
RAIRO-Oper. Res. 55 (2021) 135–140 RAIRO Operations Research
https://doi.org/10.1051/ro/2020144 www.rairo-ro.org

HIERARCHICAL MINIMIZATION OF TWO MAXIMUM COSTS ON A
BOUNDED SERIAL-BATCHING MACHINE

Cheng He∗, Hao Lin and Li Li

Abstract. This paper studies a hierarchical optimization problem of scheduling n jobs on a serial-
batching machine, in which two objective functions are maximum costs. By a hierarchical optimization
problem, we mean the problem of optimizing the secondary criterion under the constraint that the
primary criterion is optimized. A serial-batching machine is a machine that can handle up to b jobs
in a batch and jobs in a batch start and complete respectively at the same time and the processing
time of a batch is equal to the sum of the processing times of jobs in the batch. When a new batch
starts, a constant setup time s occurs. We confine ourselves to the bounded model, where b < n. We
present an O(n4)-time algorithm for this hierarchical optimization problem. For the special case where
two objective functions are maximum lateness, we give an O(n3 log n)-time algorithm.

Mathematics Subject Classification. 90C27, 90B35.

Received August 27, 2018. Accepted December 18, 2020.

1. Introduction

It is well known that the problem 1||fmax can be solved by the classical Lawler’s algorithm for 1|prec|fmax

with the precedence constraints ignored (see [1]). For the bicriteria scheduling problem, Hoogeveen [9] showed
that the problem of minimizing two maximum cost criteria, that is 1||(fmax, gmax), is solvable in O(n4) time. For
the scheduling on an unbounded or bounded serial-batching machine, Cheng and Kovalyov [2] studied a serial
of constrained optimization problems of minimizing Lmax,

∑
wjTj ,

∑
WjCj and

∑
WjUj . In our previous work

[5, 6, 8] we investigated serial-batching problems 1|s-batch, b ≥ n or b < n|(Lmax, Cmax)
and 1|s-batch, b ≥ n or b < n|(Cmax,

∑
Cj), respectively. For the problem 1|s-batch,

b ≥ n|(fmax, Cmax), He et al. [7] present an O(n5)-time algorithm. Recently, Geng et al. [3] give an
improved O(n4)-time algorithm for the problem 1|s-batch, b ≥ n or b < n|(fmax, Cmax). In the paper we
consider the hierarchial scheduling problem, with two maximum costs fmax and gmax, on a bounded serial-
batching machine. Following the traditional three-field notation scheme of Graham et al. [4], this model may
be denoted by 1|s-batch, b < n|Lex(fmax, gmax), where “s-batch” stands for the serial-batching, “b < n” means
that the batch capacity is bounded, and Lex(fmax, gmax) represents minimizing gmax subject to the restriction
that fmax is optimized. The motivation of studying sequence batching comes from scheduling manufacturing
systems where production items flow between facilities in containers such as boxes, pallets or carts [11]. A set

Keywords. Hierarchical scheduling, serial-batching, maximum cost.

School of Science, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China.
∗Corresponding author: hech202@163.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2021

https://doi.org/10.1051/ro/2020144
https://www.rairo-ro.org
mailto:hech202@163.com
https://www.edpsciences.org

136 C. HE ET AL.

of items assigned to the same container is considered as a batch. It is often the case that items are processed
sequentially and leave the facility together in a batch, thus having equal completion times. The changeover time
between different batches represents the setup time. In many practical situations, the capacities of containers
are naturally restricted which leads to the bounded model [2]. Two objective functions may refer to different
interests of two decision-makers. It is meaningful to study this kind of combination of two aspects. The main
result of this paper is to present an O(n4)-time algorithm. Moreover, we give an O(n3 log n)-time algorithm for
the special problem 1|s-batch, b < n|Lex(Lmax, L

′
max).

The rest of the paper is organized as follows. In Section 2 we state some preliminaries. Section 3 is dedicated
to the main result, an O(n4) algorithm for the problem, and an O(n3 log n)-time algorithm is given for a special
case. Section 4 gives a short summary. We shall follow the terminology and notation of Brucker [1].

