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ALLOCATING FIXED RESOURCES FOR DMUS WITH INTERVAL DATA

Jiasen Sun1, Meng Chen1, Yelin Fu2,3,* and Hao Luo4

Abstract. Conventional DEA models tend to allocate the fixed resources to multiple decision-making

units (DMUs) and treat the allocated resource as an extra input for every single DMU. However, the
existing DEA resource allocation (DEA-RA) methods are applicable exclusively to the DMUs with
exact values of inputs and outputs. A lack of precision for the input or output data of DMUs, such as
the interval data, would cause a failure of the existing methods to allocate resources to DMUs. In order
to resolve this problem, three DEA-RA models are proposed in this paper for different scenarios of
decision-making. All of the proposed DEA-RA models are based on a set of common weights. Finally,
the proposed models are empirically tested and validated through three examples. As revealed by the
results, our proposed models are capable of providing a more fair and practical initial allocation scheme
for decision makers.
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1. Introduction

The resource allocation (RA) is defined as the reasonable allocation of limited resources to different depart-
ments within an individual enterprise or organization [30]. Resources are usually limited and precious, for which 
the reasonable and effective allocation of resources plays a significant role in the development of enterprises or 
organizations [4]. In addition, RA will have impact on the performance of an individual enterprise or organization 
[16].

The RA issue has attracted increasing attention from many scholars [14, 35]. The conventional RA methods 
include the average allocation method, the proportional allocation method, the mathematical programming 
method, and the game theory [24]. Most recently, there are an increasing number of scholars using the data 
envelopment analysis (DEA) method to deal with the allocation of resources [36, 38]. In comparison with other 
methods, the DEA method is advantageous as it enables a full utilization of the input and output data and 
removes the need for an assumption of the functional relationship between input and output [37]. In addition,
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by eliminating the interference of subjective factors, the final allocation results obtained from DEA are made
more objective. The research of RA based on DEA can be split into two categories, which include efficiency
invariant RA and efficiency variable RA [13].

The efficiency invariant RA requires that the efficiencies of the decision-making units (DMUs) remain
unchanged before and after resource allocation. Cook and Kress [11] were the first to apply DEA for the
cost allocation problem. They treated cost as an independent input for DMUs and then proposed a fixed cost
allocation method based on DEA according to the efficiency invariance and Pareto-minimality of each DMU.
However, the absence of other constraints, such as cone-ratio constraints, could prevent the model from obtain-
ing the final optimal results. In addition, different constraints and conditions tend to produce different results,
which is adverse to decision-making. In light of these problems, some scholars have examined the issue in more
depth. For example, Jahanshahloo et al. [19] demonstrated that the method proposed by Cook and Kress [11]
was contradictory to Pareto’s minimum and then suggested a proportional method to approach cost allocation.
Nevertheless, the allocation principle of the proportional method is primarily dependent on the input levels,
which means, the allocation result is solely related to the input variables, with the output variables completely
ignored. Apparently, this is contradictory to common sense [22]. A similar issue was encountered when using
the allocation method proposed by Jahanshahloo et al. [20]. Subsequently, Cook and Zhu [12] extended the
method of Cook and Kress [11] by proposing the DEA resource allocation method that took multiple inputs
and multiple outputs into account. Though Cook and Zhu [12] adhered to the principle of efficiency invariance
and Pareto-minimality, it was not universal. In some exceptional cases, this method was not applicable, which
limited its practical applications. After this drawback was identified, scholars began to consider the efficiency
and the output scale when DEA was applied to perform resource allocation. Amirteimoori and Kordrostami [3]
proposed a DEA model that gave consideration to the invariance of overall average efficiency and input-output
scales. By improving Cook and Zhu [12]’s method, Lin [27] proposed a new fixed cost (or resource allocation)
method, which could set the output target for DMUs fairly. It was also demonstrated by the author that the
proposed method could have a feasible solution when some extraordinary constraints were imposed. According
to super CCR efficiency invariance and practical operability, Lin and Chen [28] adopted the DEA method to
propose three models for the problems of fixed input allocation among all DMUs and common output goal
sharing to be addressed.

