ∈ V , 〈v, ϕ(t)〉 is in the interior of Dψ, the singular part vanishes.

It can be noted that when Dψ = R, Theorem 2.2 always gives solutions that are absolutely continuous with
respect to PV . The condition to have Dψ = R, is to consider a function γ that is such that the ratio |γ(y)

y | is
equal to ∞ on the edges of Dγ , see Lemma 2.1 of [3].

We will see in Section 2.4 that the approach proposed by the embedding in the MEM framework boils down
to the same results provided by Theorem 2.2.

2.3. Maximum entropy problem

In this section we take a better look at the problem of maximising the entropy of a probability measure under
generalised moments constraints, that is the ME problem

min DKL(P, PV )

P :
∫
V

ϕ(t)dP (t) ∈ K
(M1

ϕ,ME)

with ϕ defined on V and taking values in RN . We remind the reader that in this section, the first component
of function ϕ is the constant 1 and that K is the product {1} × K1 × · · · × KN−1. Notice that for the results
recalled in this section only, V does not need to be compact and ϕ has not to be continuous. The definition of
the Kullback–Leibler divergence DKL is recalled below

DKL(P, PV ) =


∫
V

log
(

dP
dPV

)
dP if P � PV and log

(
dP

dPV

)
∈ L1(P )

+∞ otherwise.

The problem proposed in Section 2.2 is a more general setting of the original ME problem. The reconstruction
provided by the ME method satisfies the following properties. Those are showed by Shore and Johnson in [29].

Proposition 2.3.

(1) Uniqueness: If the solution of ME problem exists, it is unique.
(2) Coordinate independence: The reconstruction is independent of coordinate system choice.
(3) System independence: If the probability space (V,B(V ), PV ) consists in the product space of m probability

spaces, the reconstruction over the whole probability space is the tensor product of the reconstructions on
each probability space.
In other words, if PV = ⊗mi=1PVi where PVi is a reference probability measure on (Vi,B(Vi)) and (V,B(V ), PV )
is the product space of all (Vi,B(Vi), PVi), then the reconstruction P on (V,B(V )) is given by ⊗mi=1Pi where
Pi is the reconstruction on (Vi,B(Vi)).
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(4) Subset independence: If probability space (V,B(V ), PV ) consists in the union of m probability spaces, the
reconstruction over the global space leads to the same measure than the reconstruction problem conditioning
on each probability space.
In other words, it does not matter whether one treats the information as a subset Vj of whole set V in a
conditional constraint or in the full system.

We recall in this section some results of [9,13] in order to solve problem (M1
ϕ,ME). Results are stated without

any proof for the setting of our example.
We give first a definition of the generalised solution for problem (M1

ϕ,ME). This definition requires the use of
a minimising sequence of DKL(·, PV ), defined as follows. Let (Pn) be a sequence of probability measures. (Pn)
is a minimising sequence of DKL(·, PV ) if we have

lim
n→∞

DKL(Pn, PV ) = inf
P
DKL(P, PV ). (2.3)

Definition 2.4 ([9]). Let us consider a sequence of probability measures (Pn)n∈N defined on (V,B(V )) such
that (Pn) converges and is a minimising sequence of DKL(·, PV ) and such that for all n, probability measure Pn
satisfies ∫

V

ϕ(t)dPn(t) ∈ K.

Then we call generalised maximal entropy solution the measure PMEG that is such that

PMEG = lim
n→∞

Pn, in total variation.

If PMEG also meets the constraint, then it is called the maximal entropy solution of problem (M1
ϕ,ME) denoted

by PME.

We will now recall some results on the existence of a generalised solution for problem (M1
ϕ,ME) and the shape

of the solution when it exists.
Let us first define PK the subset of probability measures that satisfy the constraints of the ME problem

(M1
ϕ,ME), that is

PK =
{
P probability measure on V, such that

∫
V

ϕ(t)dP (t) ∈ K
}
.

With the previous definition of PMEG, we recall a result of [9] for the existence in our framework of the
generalised solution of problem (M1

ϕ,ME).

Lemma 2.5 ([9]). If infP∈PKDKL(P, PV ) <∞, then PMEG exists.

Let us now introduce several definitions involved in the characterisation of the problem (M1
ϕ,ME) solution.

For all v ∈ RN , we define the quantity

ZPV ,ϕ(v) =
∫
V

exp (〈v, ϕ(t)〉) dPV (t) (2.4)

where 〈·, ·〉 is the usual scalar product in RN . We denote the domain of ZPV ,ϕ by DPV ,ϕ, that is the subset of
vectors in RN that are such that ZPV ,ϕ(·) is finite

DPV ,ϕ =
{
v ∈ RN , ZPV ,ϕ(v) <∞

}
. (2.5)

The following definition describes the so-called exponential familly with respect to probability measure PV .
The interested reader may be referred to [1] for more details about exponential models.
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Definition 2.6. The ϕ-Hellinger arc of PV is a family of measures Pv that are defined by

dPv(t) = (ZPV ,ϕ(v))−1 exp (〈v, ϕ(t)〉) dPV (t) (2.6)

for all v ∈ DPV ,ϕ.
The family of measures Pv defined as in (2.6) for all v ∈ DPV ,ϕ may also be called the exponential model

with respect to PV .

We recall below the Theorem 4 from [7] that characterises the generalised reconstruction PMEG. This theorem
describes the reconstruction PMEG as an element of the ϕ-Hellinger arc of PV . More important, the reconstruc-
tion problem (M1

ϕ,ME), which is infinite dimensional, is transformed into the finite dimension problem (2.7)
that considers the vectors v in DPV ,ϕ, see expression (2.5).

Theorem 2.7 ([7], Thm. 4). The reconstruction PMEG belongs to the ϕ-Hellinger arc of PV if and only if it
exists one measure P in PK such that P � PV .

Then, defines
HPV ,ϕ(v,K) = inf

c∈K
〈v, c〉 − log (ZPV ,ϕ(v)) , ∀v ∈ DPV ,ϕ

the reconstruction PMEG is obtained by determining v? ∈ DPV ,ϕ such that

HPV ,ϕ(v?,K) = sup
v∈DPV ,ϕ

HPV ,ϕ(v,K). (2.7)

The previous theorem does not ensure that the reconstruction PMEG will satisfy the constraints of problem
(M1

ϕ,ME). Of course, the reconstruction PMEG is more interesting when PMEG belongs to PK. We then have
the following corollary for a reconstruction that satisfies the constraints. Such reconstruction is then denoted
by PME.

Corollary 2.8 ([13]). If there exists a measure P ∈ PK such that P � PV and if DPV ,ϕ is an open set, then
PMEG is the reconstruction PME in PK and PME belongs to the ϕ-Hellinger arc of PV .

As an illustration, we propose the following simple example of a probability measure reconstruction which
maximises the entropy with respect to the standard Gaussian distribution N (0, 1). The added constraint is a
fixed valued for the first order moment. By giving the first order moment equal to m, the reconstruction we
obtain is, as one can expect, the Gaussian distribution centred in m and with unit variance.

Example 2.9. The working probability space is (R,B(R),N ) where N is the standard Gaussian distribution
N (0, 1). We wish to reconstruct the probability measure with given first order moment which minimises the
Kullback–Leibler divergence. Our problem is rewritten

min DKL(P,N )

s.t.
∫

R
dP (t) = 1∫

R
tdP (t) = m.

Using the Theorem 2.7 recalled previously the problem becomes

max
v∈R

vm− log
(∫

R
exp(vt)dN (t)

)
. (2.8)

Classical optimality criterion applied to the maximisation problem (2.8) gives v = m. Then, the Radon–
Nikodym derivative, see [24, 26], with respect to N for the reconstructed probability measure PME is equal to

dPME

dN
(t) = exp

(
−m

2

2
+mt

)
.

PME is therefore the Gaussian distribution N (m, 1).
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2.4. Maximum Entropy on the Mean

We recall in this section how the MEM method works. Let us first recall the problem studied. We assume here
that V is compact. V is discretised with a suitable deterministic sequence t1, . . . , tn such that point probability
measure Pn = 1

n

∑n
i=1 δti approximates well the probability measure PV . We denote by Q a distribution that

generates a vector (Y1, . . . , Yn) of n real random amplitudes and by Fn the random point measure defined by

Fn =
1
n

n∑
i=1

Yiδti . (1.8)

One wants to determine the “optimal” distribution Q to generate Y1, . . . , Yn such that point-measure Fn meets
on average the constraints defined as follows

EQ
[∫

V

ϕ(t)dFn(t)
]

= EQ

[
1
n

n∑
i=1

ϕ(ti)Yi

]
∈ K,

with ϕ a continuous function taking values in RN .
We set Π a given reference distribution on R and we study the Kullback–Leibler divergence between the joint

distribution Q and the tensor distribution Π⊗n under some constraints. This is summed up in a more concise
way by the following problem

min DKL(Q,Π⊗n)

Q : EQ

[
1
n

n∑
i=1

ϕ(ti)Yi

]
∈ K.

(M1,n
ϕ,Π)

We assume the support of Π to be ]a; b[ with −∞ 6 a < b 6 ∞. The domain of the moment generating
function of Π is denoted DΠ

DΠ =

{
τ ∈ R :

∫ b

a

exp(τy)dΠ(y) <∞

}
.

We denote by ψΠ the logarithm of the moment generating function of Π

ψΠ(τ) = log
∫ b

a

exp(τy)dΠ(y), ∀τ ∈ DΠ. (2.9)

We recall below some results of [13] for the resolution of the nth MEM problem and the convergence of
the obtained solution. First Section III.3, Lemma 3.1 of [13] recalled below gives sufficient conditions for the
existence of a solution to the MEM problem (M1,n

ϕ,Π).

