Allocating fixed resources for DMUs with interval data
RAIRO. Operations Research, Tome 55 (2021) no. 2, pp. 505-520

Conventional DEA models tend to allocate the fixed resources to multiple decision-making units (DMUs) and treat the allocated resource as an extra input for every single DMU. However, the existing DEA resource allocation (DEA-RA) methods are applicable exclusively to the DMUs with exact values of inputs and outputs. A lack of precision for the input or output data of DMUs, such as the interval data, would cause a failure of the existing methods to allocate resources to DMUs. In order to resolve this problem, three DEA-RA models are proposed in this paper for different scenarios of decision-making. All of the proposed DEA-RA models are based on a set of common weights. Finally, the proposed models are empirically tested and validated through three examples. As revealed by the results, our proposed models are capable of providing a more fair and practical initial allocation scheme for decision makers.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020142
Classification : 90-08, 91B32
Keywords: Resource allocation, interval data, efficiency
@article{RO_2021__55_2_505_0,
     author = {Sun, Jiasen and Chen, Meng and Fu, Yelin and Luo, Hao},
     title = {Allocating fixed resources for {DMUs} with interval data},
     journal = {RAIRO. Operations Research},
     pages = {505--520},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/ro/2020142},
     mrnumber = {4238783},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020142/}
}
TY  - JOUR
AU  - Sun, Jiasen
AU  - Chen, Meng
AU  - Fu, Yelin
AU  - Luo, Hao
TI  - Allocating fixed resources for DMUs with interval data
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 505
EP  - 520
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020142/
DO  - 10.1051/ro/2020142
LA  - en
ID  - RO_2021__55_2_505_0
ER  - 
%0 Journal Article
%A Sun, Jiasen
%A Chen, Meng
%A Fu, Yelin
%A Luo, Hao
%T Allocating fixed resources for DMUs with interval data
%J RAIRO. Operations Research
%D 2021
%P 505-520
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020142/
%R 10.1051/ro/2020142
%G en
%F RO_2021__55_2_505_0
Sun, Jiasen; Chen, Meng; Fu, Yelin; Luo, Hao. Allocating fixed resources for DMUs with interval data. RAIRO. Operations Research, Tome 55 (2021) no. 2, pp. 505-520. doi: 10.1051/ro/2020142

[1] A. Amirteimoori and A. Emrouznejad, Input/output deterioration in production processes. Expert Syst. App. 38 (2011) 5822–5825. | DOI

[2] A. Amirteimoori and A. Emrouznejad, Optimal input/output reduction in production processes. Decis. Support Syst. 52 (2012) 742–747. | DOI

[3] A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: a DEA-based approach. Appl. Math. Comput. 171 (2005) 136–151. | MR | Zbl

[4] A. Amirteimoori and M. Shafiei, Characterizing an equitable omission of shared resources: a DEA-based approach. Appl. Math. Comput. 177 (2006) 18–23. | MR | Zbl

[5] A. Amirteimoori and M. M. Tabar, Resource allocation and target setting in data envelopment analysis. Expert Syst. App. 37 (2010) 3036–3039. | DOI

[6] M. Asmild, J. C. Paradi and J. T. Pastor, Centralized resource allocation BCC models. Omega 37 (2009) 40–49. | DOI

[7] A. D. Athanassopoulos, Decision support for target-based resource allocation of public services in multiunit and multilevel systems. Manage. Sci. 44 (1998) 173–187. | Zbl | DOI

[8] J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis. Eur. J. Oper. Res. 147 (2003) 198–216. | Zbl | DOI

[9] G. Bi, J. Ding, Y. Luo and L. Liang, Resource allocation and target setting for parallel production system based on DEA. Appl. Math. Modell. 35 (2011) 4270–4280. | MR | Zbl | DOI

[10] A. Charnes and W. W. Cooper, Programming with linear fractional functionals. Nav. Res. Logistics Q. 9 (1962) 181–186. | MR | Zbl | DOI

[11] W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: a DEA approach. Eur. J. Oper. Res. 119 (1999) 652–661. | Zbl | DOI

[12] W. D. Cook and J. Zhu, Allocation of shared costs among decision making units: a DEA approach. Comput. Oper. Res. 32 (2005) 2171–2178. | Zbl | DOI

[13] T. Ding, Y. Chen, H. Wu and Y. Wei, Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach. Ann. Oper. Res. 268 (2018) 497–511. | MR | DOI

[14] A. Emrouznejad and G. L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc.-Econ. Planning Sci. 61 (2018) 4–8. | DOI

[15] L. Fang, A generalized DEA model for centralized resource allocation. Eur. J. Oper. Res. 228 (2013) 405–412. | MR | DOI

[16] B. Golany and E. Tamir, Evaluating efficiency-effectiveness-equality trade-offs: a data envelopment analysis approach. Manage. Sci. 41 (1995) 1172–1184. | Zbl | DOI

[17] A. Hatami-Marbini, M. Tavana, P. J. Agrell, F. H. Lotfi and Z. G. Beigi, A common-weights DEA model for centralized resource reduction and target setting. Comput. Ind. Eng. 79 (2015) 195–203. | DOI

[18] A. Hatami-Marbini, Z. G. Beigi, H. Fukuyama and K. Gholami, Modeling centralized resources allocation and target setting in imprecise data envelopment analysis. Int. J. Inf. Technol. Decis. Making 14 (2015) 1189–1213. | DOI