2. Preliminaries

A serial-batching machine is a machine that can handle up to b jobs in a batch, where b stands for the
capacity of a batch. Concerning the capacity b, the bounded model (b < n) and the unbounded model (b ≥ n)
are distinguished in the literature. Under the setting of serial-batching, jobs in a batch start and complete
respectively at the same time and the processing time of a batch is equal to the sum of the processing times
of jobs in the batch. When a new batch starts, a constant setup time s occurs. We only consider the bounded
model, i.e., b < n.

Suppose that we are given a set of n independent jobs J = {J1, J2, . . . , Jn}, which are to be sched-
uled on a serial-batching machine. Job Jj has a processing time pj and two cost functions fj(t) and gj(t)
(j = 1, . . . , n). Given a schedule σ, we use Cj(σ) to denote the completion time of job Jj in σ. Then
fj(σ) = fj(Cj(σ)) and gj(σ) = gj(Cj(σ)) are defined as two costs of job Jj in σ, and fmax(σ) = maxn

j=1 fj(σ)
and gmax(σ) = maxn

j=1 gj(σ) are two maximum costs of σ, respectively. Without loss of generality, we assume
that the parameters of jobs and machine are integral. Additionally, we assume that the cost functions fj(t) and
gj(t) are regular (nondecreasing with respect to the completion time t = Cj of job Jj (j = 1, . . . , n)), and the
values of fj(t) and gj(t) can be calculated in constant time for every given time t ≥ 0.

For problems of minimizing a regular objective function without job’s release dates, there must be an optimal
solution in which the batches are processed contiguously from time zero onwards. Throughout the paper,
we restrict our attention to the solutions with this property. Thus, a schedule σ is a sequence of batches
σ = (B1, B2, . . . , Bl), where each batch Bk (k = 1, . . . , l) is a set of jobs. So the processing time of batch Bk is
p(Bk) =

∑
Jj∈Bk

pj and its completion time is C(Bk) =
∑k

q=1 p(Bq) + ks. Note that the completion time of job
Jj in σ, for each Jj ∈ Bk and 1 ≤ k ≤ l, is Cj(σ) = C(Bk).

In this paper, the criteria under consideration are two regular objective functions: maximum costs fmax and
gmax. Our goal is solving the problem 1|s-batch, b < n|Lex(fmax, gmax). Here, the objective Lex(fmax, gmax)
stands for the hierarchical optimization of minimizing gmax under the constraint that fmax is minimum, namely,
the minimization of gmax is taken in the set of all optimal schedules of problem 1|s-batch, b < n|fmax. In this
paper, we give an O(n4)-time algorithm for the problem. Moreover, we present an O(n3 log n)-time algorithm
for the special problem 1|s-batch, b < n|Lex(Lmax, L

′
max).

3. Polynomial-time algorithm

Suppose that the n jobs in J have been re-indexed according to the well-known LPT rule so that p1 ≥ p2 ≥
· · · ≥ pn. Then we fix this order throughout the paper. For each subset Q ⊆ J , we use Q to denote the list of
the jobs in Q so that the jobs in Q are listed in increasing order of their indices, i.e., for any jobs Ji and Jj in
Q, Ji is listed before Jj in Q if and only if i < j. Let |Q| be the number of jobs in Q.

Since each schedule has at most n batches, for convenience, we introduce empty batches with processing times
0 and the setup time 0 in schedules such that each schedule has exactly n batches. Thus we always write a sched-
ule in the form of σ = (B1, B2, . . . , Bn) throughout the paper. If in σ, the last l batches Bn−l+1, Bn−l+2, . . . , Bn

HIERARCHICAL MINIMIZATION OF TWO MAXIMUM COSTS 137

are a partition of J and the first n − l batches are empty batches, where l ∈ {1, 2, . . . , n}, then l is called the
number of valid batches of schedule σ, denoted by |σ|, i.e., |σ| = l.