Lemma 2.10 ([13], Sect. III.3, Lem. 3.1). Let us assume the following

(H1): It exists at least one c ∈ K for which one can find y1, . . . , yn with yi ∈ ]a; b[ for i = 1, . . . , n, that are such
that 1

n

∑n
i=1 ϕ(ti)yi = c.

Then, for n sufficiently large, it always exists a solution to the MEM problem (M1,n
ϕ,Π).

The Corollary 3.1 of Section III.3 from [13] describes the solution of the MEM problem (M1,n
ϕ,Π) when it exists.

As for problem (M1
ϕ,ME), solving the reconstruction problem (M1,n

ϕ,Π) consists in solving a finite dimension
problem that considers the vectors v in DΠ,ϕ, with DΠ,ϕ the subset of RN defined in (H3).

Corollary 2.11 ([13], Sect. III.3, Cor. 3.1). Let us assume that assumption (H1) is satisfied and the following

(H2): The closed convex hull of Π support is [a; b].



368 F. GAMBOA ET AL.

(H3): Let the set DΠ,ϕ be a non empty open set where DΠ,ϕ is defined by

DΠ,ϕ =

{
v ∈ RN , ZΠ,ϕ(v) =

∫
[a;b]n

n∏
i=1

exp (〈v, ϕ(ti)〉yi) dΠ⊗n(y1, . . . , yn) <∞

}
.

Then, for n sufficiently large, the solution QME
n to the MEM problem (M1,n

ϕ,Π) is

QME
n (y1, . . . , yn) = (ZΠ,ϕ(v?))−1 exp

(
n∑
i=1

〈v?, ϕ(ti)〉yi

)
Π⊗n(y1, . . . , yn)

where v? ∈ DΠ,ϕ ⊂ RN is the unique maximiser of

Hn
Π,ϕ(v,K) = inf

c∈K
〈v, c〉 − log (ZΠ,ϕ(v)) .

For the convergence result of the MEM reconstruction, we define the function gME
n by

gME
n (t) =

1
]Mn(t)

∑
i∈Mn(t)

EQME
n

[Yi]

with Mn(t) the subset of indices in [|1;n|] defined by

Mn(t) =
{
j ∈ [|1;n|] : ||t− tj || = min

i∈[|1;n|]
||t− ti||

}
and ]Mn(t) is the number of elements in Mn(t).

The next theorem requires the strong assumption denoted by (H6). The notation ∂ of assumption (H6) refers
to the edge of the set.

Theorem 2.12 ([13], Sect. III.4, Thm. 3.1). Under assumptions (H1), (H2) and

(H4): DΠ is a non empty open set and it exists v ∈ Rk such that for all t ∈ V , 〈v, ϕ(t)〉 ∈ DΠ.
(H5): D(Π, ϕ) =

{
v ∈ RN ,∀t ∈ V , 〈v, ϕ(t)〉 ∈ DΠ

}
is non empty.

(H6): ∀v ∈ ∂D(Π, ϕ), we have limu∈D(Π,ϕ), u→v |
∫
V
ϕ(t)ψ′Π (〈u, ϕ(t)〉) dPV (t)| = +∞.

Then gME
n converges to gME

∞
gME
∞ (t) = ψ′Π (〈v?, ϕ(t)〉)

where v? maximises
H∞Π,ϕ(v,K) = inf

c∈K
〈v, c〉 −

∫
V

ψΠ (〈v, ϕ(t)〉) dPV (t).

Remark 2.13. Let the real random sequence (Xn) be defined by Xn = 1
n

∑n
i=1 Yiϕ(ti) and let us denote by

Qn the law of Xn. Under the assumptions (H1) and (H2) and provided that ψΠ is sufficiently regular, one can
characterise the asymptotic behaviour of Qn. As n tends to infinity, Qn tends to concentrate on the events that
belong to the compact set K. That is, let x ∈ K, we have that

Qn(Xn,l > xl, l = 1, . . . , N) ≈ exp (−nI(x)) (2.10)

where the rate function is I(x) = supv∈RN
{
〈v, x〉 −

∫
V
ψΠ (〈v, ϕ(t)〉) dPV (t)

}
.Here, the approximation is related

to the classical large deviations property, see [12].
This remark is more formally given in Section III.4, Corollary 3.5 of [13] as the large deviation property of

the sequence (Qn).
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Thereafter in the Section 3, we aim to reconstruct the p components of a vectorial measure F subject to the
following integral constraints

p∑
i=1

∫
V

ϕil(t)dF
i(t) ∈ Kl, 1 6 l 6 N.

We will follow the MEM construction given in the present section. For the multidimensional case, the random
measure Fn will then be vectorial and the sequence (Yi)i=1,...,n will be a sequence of vectorial amplitudes in Rp.

2.5. Connection with classical minimisation problems

One can notice that the link between the γ-entropy maximisation problem (M1
ϕ,γ) and MEM problem

(M1,n
ϕ,Π). Indeed if one chooses the convex function γ involved in problem (M1

ϕ,γ) to be the convex conjugate of
ψΠ, we have that

max
v∈DΠ,ϕ,ψΠ

H∞Π,ϕ(v,K) = inf
F∈FK

DγΠ (F, PV )

where H∞Π,ϕ is the function defined in the Theorem 2.12.
In this section we detail some classical minimisation problems set in the MEM embedding. We set our work

under the assumptions of Theorem 2.12.

Poisson distribution and Kullback–Leibler divergence minimisation

Let the reference distribution Π be a Poisson distribution P(θ) with parameter θ ∈]0; +∞[. The support of
Π is N. The log-Laplace transform ψ of a Poisson distribution P(θ) is

ψP(θ)(τ) = θ(eτ − 1)

with domain DΠ = R.
Its convex conjugate is the following function

γP(θ)(y) = y log (y)− y(1 + log(θ)) + θ, for y ∈ R+.

The associated convex criterion to minimise for problem (M1
ϕ,γ) becomes

DγP(θ)(F, PV ) =


∫
V

log
(

dF
dPV

)
dF − (1 + log(θ))F (V ) + θ, if F � PV and dF

dPV
> 0

+∞ otherwise.

Such criterion gives the Kullback–Leibler divergence when θ = 1

DKL(F, PV ) =


∫
V

log
(

dF
dPV

)
dF − F (V ) + 1, if F � PV and dF

dPV
> 0

+∞ otherwise.

Gaussian distribution and least squares minimisation

Let the reference distribution Π be a Gaussian distribution N (m,σ2), σ2 > 0. The support of Π is ]a; b[ =
]−∞; +∞[. The log-Laplace transform ψ of a Gaussian distribution N (m,σ2) is

ψN (m,σ2)(τ) =
τ2σ2

2
+ τm

with domain DΠ = R.
Its convex conjugate is the function

γN (m,σ2)(y) =
(y −m)2

2σ2
, for y ∈ R.
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The associated convex criterion to minimise for problem (M1
ϕ,γ) becomes

DγP(θ)(F, PV ) =


∫
V

1
2σ2

(
dF
dPV

−m
)2

dPV , if F � PV

+∞ otherwise

which gives the minimisation problem consisting in finding the least squares deviation of Radon–Nikodym
derivative dF

dPV
from constant m.

Exponential distribution and Burg entropy minimisation

Let the reference distribution Π be an exponential distribution E(θ) with mean θ, (where θ > 0). The support
of Π is [0; +∞[. The log-Laplace transform ψ of the exponential distribution E(θ) is

ψE(θ)(τ) = − log(1− τθ)

with domain DΠ =
{
τ < 1

θ

}
.

Its convex conjugate is the function

γE(θ)(y) = log
(
θ

y

)
+
y

θ
− 1, for y ∈ R?+.

The associated convex criterion to minimise for problem (M1
ϕ,γ) becomes

DγP(θ)(F, PV ) =

 log(θ)−
∫
V

log
(

dF
dPV

)
dPV +

F (V )
θ
− 1, if F � PV and F s > 0

+∞ otherwise.

Such criterion gives the Burg-entropy of F when θ = 1, which is the reverse Kullback–Leibler divergence of PV
with respect to F

DKL(PV , F ) =

−
∫
V

log
(

dF
dPV

)
dPV + F (V )− 1, if F � PV and F s > 0

+∞ otherwise.

3. The γ-entropy maximisation problem for the reconstruction of a
multidimensional function

In this section we propose to study the γ-entropy maximisation method for the reconstruction of p real-valued
functions with domain U (with U compact and non-empty) when they are subjected to very general constraints
such as ∫

U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N. (3.1)

This study is performed in three independent parts.
First in Section 3.1, we study in the convex analysis framework the problem (FpΦ,γ) recalled below

max −
∫
U

γ
(
f1, . . . , fp

)
dPU

f :
∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl, l = 1, . . . , N.
(FpΦ,γ)

We detail the construction of a dual problem of finite dimension. We are able to express an optimal solution
thanks to Fenchel duality theorem when the constraint measures Φl are absolutely continuous with respect
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to PU . However, we show that this first approach does not give a suitable reconstruction when the constraint
measures Φl are not absolutely continuous with respect to PU .

To remedy this issue, we propose in Section 3.2 to transfer the functions reconstruction problem (FpΦ,γ) to a
corresponding reconstruction problem (Mp

ϕ,γ) on signed measures. Such problem is recalled below

min Dγ(F, PV )

F :
p∑
i=1

∫
V

ϕi(t)dF i(t) ∈ K.
(Mp

ϕ,γ)

The linear transfer is performed by means of suitable continuous kernels.
Finally in Section 3.3, we set the problem (Mp

ϕ,γ) obtained with the linear transfer into a MEM prob-
lem framework. We detail the construction of a sequence of random point-measures for the multidimensional
framework. We study the reconstructions given by problem (Mp,n

ϕ,Π).

