Hierarchical minimization of two maximum costs on a bounded serial-batching machine
RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 135-140

This paper studies a hierarchical optimization problem of scheduling n jobs on a serial-batching machine, in which two objective functions are maximum costs. By a hierarchical optimization problem, we mean the problem of optimizing the secondary criterion under the constraint that the primary criterion is optimized. A serial-batching machine is a machine that can handle up to b jobs in a batch and jobs in a batch start and complete respectively at the same time and the processing time of a batch is equal to the sum of the processing times of jobs in the batch. When a new batch starts, a constant setup time s occurs. We confine ourselves to the bounded model, where b < n. We present an O(n4)-time algorithm for this hierarchical optimization problem. For the special case where two objective functions are maximum lateness, we give an O(n3 log n)-time algorithm.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020144
Classification : 90C27, 90B35
Keywords: Hierarchical scheduling, serial-batching, maximum cost
@article{RO_2021__55_1_135_0,
     author = {He, Cheng and Lin, Hao and Li, Li},
     title = {Hierarchical minimization of two maximum costs on a bounded serial-batching machine},
     journal = {RAIRO. Operations Research},
     pages = {135--140},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/ro/2020144},
     mrnumber = {4228688},
     zbl = {1471.90122},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020144/}
}
TY  - JOUR
AU  - He, Cheng
AU  - Lin, Hao
AU  - Li, Li
TI  - Hierarchical minimization of two maximum costs on a bounded serial-batching machine
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 135
EP  - 140
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020144/
DO  - 10.1051/ro/2020144
LA  - en
ID  - RO_2021__55_1_135_0
ER  - 
%0 Journal Article
%A He, Cheng
%A Lin, Hao
%A Li, Li
%T Hierarchical minimization of two maximum costs on a bounded serial-batching machine
%J RAIRO. Operations Research
%D 2021
%P 135-140
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020144/
%R 10.1051/ro/2020144
%G en
%F RO_2021__55_1_135_0
He, Cheng; Lin, Hao; Li, Li. Hierarchical minimization of two maximum costs on a bounded serial-batching machine. RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 135-140. doi: 10.1051/ro/2020144

[1] P. Brucker, Scheduling Algorithms, 3rd edition. Springer, Berlin-Heidelberg (2001). | MR | Zbl

[2] T. C. E. Cheng and M. Y. Kovalyov, Single machine batch scheduling with sequential job processing. IIE Trans. 33 (2001) 413–420. | DOI

[3] Z. C. Geng, J. J. Yuan and J. L. Yuan, Scheduling with or without precedence relations on a serial-batch machine to minimize makespan and maximum cost. Appl. Math. Comput. 332 (2018) 1–18. | MR | Zbl

[4] R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5 (1979) 287–326. | MR | Zbl | DOI

[5] C. He, Y. X. Lin and J. J. Yuan, Bicriteria scheduling of minimizing maximum lateness and makespan on a serial-batching machine. Found. Comput. Decis. Sci. 33 (2008) 369–376. | MR | Zbl

[6] C. He, Y. X. Lin and J. J. Yuan, A DP algorighm for minimizing makespan and total completion time on a series-batching machine. Inf. Process. Lett. 109 (2009) 603–607. | MR | Zbl | DOI

[7] C. He, H. Lin and Y. X. Lin, J. Tian, Bicriteria scheduling on a series-batching machine to minimize maximum cost and makespan. Central Eur. J. Oper. Res. 21 (2013) 177–186. | MR | Zbl | DOI

[8] C. He, H. Lin and Y. X. Lin, Bounded serial-batching scheduling for minimizing maximum lateness and makespan. Discrete Optim. 16 (2015) 70–75. | MR | Zbl | DOI

[9] J. A. Hoogeveen, Single-machine scheduling to minimize a function of two or three maximum cost criteria. J. Algorithms 21 (1996) 415–433. | MR | Zbl | DOI

[10] L. Li, Study on several multicriteria scheduling problems. Master thesis, Henan University of Technology (2009).

[11] S. Webster and K. R. Baker, (1995) Scheduling groups of jobs on a single machine. Oper. Res. 43 (1995) 692–703. | MR | Zbl | DOI

Cité par Sources :