Note that introduction of the empty batches have no effect on the costs Cmax, fmax and gmax. It can be
observed that the makespan of schedule σ mainly depends on the number of valid batches in schedule σ. He
et al. [5] and Geng et al. [3] gave the following lemmas.

Lemma 3.1 ([5]). For any schedule σ with |σ| = l (1 ≤ l ≤ n), Cmax(σ(l)) = ls+
∑

1≤j≤n pj .

Lemma 3.2 ([3]). The problem 1|s-batch, b < n|f can be solved in O(n4) time, where f ∈ {fmax, gmax}.
Let σ∗ be an optimal schedule of 1|s-batch, b < n|fmax (if σ is also an optimal schedule, then Cmax(σ∗) ≤

Cmax(σ)), and π∗ be an optimal schedule of 1|s-batch, b < n|gmax. Let |σ∗| := l∗ f∗ := fmax(σ∗) and
g := gmax(σ∗) and g := gmax(π∗). Then problem 1|s-batch, b < n|Lex(fmax, gmax) is equivalent to problem
1|s-batch, b < n, fmax ≤ f∗|gmax and g ≤ gmax ≤ g.

Let C(l)
max := ls+

∑
1≤j≤n pj. Then we can compute the sums

C(l)
max = ls+

n∑
j=1

pj (l∗ ≤ l ≤ n)

in a preprocessing step, which takes O(n) time.

Lemma 3.3. Let σ be an optimal schedule for problem 1|s-batch, b < n, fmax ≤ f∗|gmax and |σ| = l. Then
l∗ ≤ l ≤ n.

Proof. First, we have fmax(σ) ≤ f∗ = fmax(σ∗). So σ is also an optimal schedule of 1|s-batch, b < n|fmax by the
optimality of σ∗. If l < l∗, then Cmax(σ) = C

(l)
max < C

(l∗)
max = Cmax(σ∗), which contradicts that σ∗ is an optimal

schedule with the minimum makespan. And each schedule has at most n batches. So l∗ ≤ l ≤ n. �

Assume that there is an Algorithm FG (we will state the Algorithm FG later) that may solve the problem
1|s-batch, b < n, fmax ≤ f∗, Cmax = C

(l)
max, gmax ≤ g|·. Then by Lemma 3.3, problem 1|s-batch,

b < n, fmax ≤ f∗|gmax (g ≤ gmax ≤ g) can be solved by solving a serial of the feasibility problems 1|s-batch,
b < n, fmax ≤ f∗, Cmax = C

(l)
max, gmax ≤ g|· for the decreasing g and the increasing l, where g ≤ gmax ≤ g and

l∗ ≤ l ≤ n. The iteration Procedure as follows.

Iteration Procedure (FG)

Step 1. Let σ∗, f∗ and g be defined as above, let l := l∗ and i := 0 and σi := σ∗.
Step 2. If gmax(σi) = g, then σi is an optimal schedule of 1|s-batch, b < n, fmax ≤ f∗|gmax and stop. Otherwise,

let g := gmax(σi)− 1.
Step 3. Solving the problem 1|s-batch, b < n, fmax ≤ f∗, Cmax = C

(l)
max, gmax ≤ g|· by Algorithm FG. If the

problem is infeasible, then if l = n, then σi is an optimal schedule of 1|s-batch, b < n, fmax ≤ f∗|gmax and
stop; otherwise let l := l + 1 and go back to Step 3. If the problem is feasible, then let i := i + 1 and σi is
the schedule obtained by performing Algorithm FG, go back to Step 2.

The following property form a base of Algorithm FG.

Lemma 3.4. Assume that 1|s-batch, b < n, fmax ≤ f∗, Cmax = C
(l)
max, gmax ≤ g|· is feasible. Then there exists a

feasible schedule σ such that the last batch consists of the first min
{∣∣∣Q(C(l)

max

)∣∣∣ , b} jobs in Q
(
C

(l)
max

)
, where

Q
(
C

(l)
max

)
=
{
Jj ∈ J : fj

(
C

(l)
max

)
≤ f∗ and gj

(
C

(l)
max

)
≤ g
}

.