3.1. The γ-entropy maximisation problem for the multidimensional case in the convex
analysis framework

In this section we study the way to reconstruct a multidimensional function subject to an inverse problems
by a γ-entropy maximisation approach. We propose to study such approach within the framework of convex
analysis. We recall some general definitions and properties further used in the Appendix A.

We frame our work in a probability space (U,B(U), PU ) where U is compact (non empty) and PU is the
reference probability measure. We aim at the reconstruction of p real-valued functions such that∫

U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N. (3.2)

As there exists many solutions fitting the previous constraints, we wish to choose among them the solution of a
convex problem under constraints. Given a closed convex function γ : Rp → [0; +∞], we decide to characterize
the optimal solution fo = (f1,o, . . . , fp,o) that maximises the γ-entropy defined by

−
∫
U

γ
(
f1(x), . . . , fp(x)

)
dPU (x)

provided that fo satisfies the constraints stated in (3.2). We denote by Iγ(·) the opposite of the γ-entropy that
is

Iγ(f) =
∫
U

γ
(
f1(x), . . . , fp(x)

)
dPU (x).

To put it in a more concise way, we study problem (FpΦ,γ)

max −Iγ(f)

f :
∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl, l = 1, . . . , N
(FpΦ,γ)

or equivalently
min Iγ(f)

f :
∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl, l = 1, . . . , N.
(FpΦ,γ)

We denote by ψ the convex conjugate of γ, which is defined by

ψ(t) = sup
y
{ty − γ(y)} .
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The domain of γ (respectively of ψ) is denoted by Dγ (respectively Dψ). We will further make the following
assumption denoted by H1.

H1: γ (respectively its convex conjugate ψ) is a differentiable, closed, essentially strictly convex function for all
interior points on its domain y ∈ int Dγ (respectively in Dγ).
The minimum of γ(y) is 0 and is attained at some y0 = (y1

0 , . . . , y
p
0) such that y0 ∈ int Dγ .

The convex function γ is such that the ratio γ(y)
||y|| tends to infinity on the edges of Dγ .

As in the case of the single function reconstruction (recalled in the Sect. 2), we will need to define the
multidimensional analogue of the γ-divergence of signed measures. Such γ-divergence features some terms that
depend on the singular parts. As in the case in one dimension, the singular part vanishes when γ(y)

||y|| tends to

infinity on the edges of Dγ . The assumption on the ratio γ(y)
||y|| is then taken for the sake of simplicity.

Let E be a convex set of measurable Rp-valued functions, the minimum of Iγ(·) on the convex E will be
denoted as

Iγ(E) := min
f∈E

Iγ(f).

The first result we have is a characterisation of the minimum of Iγ(·) over E with respect to a specific convex
functional. Define f1 and f2 two functions. Provide γ(f1) and γ(f2) are finite PU -a.s., we define the γ-Bregman
distance (see [4]) of function f1 and f2 on U as

Bγ(f1, f2) :=
∫
U

[
γ(f1)− γ(f2)− (∇γ(f2))T (f1 − f2)

]
dPU . (3.3)

One can remark that Bγ(f1, f2) > 0, ∀f1, f2 with finite Iγ values by the convexity of γ. The next theorem
characterises the minimum of Iγ(·) over a convex set E of functions with respect to the Bregman distance.

Theorem 3.1. Given any convex set E of measurable functions on U , such that Iγ(E) is finite, there exists a
differentiable function fo not necessarily in E such that for all f ∈ E with Iγ(f) <∞

Iγ(f) > Iγ(E) +Bγ(f, fo). (3.4)

In addition, fo is unique PU -a.s. and any sequence of functions fn ∈ E, for which Iγ(fn)→ Iγ(E), converges
to fo in PU .

Proof. We adapt the proof of [9] in the multidimensional case proposed in this section. The proof relies on an
identity that holds for all function f ∈ E with finite Iγ(·) value and that a Iγ-minimising sequence of function
is in some weak sense a Cauchy sequence. In the following, ||.|| will denote the Euclidean norm on Rp.

First notice that for all α ∈]0; 1[ and all f , f1 ∈ E such that Iγ(f) and Iγ(f1) are finite, the following equality
holds

αIγ(f) + (1− α)Iγ(f1) = Iγ (αf + (1− α)f1) + αBγ (f, αf + (1− α)f1)
+ (1− α)Bγ (f1, αf + (1− α)f1) .

(3.5)

Let denote by f2 the function f2 = αf + (1 − α)f1. One can first notice that by developing and rearranging
those terms, we have that

α (∇γ(f2))T (f − f2) + (1− α) (∇γ(f2))T (f1 − f2) = 0.

Therefore, only the Iγ(·) parts remain in the sum of αBγ (f, f2) and (1− α)Bγ (f1, f2), that is

αBγ (f, f2) + (1− α)Bγ (f1, f2) = αIγ(f) + (1− α)Iγ(f1) + Iγ (f2)

and equality (3.5) holds.
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Let (fn) ⊂ E be a minimising sequence of Iγ and such that for all n, Iγ(fn) < ∞. Then (fn) is a Cauchy
sequence in probability, that is

lim
n,m→∞

PU ({x : ||fn(x)− fm(x)|| > ε}) = 0 ∀ε > 0.

See Lemma C.1 for the proof.
Then, there exists a subsequence (fnk) of (fn) in Rp such that fnk converges a.s. to a function fo in PU

measure and such fo satisfies the inequality in (3.4). Indeed by replacing f1 by fnk in (3.5), it becomes

Iγ(f) =
1
α
Iγ(αf + (1− α)fnk)− 1− α

α
Iγ(fnk) +Bγ(f, αf + (1− α)fnk)

+
1− α
α

Bγ(fnk , αf + (1− α)fnk)

> Iγ(E) +Bγ(f, αf + (1− α)fnk) +
1− α
α

(Iγ(E)− Iγ(fnk)) ,

(3.6)

the last inequality coming from the positivity of the Bregman distance and from the fact that αf+(1−α)fnk ∈ E
by the convexity of E and therefore Iγ(αf + (1− α)fnk) > Iγ(E).

As fnk is a Iγ-minimising sequence, the last term in (3.6) tends to 0 when k goes to infinity.
Finally, taking a sequence (αk) converging slower than fnk to 0, by Fatou’s lemma

lim inf
k→∞

Bγ(f, αkf + (1− αk)fnk) > Bγ(f, fo).

This proves the existence of fo in inequality (3.4). �

Given N real-valued positive measures Φ1, . . . ,ΦN , their Lebesgue decompositions are given by Φl = φlPU +
Σl, for l = 1, . . . , N where their Radon–Nikodym derivatives with respects to PU are denoted by φl. Measures
Σl are singular with respect to PU which means that they are concentrated on a set Ũ such that PU (Ũ) = 0.
We denote Eφ,K the subset of functions as follows

Eφ,K :=
{
f = (f1, . . . , fp),

∫
U

p∑
i=1

λi(x)f i(x)φl(x)dPU (x) ∈ Kl, l = 1, . . . , N
}
. (3.7)

The next theorem leads to a description of the optimal function (f1,o, . . . , fp,o) which is solution on Eφ,K
of Iγ(·) minimisation problem. The result is obtained thanks to Fenchel’s duality theorem for convex functions
and is a generalisation in higher dimension of Theorem II.2 from [10].

Theorem 3.2. Suppose there exists a Rp-valued function f ∈ Eφ,K and such that it satisfies

f(x) = (f1, . . . , fp) ∈ int Dγ , PU -a.s.

Let L be the subspace of RN such that for given (φ1, . . . , φN )

L =

{
v ∈ RN : vl =

∫
U

p∑
i=1

λi(x)f i(x)φl(x)dPU (x), l = 1, . . . , N, for some f : U → Rp
}

and m be the following application

m(v) :=
∫
U

ψ
(
τ1(x, v), . . . , τp(x, v)

)
dPU (x), (3.8)

with τ i(x, v) =
∑N
l=1 λ

i(x)vlφl(x). The minimum of Iγ(·) over the set Eφ,K can be expressed by
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Iγ(Eφ,K) = max
v∈RN

{
inf

c∈K∩L
〈v, c〉 −m(v)

}
. (3.9)

Then, for vo ∈ RN which maximises (3.9), the minimiser of Iγ(·) over Eφ,K is

f i,o(x) =
∂ψ

∂τi

(
τ1(x, vo), . . . , τp(x, vo)

)
, ∀i = 1, . . . , p (3.10)

and such fo = (fo,1, . . . , fo,p) satisfies (3.4).

Proof. Outline of the proof is as in [10] with a multidimensional approach:
(1) Expression of the minimum in (3.9) is given thanks to Fenchel’s duality theorem.
(2) Letting τ i(x, v) =

∑N
l=1 λ

i(x)vlφl(x) and vo the vector of RN which maximises (3.9), one must verify that(
τ1(x, vo) . . . τp(x, vo)

)T belongs to the interior of Dψ.
(3) Candidate function fo must be such that it satisfies the Bregman inequality (3.4) of the Theorem 3.1.

Let k(z) := inf{Iγ(f) :
∫
U

∑p
i=1 λ

i(x)f i(x)φ(x)dPU (x) = z}. Function k is a convex function with dom k ⊂
L. Let h be such that:

h(z) =
{

0 if z ∈ K ∩ L
+∞ else.