[19] G. R. Jahanshahloo, F. H. Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA. Appl. Math. Comput. 153 (2004) 267–274. | MR | Zbl

[20] G. R. Jahanshahloo, F. H. Lotfi and M. Moradi, A DEA approach for fair allocation of common revenue. Appl. Math. Comput. 160 (2005) 719–724. | Zbl

[21] C. Kao, Efficiency measurement for parallel production systems. Eur. J. Oper. Res. 196 (2009) 1107–1112. | Zbl | DOI

[22] M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept. Ann. Oper. Res. 214 (2014) 187–194. | MR | Zbl | DOI

[23] P. Korhonen and M. Syrjänen, Resource allocation based on efficiency analysis. Manage. Sci. 50 (2004) 1134–1144. | Zbl | DOI

[24] Y. Li, Research on fixed cost allocation method based on DEA Theory. Doctoral dissertation, University of Science and Technology of China, Hefei (2008).

[25] H. Li, W. Yang, Z. Zhou and C. Huang, Resource allocation models’ construction for the reduction of undesirable outputs based on DEA methods. Math. Comput. Modell. 58 (2013) 913–926. | DOI

[26] Y. Li, F. Li, A. Emrouznejad, L. Liang and Q. Xie, Allocating the fixed cost: an approach based on data envelopment analysis and cooperative game. Ann. Oper. Res. 274 (2019) 373–394. | MR | DOI

[27] R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis. Appl. Math. Comput. 217 (2011) 6349–6358. | MR | Zbl

[28] R. Lin and Z. Chen, Fixed input allocation methods based on super CCR efficiency invariance and practical feasibility. Appl. Math. Modell. 40 (2016) 5377–5392. | MR | DOI

[29] F. H. F. Liu and C. L. Chen, The worst-practice DEA model with slack-based measurement. Comput. Ind. Eng. 57 (2009) 496–505. | DOI

[30] F. H. Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach. Comput. Ind. Eng. 64 (2013) 631–640. | DOI

[31] S. Lozano and G. Villa, Centralized resource allocation using data envelopment analysis. J. Prod. Anal. 22 (2004) 143–161. | DOI

[32] S. Lozano, G. Villa and B. Adenso-Dıaz, Centralised target setting for regional recycling operations using DEA. Omega 32 (2004) 101–110. | DOI

[33] S. Lozano, G. Villa and R. Brännlund, Centralised reallocation of emission permits using DEA. Eur. J. Oper. Res. 193 (2009) 752–760. | MR | Zbl | DOI

[34] N. Nasrabadi, A. Dehnokhalaji, N. A. Kiani, P. J. Korhonen and J. Wallenius, Resource allocation for performance improvement. Ann. Oper. Res. 196 (2012) 459–468. | MR | Zbl | DOI

[35] J. Sun and G. Li, Designing a double auction mechanism for the re-allocation of emission permits. Ann. Oper. Res. 291 (2020) 847–874. | MR | DOI

[36] J. Sun, Y. Fu, X. Ji and R. Y. Zhong, Allocation of emission permits using DEA-game-theoretic model. Oper. Res. 17 (2017) 867–884.

[37] J. Sun, C. Wang, X. Ji and J. Wu, Performance evaluation of heterogeneous bank supply chain systems from the perspective of measurement and decomposition. Comput. Ind. Eng. 113 (2017) 891–903. | DOI

[38] J. Sun, G. Li and Z. Wang, Optimizing China’s energy consumption structure under energy and carbon constraints. Struct. Change Econ. Dyn. 47 (2018) 57–72. | DOI

[39] M. Toloo, Selecting and full ranking suppliers with imprecise data: a new DEA method. The Int. J. Adv. Manuf. Technol. 74 (2014) 1141–1148. | DOI

[40] M. Toloo and E. K. Mensah, Robust optimization with nonnegative decision variables: a DEA approach. Comput. Ind. Eng. 127 (2019) 313–325. | DOI

[41] M. Toloo and S. Nalchigar, A new DEA method for supplier selection in presence of both cardinal and ordinal data. Expert Syst. App. 38 (2011) 14726–14731. | DOI

[42] M. Toloo, E. Keshavarz and A. Hatami-Marbini, Dual-role factors for imprecise data envelopment analysis. Omega 77 (2018) 15–31. | DOI

[43] Y. M. Wang, R. Greatbanks and J. B. Yang, Interval efficiency assessment using data envelopment analysis. Fuzzy Sets Syst. 153 (2005) 347–370. | MR | Zbl | DOI

[44] J. Wu, J. Sun, M. Song and L. Liang, A ranking method for DMUs with interval data based on DEA cross-efficiency evaluation and TOPSIS. J. Syst. Sci. Syst. Eng. 22 (2013) 191–201. | DOI

[45] F. Yang, F. Du, L. Liang and L. Ling, Full ranking procedure based on best and worst frontiers. J. Syst. Eng. Electron. 26 (2015) 514–522. | DOI

[46] J. Zhu, Imprecise data envelopment analysis (IDEA): a review and improvement with an application. Eur. J. Oper. Res. 144 (2003) 513–529. | MR | Zbl | DOI

Cité par Sources :

Note to the reader: The corresponding author has been corrected on April 5, 2021.