138 C. HE ET AL.

Proof. Let σ = (B1, B2, . . . , Bn) be a feasible schedule. Then |σ| = l andBn ⊆ Q
(
C

(l)
max

)
by fj

(
C

(l)
max

)
≤ f∗ and

gj

(
C

(l)
max

)
≤ g for any Jj ∈ Bn. Suppose that Qn be the job set that contains the first min

{∣∣∣Q(C(l)
max

)∣∣∣ , b} jobs

in Q
(
C

(l)
max

)
. If Bn doesn’t meet the property of Lemma 3.4, i.e., Bn 6= Qn, then |Bn| ≤ |Qn| and max{pj : Jj ∈

Bn \Qn} ≤ min{pj : Jj ∈ Qn \Bn} by the definition of Qn (if Bn ⊂ Qn, then let max{pj : Jj ∈ Bn \Qn} = 0).
Without loss of generality, assume that |Bn| = |Qn| (if |Bn| < |Qn|, then transferring the |Qn| − |Bn| jobs,
which belong to Qn \ Bn and have the smallest completion times in σ, to join batch Bn without influence on
the feasibility of σ). For any Ji ∈ Bn \ Qn and Jj ∈ Qn \ Bn and Jj ∈ Bk, we construct a new schedule σ′

by exchanging the positions of jobs Ji and Jj in σ. Then Ch(σ′) ≤ Ch(σ) by pi ≤ pj for 1 ≤ h ≤ n and

h 6= j, moreover, fj(σ′) = fj

(
C

(l)
max

)
≤ f∗ and gj(σ′) = gj

(
C

(l)
max

)
≤ g by Jj ∈ Qn. Hence fmax(σ′) ≤ f∗ and

gmax(σ′) ≤ g. Therefore σ′ is also a feasible schedule. Dealing with the other jobs similarly if needed, we can
eventually obtain a feasible schedule which meet the property of Lemma 3.4. �

By Lemma 3.4, we use a list
−→
U with n positions in the order of p1 ≥ p2 ≥ · · · ≥ pn to store the candidate jobs

in a batch temporarily. If a job j is stored in
−→
U , then j is put into its position of this order (other positions may

be left empty). When a batch Bk is constructed, we take out the first b jobs from
−→
U (or take all jobs in

−→
U if

|
−→
U | ≤ b). Let |

−→
U | be the number of nonempty positions in

−→
U . The problem 1|s-batch, b < n, fmax ≤ f∗, Cmax =

C
(l)
max, gmax ≤ g|· can be solved by the following algorithm.

Algorithm FG

Step 0. Let J = {J1, J2, . . . , Jn}, t := C
(l)
max and k := n. Let

−→
U be defined as above and |

−→
U | = 0.

Step 1. Let Q(t) := {Jj ∈ J |fj(t) ≤ f∗ and gj(t) ≤ g}. Update
−→
U by inserting the jobs in Q(t) into its

position in
−→
U and let J := J \Q(t). If |

−→
U | = 0, then the problem is infeasible and stop, else let Bk consists

of the first min
{
|
−→
U |, b

}
jobs in |

−→
U | and update

−→
U by deleting the jobs in Bk from

−→
U and k := k − 1 and

t := t− p(Bk)− s.
Step 2. If k = n−l, then if t = 0, then the problem is feasible, return the feasible schedule σ := (B1, B2, · · · , Bn)

and stop (where B1 = . . . = Bn−l = ∅); else t > 0, the problem is infeasible and stop. If k > n− l, then go
back to Step 1.

Theorem 3.5. The Algorithm FG solves the decision problem 1|s-batch, b < n, fmax ≤ f∗, Cmax =
C

(l)
max, gmax ≤ g|· in O(ln+ n log n) time.