(3.11)

Then Iγ(Eφ,K) = infz∈K k(z) = infz∈RN {k(z) + h(z)}.
In order to apply Fenchel duality theorem, we need that dom k ∩ dom h 6= ∅. Equivalently, that means that

there exists z0 ∈ dom k such that z0 ∈ K ∩ L. From Theorem 3.2 assumptions, there exists f ∈ Dγ ∩ Eφ,K. By
applying Lemma 3.3 there exists a closed convex set D̃ included in Dγ and a function f̃ such that it belongs to
D̃ ∩ Eφ,K. As f̃ ∈ D̃, γ(f̃) is well-defined and Iγ(f̃) <∞. Let z0 ∈ RN be defined by

z0,l =
∫
U

p∑
i=1

λi(x)f̃ i(x)φl(x)dPU (x), l = 1, . . . , N. (3.12)

By definition z0 ∈ L, as Iγ(f̃) <∞, z0 ∈ dom k and as f̃ ∈ Eφ,K, z0 ∈ K. Therefore dom k ∩ dom h 6= ∅ and
Fenchel–Moreau duality theorem can then be applied, see [27,28].

With the superscript ? denoting the convex conjugate, using Fenchel–Moreau duality theorem, we have the
following equality

inf
z∈RN

{k(z) + h(z)} = max
v∈RN

{−k?(v)− h?(−v)} (3.13)

and then Iγ(Eφ,K) = maxv∈RN {−k?(v)− h?(−v)}.
The convex conjugate of k can be expressed as follow:

k?(v) = sup
z∈RN

{〈v, z〉 − k(z)}

= sup
z∈RN

sup
f∈Eφ,K

{
〈v, z〉 −

∫
U

γ(f)dPU

}

= sup

{〈
v,

∫
U

p∑
i=1

λi(x)f i(x)φ(x)dPU (x)

〉
−
∫
U

γ(f)dPU

}

= sup

{∫
U

p∑
i=1

f i(x)

{
N∑
l=1

vlλ
i(x)φl(x)

}
− γ(f(x))dPU (x)

}

=
∫
U

ψ

(
N∑
l=1

vlλ
1(x)φl(x), . . . ,

N∑
l=1

vlλ
p(x)φl(x)

)
dPU (x)

=
∫
U

ψ
(
τ1(x, v), . . . , τp(x, v)

)
dPU (x),
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with τ i(x, v) =
∑N
l=1 λ

i(x)vlφl(x).
By definition of h, its convex conjugate is:

h?(−v) = sup
c∈K∩L

〈−v, c〉 = − inf
c∈K∩L

〈v, c〉.

Therefore we have equality (3.9)

Iγ(Eφ,K) = min
f∈Eφ,K

∫
U

γ(f)dPU

= max
v∈RN

{−k?(v)− h?(−v)}

= max
v∈RN

{
inf

c∈K∩L
〈v, c〉 −m(v)

}
.

(3.14)

Let us denote by vo, the vector in RN which realises the maximum of {infc∈K∩L〈v, c〉 −m(v)}.
We remind that

m(v) =
∫
U

ψ
(
τ1(x, v), . . . , τp(x, v)

)
dPU (x)

with τ i(x, v) =
N∑
l=1

λi(x)vlφl(x).

From the assumptions on ψ, τ i(x, vo) belongs to the interior of Dψ and therefore one can differentiate ψ at
τ i(x, vo).

Let us now demonstrate that fo = (f1,o, . . . , fp,o) with

f i,o(x) =
∂ψ

∂τi

(
τ1(x, vo), . . . , τp(x, vo)

)
, ∀i = 1, . . . , p,

satisfies the Bregman inequality in (3.4) for E = Eφ,K and for any f such that Iγ(f) <∞. Equivalently, it boils
down to showing that for any f with Iγ(f) <∞∫

U

p∑
i=1

(
τ i(x, v)− ∂γ

∂yi
(fo(x))

)(
fo,i(x)− f i(x)

)
dPU (x) > 0. (3.15)

Inequality (3.15) comes by using (3.14) and noticing that for any τ ∈ Dψ

γ (∇ψ(τ)) = τT∇ψ(τ)− ψ(τ) (3.16)

and that for any f with Iγ(f) <∞∫
U

p∑
i=1

τ i(x, vo)f i(x)dPU (x) > inf
z∈K∩L

〈vo, z〉.

Let us denote by D∇ the set of γ gradient

D∇ = {∇γ(y), y ∈ int Dγ} .

For τo = (τ1(x, vo), . . . , τp(x, vo)) ∈ int D∇, using (3.16) we have ∇γ (∇ψ(τo)) = τo and then (3.15) stands
with equality. When τo ∈ Rp \ (int D∇), let u ∈ ∂(Dγ) such that ∇γ(u) defined below is the projection of τo

on ∂D∇
∇γ(u) := lim

y→u
y∈intDγ

∇γ(y).
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At such τo, we have ψ(τo) = uT τo − γ(u) and so ∇ψ(τo) = u. Therefore

∇γ(fo) = ∇γ(∇ψ(τo))
= ∇γ(u)

and
fo,i = (∇ψ(τo))i

= ui.

If, for i ∈ {1, . . . , p}, we have τ i(x, vo) 6 (∇γ(u))i, then ui 6 f i for any f such that Iγ(f) < +∞. Therefore
both terms of the product in (3.15) are negative. Conversely, if we have τ i(x, vo) > (∇γ(u))i, then ui > f i for
any f such that Iγ(f) < +∞. Then optimal solution fo satisfies Bregman inequality. �

To apply Fenchel duality Theorem in the previous Theorem 3.2, one needs to prove that the domains of the
two convex conjugates functions k and h defined in the proof do not have an empty intersection. In order to
prove so, the following lemma is required. Lemma 3.3 features a function f̃ which belongs to a closed convex set
D̃ in the interior of γ domain. Given a function f in the interior of Dγ , we prove the existence of f̃ for which the
constraint values

∫
U

∑p
i=1 λ

i(x)f̃ i(x)φl(x)dPU (x) are equal to the constraints values obtained with function f .

Lemma 3.3. Let φ1, . . . , φN be given integrable functions. Assume there exists a measurable function f : U →
Rp such that

f ∈ int Dγ
p∑
i=1

λi(x)f i(x)φl(x) ∈ L1(PU ), l = 1, . . . , N.

Then, there exist f̃ and D̃ such that f̃ is a function defined on U , f̃ ∈ D̃ and∫
U

p∑
i=1

λi(x)f i(x)φl(x)dPU (x) =
∫
U

p∑
i=1

λi(x)f̃ i(x)φl(x)dPU (x), l = 1, . . . , N (3.17)

with D̃ a closed convex set of Rp such that D̃  int Dγ .

Proof. Let L be the subset of vectors of RN defined by

L =

{
v : vl =

∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x), l = 1, . . . , N, h : U → Rp
}
.

Let (Dn) be a sequence of closed convex sets such that for all n, Dn  int Dn+1, meaning that Dn is strictly
growing to its limit Dγ . Let Tn = {x ∈ U : f(x) ∈ Dn}.

Let Ln be the subset of vector in RN such that

Ln =

{
v : vl =

∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x), l = 1, . . . , N, h bounded on Tn, h = 0 on T cn

}

then there exists n0 such that for all n > n0, Ln = L. Indeed, if Ln is a proper subset of L, there exists vn with
||vn|| 6= 0 such that

N∑
l=1

vn,l

(∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x)

)
= 0

∫
U

p∑
i=1

λi(x)hi(x)

(
N∑
l=1

vn,lφl(x)

)
dPU (x) = 0.
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That implies that
∑N
l=1 vn,lφl(x) = 0 PU -a.s. on Tn. Taking a convergent subsequence vnk with limits v such

that ||v|| 6= 0, we have
∑N
l=1 vlφl(x) = 0 PU -a.s. on U which goes against ||v|| 6= 0.

For δ > 0, defines Cδ by

Cδ =

{
v : vl =

∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x), l = 1, . . . , N, ||h|| 6 δ on Tn0 , h = 0 on T cn0

}
.

The affine hull of Cδ equals L and 0 ∈ int Cδ in the relative topology of L.
We denote by fn the projection onto Dn of f at x. Therefore

∫
U

∑p
i=1 λ

i(x)(f in(x) − f i(x))φl(x)dPU (x)
approaches 0 as n tends to infinity. For δ > 0 there exists then n1(δ) such that for all n > n1(δ),∫
U

∑p
i=1 λ

i(x)(f in(x)− f i(x))φl(x)dPU (x) belongs to Cδ. Therefore, it exists h defined on U such that ||h|| 6 δ
on Tn0 and h = 0 on T cn0

and such that

∫
U

p∑
i=1

λi(x)(f in(x)− f i(x))φl(x)dPU (x) =
∫
U

p∑
i=1

λi(x)hi(x)φl(x)dPU (x).

For such h, we set f̃ = fn + h. f̃ belongs to D̃ with D̃ = Dn ∩Dδ
n0

and

Dδ
n0

= {f(x) : ||f(x)− fn0(x)|| 6 δ} .

�

The next proposition describes under which conditions the infimum of the Theorem 3.2 is reached for an
optimal function in Eφ,K.

Proposition 3.4. For a function m defined as in (3.8) and for vo which maximises (3.9). If vo is an interior
point of m domain, then optimal solution fo, with components f i,o as in (3.10), belongs to Eφ,K.

Proof. Recall that
Iγ(Eφ,K) = max

v∈RN
(−k?(v)− h?(−v))

with k?(v) =
∫
U
ψ(τ)dPU and h?(−v) = −infz∈K∩L 〈v, z〉.

vo belongs to the interior of dom m implies that k? is differentiable in vo with its gradient d with components
dl defined for all l = 1, . . . , N by

dl =
∫
U

p∑
i=1

λi(x)
∂ψ

∂τi

(
τ1(x, vo), . . . , τp(x, vo)

)
φl(x)dPU (x).

By Corollary 23.5.3 of [27], the subgradient of h?(−v) at v = vo, denoted by ∂h? is included in (−K). As the
relative interiors of dom h? and dom k? have a non-empty intersection set, Theorem 23.8 of [27] implies on the
sum of convex function subgradients that ∂g = {d}+∂h?. As g reaches its maximum at vo, ∂g is a subset which
contains 0, which implies that d ∈ K.

Then, with f i,o(x) = dψ
dτi

(
τ1(x, vo), . . . , τp(x, vo)

)
for all l = 1, . . . , N ,

∫
U

p∑
i=1

λi(x)f i,o(x)φl(x)dPU (x) ∈ Kl.

Therefore, fo ∈ Eφ,K. �
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The following Corollary is deduced from the Theorem 3.2 when dealing with measures Φ that are not abso-
lutely continuous with respect to PU .

Let us define the analogue of Eφ,K for measures Φ that are not absolutely continuous with respect to PU .
EΦ,K is the set of function

EΦ,K :=

{
f = (f1, . . . , fp) :

∫
U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl, l = 1, . . . , N

}
.

As a result, we see that when considering measures Φ with a singular part, the optimum function defined in
the Theorem 3.2 does not meet in fact the constraints (3.2). The corollary stresses on the fact that the problem
is ill-posed when dealing with measures Φ which are not absolutely continuous with respect to the reference
measure PU .

Corollary 3.5. Suppose there exists a function f ∈ EΦ,K and such that it satisfies

f(x) = (f1(x), . . . , fp(x)) ∈ int Dγ , PU -a.s.

Let L, m be as defined in the Theorem 3.2 and Φ = φPU +Σ. The minimum of Iγ(·) over EΦ,K can be expressed
by

Iγ(EΦ,K) = max
v∈RN

{
inf

c∈K̃∩L
〈v, c〉 −m(v)

}
(3.18)

for some K̃ different of K.
Therefore the optimal solution fo defined in (3.10) no longer meets the constraints in (3.2).

Proof. Let kΦ(c) = inf
{
Iγ(f) :

∫
U

∑p
i=1 λ

i(x)f i(x)dΦ(x) = c
}

and Φ = φPU + Σ. Then,

Iγ(EΦ,K) = inf
f∈EΦ,K

{Iγ(f)} = inf
c∈K

kΦ(c)

= inf

{
Iγ(f) :

∫
U

p∑
i=1

λi(x)f i(x)φ(x)dPU (x) +
∫
U

p∑
i=1

λi(x)f i(x)dΣ(x) = c, c ∈ K

}

= inf

{
Iγ(f) :

∫
U

p∑
i=1

λi(x)f i(x)φ(x)dPU (x) = c−
∫
U

p∑
i=1

λi(x)f i(x)dΣ(x), c ∈ K

}

= inf

{
Iγ(f) :

∫
U

p∑
i=1

λi(x)f i(x)φ(x)dPU (x)c̃, c̃ ∈ K̃

}
= Iγ(Eφ,K̃),

where K̃ = K +
{
cΣ ∈ RN : cΣ =

∫
U

∑p
i=1 λ

i(x)f i(x)dΣ(x)
}
.

We apply the Theorem 3.2 to get expression (3.18). �

Corollary 3.5 points out the necessity of a different approach for solving problem described in (3.2), partic-
ularly when dealing with Φ not absolutely continuous with respect to the reference measure on U , as it is the
case for solving interpolation problems.

3.2. Linear transfer principle for the multidimensional case

Following equivalence of problem solutions introduced in [10], the inverse problem on functions described in
(3.2) can be treated as an inverse problem on measures. Sets and generic elements will be distinguished with
V and t when discussing the measure reconstruction problem. Measures considered thereafter are always finite
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real-valued measures. The set of all finite measures on a set V will be denoted by M(V ). The aim is then to
reconstruct p real-valued measures F i ∈M(V ) such that

p∑
i=1

∫
V

ϕil(t)dF
i(t) ∈ Kl, l = 1, . . . , N (3.19)

with ϕil being given real-valued functions on V , Kl ⊂ R, for all i = 1, . . . , p and l = 1, . . . , N .
Let us first denote the following assumption

H2: V is a compact metric space, PV is a probability measure having full support, all ϕil are continuous and for
each i = 1, . . . , p, (ϕil)l=1,...,N are linearly independent.

Given the assumption H1, a solution to problem (3.19) can then be chosen by taking as optimal solution
(F 1,o, . . . , F p,o) the p-real valued measure which minimises the γ-divergence with respect to the reference mea-
sure PV provided that F o meets the constraints (3.19). The opposite of the γ-entropy Iγ and the γ-divergence
are linked by the following relation ([3], Thm. 2.7)

Dγ(F, PV ) =
∫
V

γ

(
dF 1

a

dPV
, . . . ,

dF pa
dPV

)
dPV

where F ia are measures absolutely continuous with respect to PV .
Let us denote the set of p-real valued measure with F 1, . . . , F p ∈ M(V ) meeting the constraints described

in (3.19) by the set

Sϕ,K =

{
(F 1, . . . , F p) :

p∑
i=1

∫
V

ϕil(t)dF
i(t) ∈ Kl, l = 1, . . . , N

}
. (3.20)

The Theorem 3.6 below describes the γ-divergence minimiser (F o,1, . . . , F o,p) such that (F o,1, . . . , F o,p)
belongs to Sϕ,K. The Theorem 3.6 is the analogue of the Theorem 3.2 when dealing with measure reconstruction.

Theorem 3.6. Under assumption H2, suppose we have p measures absolutely continuous with respect to PV
such that (F 1, . . . , F p)T ∈ Sϕ,K and such that they satisfy(

dF 1

dPV
(t), . . . ,

dF p

dPV
(t)
)
∈ int Dψ, PV -a.s.

Then there exist p real-valued measures F 1,o, . . . , F p,o, absolutely continuous with respect to PV and such that
(F 1,o, . . . , F p,o) minimises Dγ(·, PV ) over Sϕ,K. Their Radon–Nikodym derivatives f i,o with respect to PV are
defined by

f i,o(t) =
∂ψ

∂τ i
(
τ1(t, vo), . . . , τp(t, vo)

)
, ∀i = 1, . . . , p

with τ i(t, v) =
∑N
l=1 vlϕ

i
l(t) and with vo such that it maximises

Dγ(Sϕ,K, PV ) := max
v∈RN

{
inf
z∈K
〈v, z〉 −

∫
V

ψ
(
τ1(t, v), . . . , τp(t, v)

)
dPV (t)

}
.

Proof. Direct from the Theorem 3.2. �

Having recovered the p measures F i,o described in Theorem 3.6, a regularized reconstruction fo is possible
via the linear transfer principle. As a matter of fact, one can linearly transfer the constraints (3.2) to the
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constraints (3.19) by using suitable kernel K. Let Ki(·, ·) be measurable bounded real-valued functions on
U × V for i = 1, . . . , p such that

f iK(x) =
∫
V

Ki(x, t)dF i(t) ∀i = 1, . . . , p

ϕil(t) =
∫
U

λi(x)Ki(x, t)dΦl(x) ∀i = 1, . . . , p , ∀l = 1, . . . , N.

(3.21)

Then the Fubini theorem links the two sets of constraints as it follows∫
U

p∑
i=1

λi(x)f iK(x)dΦl(x) =
p∑
i=1

∫
U

λi(x)
(∫

V

Ki(x, t)dF i(t)
)

dΦl(x)

=
p∑
i=1

∫
V

(∫
U

λi(x)Ki(x, t)dΦl(x)
)

dF i(t)

=
p∑
i=1

∫
V

ϕil(t)dF
i(t).

It is then clear that if (F 1,o, . . . , F p,o) is a solution for problem (Mp
ϕ,γ), then foK = (f1,o

K , . . . , fp,oK ) is a
regularized solution to problem (FpΦ,γ). The components of foK are defined by

f i,oK (x) =
∫
V

Ki(x, t)dF i,o(t) ∀i = 1, . . . , p

with (F 1,o, . . . , F p,o) defined as in Theorem 3.6.
The advantage of the kernel transfer method is that if it occurs that some measures Φ are not absolutely

continuous with respect to the reference measure – as it is the case when considering Dirac measures for example
–, the linear transfer principle provides continuous functions ϕ for problem (3.19) by choosing kernel K to be
continuous.

The choice of K is influenced by the prior knowledge on expected properties for the regularized solution fK ,
see the applications in Section 4 for some examples.

3.3. The embedding into the MEM framework for the multidimensional case

In this section we study the MEM method in the multidimensional case. We first detail the construction of
the random point-measure involved in the reconstruction problem.