Proof. If the problem is feasible, then the procedure can be carried out until Step 2 and returns answer “yes”.
Conversely, if the procedure terminates by answer “no”, then there is infeasible schedule for the problem. As
for the running time, we see that the procedure has l + 1 rounds (k changes from n to n − l). In each round,
we compute at most 2n values fj(t) and gj(t), and compare them with f∗ and g, respectively. So the running
time of each round is O(n). And inserting or deleting jobs in Step 1 takes O(n log n) time. Therefore the overall
time bound is O(ln+ n log n). This completes the proof. �

In the following, we assume that σi and σi+1 are any two adjacent schedules generated by Iteration Procedure
(FG) with values of thresholds gi and gi+1 (gi > gi+1), respectively, and the numbers of the valid batches of σi

and σi+1 are li and li+1, where l∗ ≤ li ≤ li+1 ≤ n. For convenience, we write σi =
(
B

(i)
1 , B

(i)
2 , · · · , B(i)

n

)
and

σi+1 =
(
B

(i+1)
1 , B

(i+1)
2 , · · · , B(i+1)

n

)
. We also write t(i)k = C

(
B

(i)
k

)
and t(i+1)

k = C
(
B

(i+1)
k

)
for 1 ≤ k ≤ n. Write

Q
(i)
k = {Jj ∈ J |fj

(
t
(i)
k

)
≤ f∗ and gj

(
t
(i)
k

)
≤ gi} and Q

(i+1)
k = {Jj ∈ J |fj

(
t
(i+1)
k

)
≤ f∗ and gj

(
t
(i+1)
k

)
≤

gi+1} for 1 ≤ k ≤ n. Let P (i)
k and P

(i+1)
k be the total processing time of the last k batches of σi and σi+1,

HIERARCHICAL MINIMIZATION OF TWO MAXIMUM COSTS 139

i.e., P (i)
k = p

(
B

(i)
n−k+1

)
+p
(
B

(i)
n−k+2

)
+· · ·+p

(
B

(i)
n

)
and P (i+1)

k = p
(
B

(i+1)
n−k+1

)
+p
(
B

(i+1)
n−k+2

)
+· · ·+p

(
B

(i+1)
n

)
.

The following property holds for σi and σi+1.

Property 3.6. t(i+1)
k ≥ t(i)k and Q(i+1)

k ⊆ Q(i)
k and P (i)

n−k+1 ≥ P
(i+1)
n−k+1 for 1 ≤ k ≤ n.

Proof. Since gi and gi+1 are the values of thresholds when Iteration Procedure (FG) generate schedules σi

and σi+1, respectively, we have gi ≥ gmax(σi) > gmax(σi) − 1 = gi+1. We show the results by induction on
k backwards. For k = n, t(i+1)

n ≥ t
(i)
n by li+1 ≥ li. If Jj ∈ Q

(i+1)
n , then fj

(
t
(i)
n

)
≤ fj

(
t
(i+1)
n

)
≤ f∗ and

gj

(
t
(i)
n

)
≤ gj

(
t
(i+1)
n

)
≤ gi+1 < gi. Therefore Jj ∈ Q

(i)
n , i.e., Q(i+1)

n ⊆ Q
(i)
n . By Algorithm FG, we have

P
(i)
1 = p

(
B

(i)
n

)
≥ p

(
B

(i+1)
n

)
= P

(i+1)
1 . Moreover, t(i)k = 0 and B

(i)
k = ∅

(
i.e., P (i)

n−k+1 =
∑

1≤j≤n pj

)
for

1 ≤ k ≤ n− li. So t(i+1)
k ≥ t(i)k and Q

(i+1)
k ⊆ Q(i)

k = J and P
(i)
n−k+1 ≥ P

(i+1)
n−k+1 for 1 ≤ k ≤ n− li.