As before in Section 2, define a sequence of discrete probability measures (Pn)n as follows

Pn =
1
n

n∑
j=1

δtj (3.22)

with (tj)j=1,...,n a deterministic sequence of points in V such that the weak limit of probability measures Pn is
the reference probability measure PV . For each i = 1, . . . , p, a real valued random variable Y ij is associated to
tj . The random variable Y ij can be seen as a random amplitude for a signed measure F i at location tj . Then let
F in, for i = 1, . . . , p be p random measures such that F in � Pn and such that they are defined for all t ∈ V by

F in(t) =
1
n

n∑
j=1

Y ij δtj (t).
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For all j = 1, . . . , n the p real-valued vector of random variables Yj = (Y 1
j , . . . , Y

p
j )T is sampled from a reference

distribution Π and we denote by Π⊗n the joint distribution of the n independent, identically sampled vectors
Yn of dimension p. Replacing F i by the discretised measure F in, the measure constraint (3.19) can be rewritten
in the following way

1
n

n∑
j=1

p∑
i=1

ϕil(tj)Y
i
j ∈ Kl 1 6 l 6 N. (3.23)

MEM method consists then in finding the optimal joint distribution QMEM
n such that it minimises the diver-

gence from the reference distribution Π⊗n and such that the discrete constraints (3.23) are met on average. The
MEM problem can be rewritten as

min
Q∈Qnϕ,K

DKL(Q,Π⊗n). (3.24)

where Qnϕ,K defines the set of distributions Q which generates n× p random amplitudes Y ij such, under Q, the
constraints are satisfied on average, that is

Qnϕ,K =

(Y1, . . . ,Yn)T ∼ Q : EQ

 1
n

n∑
j=1

p∑
i=1

ϕil(tj)Y
i
j

 ∈ Kl, l = 1, . . . , N

 ,

where Yj is the jth sample (Y 1
j , . . . , Y

p
j ) of amplitudes for the p random measures F 1

n , . . . , F
p
n .

Let us denote the following assumption

H3: function γ considered in the γ-divergence problem (FpΦ,γ) is the function γΠ that is such that its conjugate
function ψΠ has its domain equal to R̄p and corresponds to the logarithm of the moment generating function
of Π

ψΠ(τ1, . . . , τp) = log
∫

Rp
exp

(
τT y

)
dΠ(y). (3.25)

Notice that the components of ∇ψΠ are then

∂ψΠ

∂τi
(τ1, . . . , τp) =

∫
yi exp

(
τT y − ψΠ(τ1, . . . , τp)

)
dΠ(y). (3.26)

Provided that it exists yj =
(
y1
j . . . y

p
j

)T
in the interior of Π domain for j = 1, . . . , n such that

1
n

n∑
j=1

p∑
i=1

ϕil(tj)y
i
j ∈ Kl, l = 1, . . . , N, (3.27)

by standard theory of the ME method the minimiserQMEM
n ofK(Q,Π⊗n) exists and it belongs to the exponential

family through Π⊗n spanned by the statistics 1
n

∑n
j=1

∑p
i=1 ϕ

i
l(tj)y

i
j for l = 1, . . . , N . Its expression is given by

QMEM
n (y1, . . . , yn) = exp

 n∑
j=1

τTj yj − ψΠ (τj)

Π⊗n(y1, . . . , yn) (3.28)

where τj =
(
τ1(tj , von), . . . , τp(tj , von)

)
and τ i(t, v) =

∑N
l=1 vlϕ

i
l(t) and von is the maximiser of the discrete dual

problem

Hn(v) = inf
c∈K
〈v, c〉 − 1

n

n∑
j=1

ψΠ

(
τ1(tj , v), . . . , τp(tj , v)

)
. (3.29)

We define the vector of measures FMEM
n = (F 1,MEM

n , . . . , F p,MEM
n )T with each component defined by

F i,MEM
n = EQMEM

n

[
F in
]
. (3.30)
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The next theorem describes the convergence of (FMEM
n )n sequence to the solution of the γ-divergence minimi-

sation problem on signed measures (Mp
ϕ,γ).

Theorem 3.7. Under assumptions H2 and H3, suppose there exists p measures (F 1, . . . , F p)T ∈ Sϕ,K such
that they satisfy (

dF 1

dPV
(t), . . . ,

dF p

dPV
(t)
)
∈ int DΠ PV -a.s.

Then the sequence (FMEM
n ) converges weakly to (F 1,o, . . . , F p,o) the minimiser of Dγ(Sϕ,K, PV ) which Radon–

Nikodym derivatives f i,o with respect to PV are defined by

f i,o(t) =
∂ψ

∂τ i
(
τ1(t, vo), . . . , τp(t, vo)

)
, ∀i = 1, . . . , p

with τ i(t, v) =
∑N
l=1 vlϕ

i
l(t) and with vo such that it maximises

Dγ(Sϕ,K, PV ) := max
v∈RN

{
inf
z∈K
〈v, z〉 −

∫
V

ψ
(
τ1(t, v), . . . , τp(t, v)

)
dPV (t)

}
.

To link the problem studied previously with the constraint of function reconstruction problem (FpΦ,γ) recalled
below ∫

U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N,

one can consider the analogue of constraint (3.23) for the function to reconstruct.
As problem (FpΦ,γ) and problem (Mp

ϕ,γ) can be linked by the linear transfer studied in the Section 3.2, there
exists a regularized function f iK , associated to the reconstructed measure F i and chosen kernel Ki, that is
defined by

f iK(x) =
∫
V

Ki(x, t)dF i(t) ∀i = 1, . . . , p. (3.31)

Then the function of interest f iK can be approximated by a random function f in defined for all x ∈ U by

f in(x) =
∫
V

Ki(x, t)F in(dt)

=
1
n

n∑
j=1

Y ijK
i(x, tj).

(3.32)

For QMEM
n the solution of problem (3.24), the regularized function fMEM

n,K has its components f i,MEM
n,K defined

by

f i,MEM
n,K (x) = EQMEM

n

[
f in(x)

]
= EQMEM

n

 1
n

n∑
j=1

Y ijK
i(x, tj)

 . (3.33)

Then if distribution QMEM
n is a solution of problem (Mp,n

ϕ,Π), the regularized solution fMEM
n,K defined above meets

an approximation of the constraints of problem (1.3). Such approximation is given by

EQ

 1
n

n∑
j=1

p∑
i=1

ϕil(tj)Y
i
j

 ∈ Kl, l = 1, . . . , N. (3.34)

From previous expression, it is easy to see that properties of the solution f i,MEM
n,K directly depends on the

random amplitudes (Y ij )j∈N properties and on the kernel Ki properties.
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4. Applications

4.1. Application in the case p = 1

We consider in this section simple examples of functions reconstruction of one or two variables. The first
example considered is the reconstruction of a real-valued convex function of one variable, f : [−1; 1]→ R which
is solution of an interpolation problem. The second example considered is the reconstruction of a polynomial
function of two variables, f : [0; 1]× [0; 1]→ R which is solution of an interpolation problem.

4.1.1. Reconstruction of an univariate convex function

The first example considered is the reconstruction of a real-valued convex function of one variable, f : U → R
which is solution of an interpolation problem with U = [−1; 1]. We give N = 3 interpolation constraints. The
function has a minimal value y0 which is reached for a value x0 ∈]− 1; 1[. The pair (x0, y0) consists in the first
interpolation constraint. The two other points will be denoted by (x1, y1) and (x2, y2) where x1 and x2 belong
respectively to the interval ]−1;x0[ and ]x0; 1[, where the reconstructed function will be respectively decreasing
and increasing. The set of interpolation values will be denoted by z = (y1− y0, y2− y0). For a reason explained
in the following, the interpolation constraints are expressed as the increment from the minimum value.

In this example, we consider the log Laplace transform associated with the Poisson distribution

ψP(1)(τ) = (eτ − 1)

for the convex criterion to minimise. The objective function (3.29) associated with the MEM problem becomes

Hn(v) = 〈v, z〉 − 1
n

n∑
j=1

ψP(1) (〈v,ϕ(tj)〉)

= 〈v, z〉 − 1
n

n∑
j=1

(exp (〈v,ϕ(tj)〉)− 1) .

(4.1)

The objective function (4.1) has an analytic minimum when the number of discretisation points n is equal to
1. The analytic solution is

vo,l =
1

ϕl(t)
log
(

zl
ϕl(t)

)
, l ∈ {1; 2}.

Otherwise, one can use the polynomial approximation of the exponential function. Solving the MEM problem
is then reduced to finding the root of a polynomial.

In [17] the authors proved that

K+
m(x, t) =

(x− t)m−1

(m− 1)!
1[x0;x](t), t ∈ [−1; 1]

is a kernel which leads by the linear transfer to an increasing convex function with m− 1 derivatives and which
is equal to 0 in x0. In our frame, the kernel used for the linear transfer is

K(x, t) = K+
m(x, t)1x>x0(x) +K−m(x, t)1x<x0(x), t ∈ V = [−1; 1]

where

K−m(x, t) =
(t− x)m−1

(m− 1)!
1[x;x0](t).

This will lead to a reconstructed function which reaches its minimum value 0 in x0, which is decreasing on the
interval [−1;x0] and increasing on the interval [x0; 1].
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Figure 3. Poisson Log Laplace. Reconstruction of a convex function f : [−1; 1] → R twice
differentiable everywhere with 3 interpolation constraints. The minimum of the function is
assumed to be known.

In the end, the reconstructed function is given by

fn,K(x) = y0 +
1
n

n∑
j=1

K(x, tj) exp

(
N∑
l=1

vo,lϕl(tj)

)
.

The reconstructed function we obtain is displayed in Figure 3.

4.1.2. Reconstruction of a bivariate polynomial function

The second example considered is the reconstruction of a polynomial function of two variables, f : U → R
which is solution of an interpolation problem with U = [0; 1] × [0; 1]. We will choose an increasing number N
of interpolation points thanks to a Latin Hypercube Sampler in [0; 1]× [0; 1], the domain of f . We denote by z
the values of function f to interpolate at the design points.

In this example, we consider the log Laplace transform associated with the standard Gaussian distribution
N (0, 1)

ψN (0,1)(τ) =
τ2

2

for the convex criterion to minimise. The objective function (3.29) associated with the MEM problem becomes

Hn(v) = 〈v,z〉 − 1
n

n∑
j=1

ψN (0,1) (〈v,ϕ(tj)〉)

= 〈v,z〉 − 1
2n

n∑
j=1

(〈v,ϕ(tj)〉)2
.

(4.2)

We choose n = 100 and the n discretising points are sampled from a Latin Hypercube Sampler in V =
[0; 1] × [0; 1]. The objective function (4.2) has an analytic solution provided that the number of discretising
points n is much larger than the number of constraints N . Notice that it is also required that the N components
of the moment function ϕ are linearly independent. However this condition is already an assumption in H2 used
for the Theorem 3.6. Optimal v is solution of the linear problem

Av = z
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where matrix A is

A =
1
n

n∑
j=1

ϕ(tj) ·ϕ(tj)T .

We consider the symmetric gaussian kernel

KG,θ(u,w) = exp
(
− (u− w)2

2θ

)
, (u,w) ∈ [0; 1]× [0; 1]

which is largely used as a covariance kernel in krieging problems which leads to solutions infinitely differentiable.
The kernel we use for a pair of points x and t where (x, t) ∈ U2 × V 2 = [0; 1]2 × [0; 1]2 is the following product
of gaussian kernels

Kθ(x, t) = KG,θ1(x1, t1) KG,θ2(x2, t2)

= exp
(
− (x1 − t1)2

2θ1

)
exp

(
− (x2 − t2)2

2θ2

)
·

The best parameter θ is chosen using cross-validation, namely we choose the value of θ which minimises

N∑
k=1

(
f

(k)
Kθ

(xk)− zk
)2

with zk the kth value in the interpolation problem located at point xk and f
(k)
Kθ

is the reconstructed function
obtained in removing (xk, zk) from the data set. This leads to a two step optimisation problem as matrix A
depends on the value of θ and so does the optimal multiplier v. Therefore in the following matrix A will be
denoted with a subscript Aθ.

In order to determine the optimal parameter θ, we solve iteratively the following two stage problem

Step 1: v(k)
m+1

solve A(k)
θm
v = z(k) for all k = 1, . . . , N.

Step 2: θm+1

minimise
N∑
k=1

(
f

(k)
m+1,Kθ

(xk)− zk
)2

.

The superscript (k) is used to note that the kth experiment has been removed, that is that the kth line has been
removed from Aθm for the matrix A(k)

θm
and the kth value from z for the vector of observation z(k). The notation

f
(k)
m+1,Kθ

corresponds to the reconstructed function at the mth iteration which is solution of the interpolation
problem in which the kth experiment has been removed.

The reconstructed function we obtain is displayed in Figure 4.

4.2. Applications in the case p 6= 1

We consider thereafter some toy models inspired from computational thermodynamics. At first we explain
how to compute the so-called phase diagram. Then two toy models are solved using the method described in
Section 3.

4.2.1. Phase diagram description in Computational Thermodynamics

The application considered here derived from the assessment problem in Thermodynamics and the CALPHAD
(CALculation of PHAse Diagram) method [16,21,22,30].
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Figure 4. Gaussian Log Laplace. Reconstructed functions f : [0; 1] × [0; 1] → R with the
gaussian kernel for an increasing number of interpolation constraints. Figures 4a, 4c and 4e
display the design points used for the interpolation problem. Figures 4b, 4d and 4f display the
evolution of the reconstructed function with respect to its first component x1 for several values
of the second component x2. x2 varies from 0 to 1 with a 0.1 step. (a) N = 4. Location of points
used for training. (b) N = 4. Reconstructed function. (c) N = 10. Location of points used for
training. (d) N = 10. Reconstructed function. (e) N = 20. Location of points used for training.
(f) N = 20. Reconstructed function.

The CALPHAD method consists in the parametric reconstruction from partial information of thermodynamic
quantities, which are Gibbs energy functions and their derivatives. Data at hand for the reconstruction are ther-
modynamic quantities and phase diagram data. The thermodynamic quantities consist in linear transformations
(e.g. first or second derivative) of the function which is ought to be reconstructed.

The phase diagram is a map of the chemical species spatial arrangements. The internal energy of such
arrangements varies with state variables, which are the chemical composition, the temperature and the pressure.
Establishing the phase diagram of a chemical system means to partition the domain of permissible state variables
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Figure 5. Connections between the phase diagram (f) of a system A and B with two phases
(the phase α for low temperature and the phase L for high temperature) and the inner energy
(a)–(e) for each phase for different temperature values. Figures (a)–(e) display the Gibbs energy
for phases α and L at a given temperature with respect to the relative composition of chemical
element B over the sum of chemical elements A and B. For temperature T1 and T2, phase L
has the lowest energy whereas for temperature T4 and T5 phase α has the lowest energy. At
temperature T3, there exists a common tangent to the two energy functions. Therefore between
composition C1 and C2, a combination of phases α and L is the most stable. Figure reference
[25].

in several areas, each area featuring one or several stable phases. A stable phase is the phase with the lowest
energy.

Figure 5 displays an example of a phase diagram. In order to determine the different divided areas of the
diagram, one must compute the minimising convex hull of the list of the p functions involved in the system.
This problem is performed for all temperature range. For the composition range where the minimising convex
hull is confounded with a single energy function f i, the corresponding area is the stability area of phase i. Such
area is labelled by i in the phase diagram.

The phase diagram in Figure 5 is for a binary system A and B. Such phase diagram is called binary phase
diagram as it features two chemical elements: A and B. In this example, the state variables which can vary are
the temperature and the relative composition of B with respect to the total composition (that is of A and B),
from solely element A at the left edge to solely element B at the right edge. The pressure is fixed.

The phase diagram data consist in locations in the map of stable phases, namely either temperatures or
compositions where a change in the set of stable phases occurs or information on the stable phases for a given
composition and a given temperature.

The novelty of the work presented here is that the reconstruction occurs in a non-parametric frame, contrarily
as the usual reconstruction frame in thermodynamics.
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Figure 6. Phase diagram corresponding to an ideal solution. There are two phases: the phase
1 is the stable phase for low temperature and the phase 2 for the high temperature. Behaviour
with respect to the temperature of phases 1 and 2 are known when the composition is 0 or 1
for the temperature range they are respectively the stable phase.

Thereafter, the reconstruction of thermodynamic quantities is expressed as the inverse problem (FpΦ,γ). The
constraints that the solution (f1, . . . , fp) must satisfy is recalled below∫

U

p∑
i=1

λi(x)f i(x)dΦl(x) ∈ Kl 1 6 l 6 N.

The functions to recover f i, i = 1, . . . , p are the Gibbs energy functions of the p stable phases which occur
in the phase diagram. The functions λi represent the phase diagram data for each phase i = 1, . . . , p and are
supposed to be known all over the domain of permissible state variables. In the example considered thereafter,
there are bounded, continuous functions but not necessary differentiable.

In this frame, x is a (d + 1)-tuple of positive bounded quantities. First component is the temperature in
Kelvin with values in [T0;Tmax], transposed to [0; 1] without loss of generality. The d following components are
composition data with values in [0; 1]d. Kernels Ki, for all i = 1, . . . , p, considered for the linear transfer, will
be chosen as products of d+ 1 component-wise kernels. In the examples considered in the following d = 1 or 2.

4.2.2. Phase diagram with an ideal solution

In this section we study the case of a phase diagram with an ideal solution. It consists in the reconstruction
of two functions, viz. the Gibbs energy functions associated with the two phases, outside of the domain where
they are known.

The inverse problem associated to the functions to reconstruct is built in accordance with the phase diagram.
The phase diagram with an ideal solution is usually displayed as in Figure 6. It features two phases and three
divided area. The first area at the bottom of the diagram is the area associated with phase 1 which is the stable
phase at low temperature. The second area at the top of the diagram is the area associated with phase 2 which
is the stable phase at high temperature. The last area between the two first areas features a mix of phase 1 and
phase 2.

Such problem may not be well-posed as there can exist an infinity of pairs of functions leading to the
same phase diagram. In the following the univariate case is treated, which corresponds to the case of a given
temperature value. Then functions solely depend on the relative composition of element B with respect to the
total composition.

In the univariate case, the pair of functions
(
f1(x), f2(x)

)
is ought to be reconstructed for all x ∈ [0; 1]. In

this case, the phase diagram constraints reduce to the following definition. Given x1, x2 ∈ [0; 1] with x1 < x2.
The interval [x1;x2] consists in the compositions for which phase 1 and phase 2 coexist. Therefore functions λ1

and λ2 are defined as follows

λ1(x) =


1 if x < x1
x2 − x
x2 − x1

if x ∈ [x1;x2]

0 else
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Figure 7. Bivariate Poisson Log Laplace. Reconstruction of two convex functions f1 : [−1; 1]→
R and f2 : [−1; 1]→ R, twice differentiable everywhere. The minimum is assumed to be known
for both functions.

and

λ2(x) =

0 if x < x1

1− λ1(x) if x ∈ [x1;x2]
1 else.

Observations for x < x1 give values of solely f1 and for x > x2 give values of solely f2. In the interval [x1;x2],
one can observe

λ1(x)f1(x1) + λ2(x)f2(x2) (4.3)

which does not provide direct information about the behaviour of f1 nor f2 on this interval.
The two functions to be reconstructed ought to be convex twice differentiable. Therefore the same assumptions

are taken than in the case treated in Section 4.1.1 and the same method is applied. Figure 7 displays the results
obtained for the reconstruction of the target functions.

Function f1 is well reconstructed in this example but there exists a set of possible reconstructions for function
f2. An extra constraint is required to have a unique solution for f2.

Appendix A. Some general definitions and properties

Definition A.1. General definitions.

(1) We call domain of a function γ the subset on which γ is finite, i.e.

dom γ = {x : γ(x) <∞}.

(2) A function γ is said to be closed (lower semicontinuous) if for each α ∈ R, the sublevel set {x ∈ dom γ :
γ(x) ≤ α} is a closed set.