Suppose that t(i+1)
k ≥ t

(i)
k and Q

(i+1)
k ⊆ Q

(i)
k and P

(i)
n−k+1 ≥ P

(i+1)
n−k+1 for n − li + 2 ≤ k ≤ n − 1. Then

t
(i+1)
n−li+1 = t

(i+1)
n − (li − 1) s − P (i+1)

li−1 ≥ t
(i)
n − (li − 1) s − P (i)

li−1 = t
(i)
n−li+1. Therefore, Q(i+1)

n−li+1 ⊆ Q
(i)
n−li+1 and

P
(i)
n−k+1 = P

(i)
li

=
∑

1≤j≤n pj ≥ P (i+1)
li

= P
(i+1)
n−k+1 for k = n− li + 1. This completes the proof. �

Let σ0, σ1, . . . , σk be all schedules obtained by Iteration Procedure (FG) and ∆(σi) = |Q(i)
1 |+|Q

(i)
2 |+· · ·+|Q

(i)
n |

for 0 ≤ i ≤ k. Then we have the following corollary.

Corollary 3.7. 0 < ∆(σk) < ∆(σk−1) < · · · < ∆(σ0) ≤ n2.

Proof. By Property 3.6 and the definition of |Q(i)
l |, we have n ≥ |Q(i)

l | ≥ |Q
(i+1)
l | ≥ 0 for 0 ≤ i ≤ k − 1 and

1 ≤ l ≤ n. Therefore 0 < ∆(σk) ≤ ∆(σk−1) ≤ · · · ≤ ∆(σ0) ≤ n2. If ∆(σi) = ∆(σi+1) for some 0 ≤ i ≤ k − 1,
then |Q(i)

l | = |Q(i+1)
l | for 1 ≤ l ≤ n. Thus σi = σi+1. This contradicts that gmax(σi) > gmax(σi+1). Hence

∆(σk) < ∆(σk−1) < · · · < ∆(σ0), as required. �

Theorem 3.8. The Iteration Procedure (FG) solves problem 1|s-batch, b < n|Lex(fmax, gmax) in O(n4) time.

Proof. Iteration Procedure (FG) can solve problem 1|s-batch, b < n, fmax ≤ f∗|gmax (g ≤ gmax ≤ g) by
Theorem 3.5 and the implementation of the procedure. Therefore Iteration Procedure (FG) can solve problem
1|s-batch, b < n|Lex(fmax, gmax).

As to the running time, the total running time of Step 1 is O(n4) by Lemma 3.2. Moreover, Step 2 can be
performed in constant time. Note that, during the implementation of Step 3, by running Algorithm FG once,
we either obtain a schedule, or return an output of infeasibility and let l := l + 1 till l = n. The latter case
occurs n− l∗ + 1 times. On the other hand, let σ1, σ2, . . . , σk be all schedules obtained successively by running
Step 3. Then 0 < ∆(σk) < ∆(σk−1) < · · · < ∆(σ0) ≤ n2 by Corollary 3.7. So the number of rounds of Step 3 is
at most n− l∗ + 1 + n2 = O(n2). Since the running time of each round is at most O(ln+ n log n) (l∗ ≤ l ≤ n)
by Theorem 3.5, the running time of Step 3 is O(n4 + n3 log n) = O(n4). To summarize, the overall complexity
of the procedure is O(n4). �

If each job Jj has two due dates dj and d′j (1 ≤ j ≤ n), then two objective functions of maximum lateness
Lmax and L′max are induced, i.e., Lmax(σ) = maxn

j=1 (Cj(σ)− dj) and L′max(σ) = maxn
j=1

(
Cj(σ)− d′j

)
for any

given schedule σ. We consider the special problem 1|s-batch, b < n|Lex (Lmax, L
′
max) in the following.

First, the problem 1|s-batch, b < n|L can be solved in O(n3 log n) time, where L ∈ {Lmax, L
′
max} [10]. Let

fmax = Lmax and gmax = L′max above. Thus fmax ≤ f∗, gmax ≤ g ⇔ Cj ≤ dj +f∗, Cj ≤ d′j +g (where f∗ denotes
the optimal value of 1|s-batch, b < n|Lmax). Let dj = min{dj + f∗, d′j + g}. We have fmax ≤ f∗, gmax ≤ g ⇔
Cj ≤ dj .

In order to improve the time complexity of Algorithm FG for the special problem 1|s-batch,
b < n|Lex(Lmax, L

′
max), re-indexing the n jobs in J so that d1 ≥ d2 ≥ · · · ≥ dn. Note that either Q(t) = ∅

140 C. HE ET AL.

or the subscripts of the jobs in Q(t) are successive in Algorithm FG, i.e., if Q(t) 6= ∅, then we may suppose that
Q(t) = {Ji, Ji+1, · · · , Jl}, where t ≤ dl and t > dl+1. Furthermore, the current J = {Jl+1, Jl+2, · · · , Jn} (after
updating J). Thus Algorithm FG can solve problem 1|s-batch, b < n,Lmax ≤ f∗, Cmax = C

(l)
max, L′max ≤ g|· in

O(n+ n log n) = O(n log n) time. Hence problem 1|s-batch, b < n|Lex(Lmax, L
′
max) can be solved in O(n3 log n)

time by Theorem 3.8.

4. Concluding remarks

In the foregoing discussion, we investigate a hierarchical scheduling problem on a bounded serial-batching
machine, in which two objective functions are maximum costs or maximum lateness. Moreover, for the simulta-
neous optimization scheduling problem on a serial-batching machine to minimize maximum cost and makespan,
Geng et al. [3] presented a polynomial-time algorithm. Our future works would be simultaneous optimization
scheduling problems on a serial-batching machine, for example, 1|s-batch, b ≥ n or b < n|(Lmax, L

′
max) and

1|s-batch, b ≥ n or b < n|(Lmax,
∑
Cj).

Acknowledgements. This work was supported by by KRPOHNHEI (No. 20A110003) and STAPHNOS (No. 2020-70) and
NSFC (No. 12001169) and IFPHNUT (No. 2020ZKCJ08).

References

[1] P. Brucker, Scheduling Algorithms, 3rd edition. Springer, Berlin-Heidelberg (2001).

[2] T.C.E. Cheng and M.Y. Kovalyov, Single machine batch scheduling with sequential job processing. IIE Trans. 33 (2001)
413–420.

[3] Z.C. Geng, J.J. Yuan and J.L. Yuan, Scheduling with or without precedence relations on a serial-batch machine to minimize
makespan and maximum cost. Appl. Math. Comput. 332 (2018) 1–18.

[4] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing
and scheduling: a survey. Ann. Discrete Math. 5 (1979) 287–326.

[5] C. He, Y.X. Lin and J.J. Yuan, Bicriteria scheduling of minimizing maximum lateness and makespan on a serial-batching
machine. Found. Comput. Decis. Sci. 33 (2008) 369–376.

[6] C. He, Y.X. Lin and J.J. Yuan, A DP algorighm for minimizing makespan and total completion time on a series-batching
machine. Inf. Process. Lett. 109 (2009) 603–607.

[7] C. He, H. Lin, Y.X. Lin and J. Tian, Bicriteria scheduling on a series-batching machine to minimize maximum cost and
makespan. Central Eur. J. Oper. Res. 21 (2013) 177–186.

[8] C. He, H. Lin and Y.X. Lin, Bounded serial-batching scheduling for minimizing maximum lateness and makespan. Discrete
Optim. 16 (2015) 70–75.

[9] J.A. Hoogeveen, Single-machine scheduling to minimize a function of two or three maximum cost criteria. J. Algorithms 21
(1996) 415–433.

[10] L. Li, Study on several multicriteria scheduling problems. Master thesis, Henan University of Technology (2009).

[11] S. Webster and K.R. Baker, (1995) Scheduling groups of jobs on a single machine. Oper. Res. 43 (1995) 692–703.

	Introduction
	Preliminaries
	Polynomial-time algorithm
	Iteration Procedure (FG)
	Algorithm FG

	Concluding remarks
	References