Definition A.2. Convex analysis definitions. See for example [27] for more details.

(1) A convex function γ from Rp to R satisfies

∀x, y ∈ Rp, η ∈ [0, 1], γ(ηx+ (1− η)y) 6 ηγ(x) + (1− η)γ(y). (A.1)

γ is called strictly convex when equality in (A.1) occurs only when x = y.
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(2) We call subgradient at x ∈ Rp of a convex function γ – and write ∂γx – all vectors s in Rp which satisfy

∀y ∈ Rp, γ(y) > γ(x) + 〈s, y − x〉.

(3) A function γ is essentially strictly convex if γ is strictly convex on all convex subset of its subgradient
domain.

(4) A function γ is essentially smooth if the interior of γ domain Dγ is not empty, γ is differentiable on the
interior of Dγ and its gradient ||∇γ|| tends to infinity when approaching to the edge of Dγ .

(5) The convex conjugate ψ of a function γ is defined by

ψ(τ) := sup
y∈Rp

{〈y, τ〉 − γ(y)} .

Proposition A.3. Convex analysis property.

(1) If γ is closed convex, then its biconjugate, that is the conjugate of convex conjugate ψ, is γ itself.
(2) A function γ being essentially strictly convex is equivalent to its convex conjugate being essentially smooth.
(3) Let γ be a convex function and let its domain be not empty. If γ : Rp → R is such that

γ(y)
||y||

−→
y∈∂Dγ

+∞

then its convex conjugate has full domain, that is Dψ = Rp.

Appendix B. Bregman distance bounds

This section generalises some results of [9] on the bounds of Bregman distance between two functions f and
f1 in the case of Rp-valued functions.

Lemma B.1. Let (U,B(U), PU ) be a probability space and E be a convex set of functions with values in Rp.
Recall the expression of Iγ(f) =

∫
U
γ(f)dPU and one of the Bregman distance for f1, f2 having finite Iγ values

Bγ(f1, f2) :=
∫
U

[
γ(f1)− γ(f2)− (∇γ(f2))T (f1 − f2)

]
dPU .

∀ε > 0, K > 0, it exists ι > 0 such that for all f1, f2 ∈ E and C ∈ B(U) for which minx∈C(||f1(x)||, ||f2(x)||) 6
K, then

PU (C ∩ {x : ||f1(x)− f2(x)|| > ε}) 6 ι Bγ(f1, f2). (B.1)

Proof. Let f1 and f2 be two functions in E with finite Iγ values. Let denote by bγ the integrand of Bγ that is

bγ(f1(x), f2(x)) = γ(f1(x))− γ(f2(x))−
(
∇γ(f2(x))

)T (f1(x)− f2(x)).

Let C ∈ B(U) be such that minx∈C(||f1(x)||, ||f2(x)||) 6 K. For x ∈ C, if ||f1(x)− f2(x)|| > ε, then

bγ(f1(x), f2(x)) > min
x∈C

(
min

if ||f1(x)||6K
bγ(f1(x), f1(x) + ε), min

if ||f2(x)||6K
bγ(f2(x) + ε, f2(x))

)
=:

1
ι

with ι > 0. Therefore, for C ∈ B(U) for which minx∈C(||f1(x)||, ||f2(x)||) 6 K

Bγ(f1, f2) =
∫
U

bγ(f1(z), f2(z))dPU (z)

>
∫
C∩{x:||f1(x)−f2(x)||>ε}

bγ(f1(z), f2(z))dPU (z)

>
∫
C∩{x:||f1(x)−f2(x)||>ε}

1
ι
dPU (z)

>
1
ι
PU (C ∩ {x : ||f1(x)− f2(x)|| > ε})
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which gives the result. �

Lemma B.2. Let (U,B(U), PU ) be a probability space and E be a convex set of functions with values in Rp.
γ is an essentially strictly convex twice differentiable function on Rp and its Hessian matrix is strictly definite
positive on Rp. Recall the Bregman distance for f1, f2 having finite Iγ values

Bγ(f1, f2) :=
∫
U

[
γ(f1)− γ(f2)− (∇γ(f2))T (f1 − f2)

]
dPU .

∀K > 0, it exists β > 0 such that for all f1, f2 ∈ Rp and C ∈ B(U) with C ⊂ {x : ||f2(x)|| 6 K}, then

PU (C ∩ {x : ||f1(x)|| > L}) 6 β

L2
Bγ(f1, f2), if L > 2K. (B.2)

Proof. Let denote by bγ the integrand of Bγ , that is bγ(f1, f2) = γ(f1) − γ(f2) − (∇γ(f2))T (f1 − f2). Let
C ∈ B(U) be C ⊂ {x : ||f2(x)|| 6 K}.

Let uK and v, two vector from Rp such that ||uK || = K and v belongs to the p-ball of center uK and of radius
K, denoted by B(uK ,K). Then, using Taylor’s theorem for the decomposition of γ(v) centered in uK , we have

γ(v) = γ(uK) + (∇γ(uK))T (v − uK) +Rγ(v, uK)

where Rγ(v, uK) is the remainder term of order o(K).
Then for all x ∈ C

bγ(f1(x), f2(x)) > bγ(2uK , uK)
> Rγ(2uK , uK)

>
1
2
||uK ||2εγ,K

>
1
8
L2εγ,K

where εγ,K is the smallest eigen value of γ Hessian matrix located at any point of B(uK ,K). Given the assump-
tions on γ, εγ,K is strictly positive.

Therefore, for all x ∈ C for which ||f2(x)|| 6 K

Bγ(f1, f2) =
∫
U

bγ(f1(z), f2(z))dPU (z)

>
∫
C∩{x:||f1(x)||>L}

bγ(f1(z), f2(z))dPU (z)

>
∫
C∩{x:||f1(x)||>L}

8L2

εγ,K
dPU (z)

>
8L2

εγ,K
PU (C ∩ {x : ||f1(x)|| > L})

>
L2

β
PU (C ∩ {x : ||f1(x)|| > L})

which gives the result. �

Appendix C. Cauchy result for Bregman distance minimising sequence

Lemma C.1. Let (U,B(U), PU ) be a probability space and E be a convex set of functions with values in Rp.
Recall the expression of Iγ(f) =

∫
U
γ(f)dPU and the Bregman distance for f1, f2 two functions having finite Iγ

values
Bγ(f1, f2) :=

∫
U

[
γ(f1)− γ(f2)− (∇γ(f2))T (f1 − f2)

]
dPU .
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Let (fn) ⊂ E be a Iγ-minimising sequence, then (fn) is a Cauchy sequence in probability PU , meaning that

lim
n,m→∞

PU ({x : ||fn(x)− fm(x)|| > ε}) = 0 ∀ε > 0. (C.1)

Proof. Let η > 0 and K such that for f ∈ Rp

PU ({x : ||f(x)|| > K}) < η.

By applying Lemma B.2 with f1 = fn+fm
2 , f2 = f and C = {x : ||f(x)|| 6 K}, we have

PU

(
{x : ||f(x)|| 6 K} ∩

{
x :
∣∣∣∣∣∣fn(x) + fm(x)

2

∣∣∣∣∣∣ > L}) 6 β

L2
Bγ

(
fn + fm

2
, f

)
,

if L > 2K. Choosing β and L such that

β

L2
Bγ

(
fn + fm

2
, f

)
6 η,

it follows that

PU

({
x :
∣∣∣∣∣∣fn(x) + fm(x)

2

∣∣∣∣∣∣ > L}) 6 2η.

Now applying Lemma B.1 with f1 = fm, f2 = fn+fm
2 and C =

{
x :
∣∣∣∣∣∣ fn(x)+fm(x)

2

∣∣∣∣∣∣ < L
}

, there exists ι such
that

PU

({
x :
∣∣∣∣∣∣fn(x) + fm(x)

2

∣∣∣∣∣∣ < L

}
∩
{
x :
∣∣∣∣∣∣fm(x)− fn(x) + fm(x)

2

∣∣∣∣∣∣ > ε}) 6 ι Bγ (fm, fn + fm
2

)
meaning that

PU

({
x :
∣∣∣∣∣∣fm(x)− fn(x) + fm(x)

2

∣∣∣∣∣∣ > ε}) 6 2η + ι Bγ

(
fm,

fn + fm
2

)
PU ({x : ||fm(x)− fn(x)|| > 2ε}) 6 2η + ι Bγ

(
fm,

fn + fm
2

)
By taking η as small as possible, when n and m go to infinity, it ends up that

lim
n,m→∞

PU ({x : ||fm(x)− fn(x)|| > 2ε}) = lim
n,m→∞

ι Bγ

(
fm,

fn + fm
2

)
·

Let (fn) ⊂ E be a Iγ-minimising sequence with fn having finite Iγ values. By the positivity of Bγ , we have

Iγ

(
fn + fm

2

)
6

1
2

(Iγ(fn) + Iγ(fm))

6 max
k

Iγ(fk).

By the convexity of E, fn+fm
2 belongs to E and therefore Iγ

(
fn+fm

2

)
> Iγ(E).

Using the following identity when n,m tend to infinity

Iγ(fn) + Iγ(fm) = 2Iγ

(
fn + fm

2

)
+Bγ

(
fn,

fn + fm
2

)
+Bγ

(
fm,

fn + fm
2

)
, (C.2)



MEM APPROACH TO SOLVE GENERALIZED INVERSE PROBLEMS 393

it implies that

lim
n,m→∞

Bγ

(
fm,

fn + fm
2

)
= 0

lim
n,m→∞

Bγ

(
fn,

fn + fm
2

)
= 0

which proves that (fn) is a Cauchy sequence in probability PU . �
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