The efficiency variable RA requires an improvement to the efficiencies of DMUs after resource allocation.
Lozano and Villa [31] assumed that there was a central decision maker in the process of resource allocation and
the decision maker was authorized to allocate resources or costs to all DMUs. The allocation principle is based
on the minimum sum of weighted inputs or maximum sum of weighted outputs of all DMUs, for the maximum
level of overall efficiency for all DMUs. Based on this principle, two centralized resource allocation models were
proposed. One model seeked optimal allocation of total resources by radial technology, while the other model
applied the non-radial technique to determine the optimal allocation for every type of resources depending
on the preference of individual DMU. Then, the two models were further modified by Lozano et al. [32] and
the modified models were applied to allocate limited container resources among major cities in Singapore for
improving glass recovery. However, Asmild et al. [6] indicated that the models of Lozano and Villa [31] and
Lozano et al. [32] were incapable to adjust the allocation of resources for these efficient DMUs. Subsequently,
Asmild et al. [6] proposed the centralized resource allocation model based on inefficient DMUs. According to
the model, both non-transferable variables and non-discretionary variables need to be taken into account. In
the view of Amirteimoori and Tabar [5], if a new input resource was added into the production process, it is
possible to affect the output of the DMUs. Based on this idea, Amirteimoori and Tabar [5] proposed the resource
allocation and output target setting model. Based on the centralized view, Nasrabadi et al. [34] suggested that
each DMU could be allowed to adjust its resources within the current production possibilities, and proposed
a resource allocation DEA model for an optimal efficiency of the system. Under the common-weights scheme,
Lotfi et al. [30] proposed a DEA allocation model for fixed resources, which could set targets for DMU’s outputs
as well. Then, the authors demonstrated the applicability of the proposed model by providing two numerical
examples. Based on the studies of Lozano and Villa [31] and Asmild et al. [6], Fang [15] proposed a generalized
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centralized DEA model to approach resource allocation. Then, the proposed model was further extended by
giving consideration to the non-adjustable input and non-transferable output.

These studies were invariably related to fixed resource allocation and output target identification in the
centralized decision-making mode. Amirteimoori and Emrouznejad [1,2] raised a different point of view as they
took into consideration the shortage of input resources in practical applications and the potential needs of
decision makers to reduce the total amount of input resources at the time of resources allocation. Therefore,
they proposed a DEA allocation method for the purpose of reducing inputs. Not only could the proposed model
reduce the input resources as much as possible, it can also maintain the output levels and the efficiency of each
DMU.

Most of these research works use a single objective function in the models, to maximize the weighted outputs of
the DMU or to minimize the weighted inputs. There are other scholars who have combined the DEA method with
multi-objective programming to construct the multi-objective DEA resource allocation models. Athanassopoulos
[7] investigated the problems of efficiency, effectiveness and equity in resource allocation encountered by public
service institutions through a diversified and multi-level framework, to achieve two major goals. One is to
maximize the marginal transformation rate of input and output, and the other is to maximize the total utility
of DMUs. Taking into account the ways to improve the total output from the perspective of centralization,
Korhonen and Syrjanen [23] proposed a DEA model to approach resources allocation. They first described the
production possibility set of DMUs, and defined the transformation possibility set. Then, the multi-objective
programming and DEA were combined to propose a resource allocation scheme under different scenarios. Lozano
et al. [33] adopted the DEA method for allocation of emission permits and proposed a centralized DEA emission
permits allocation method, which involved three stages and goals: maximizing desirable outputs, minimizing
undesirable emissions and minimizing resource consumption. Regulatory agencies or policy makers can determine
the relative priority of these three goals based on their practicalities. Bi et al. [9] opened the DMU’s “black
box” and extended the parallel DEA method of Kao [21] to address the resource allocation and goal setting
problems in parallel systems. The extended models could assist managers in allocating resources to sub-units
based on their production information, thereby improving efficiency of the worst sub-unit and maintaining the
efficiency of the entire production system. By treating the undesirable output as a free disposal variable, Li et al.
[25] proposed two centralized resource allocation models from constant returns to scale and variable returns to
scale, respectively. Hatami-Marbini et al. [17] suggested a DEA model for input or output reduction across the
reference set from the perspective of centralization. In the proposed DEA model, the reduction amount of input
and output for each DMU could be determined to enhance the efficiencies of all the DMUs. In consideration
of the game relationship between DMUs, Li et al. [26] proposed a DEA fixed cost allocation model based on
cooperative game, and took the nucleolus as the solution to the game model.

The research on DEA resource allocation is common in assuming that the data of inputs and outputs are
accurate. In practice, however, this assumption is not necessarily true. In many practical circumstances, outputs
and inputs of DMUs are not as precise as assumed, which may lead to a limited range in an interval form [44]. How
to cope with inaccurate data has attracted increasing attention from many scholars, but a majority of the studies
tend to focus on the evaluation of DMUs for their efficiencies. For example, in the case where the DMUs contained
imprecise data, Zhu [46] applied the scale transformation and variable alternation methods to calculate the
efficiencies of DMUs. Besides, the author proposed a simplified method to alleviate the computational workload
required by the scale transformation method. To rank suppliers with imprecise data, Toloo [39] proposed an
integrated mixed integer programming-DEA model based on the approach devised by Toloo and Nalchigar [41].
In addition, the author suggested a new method to rank all DMUs. In the case of dual factors and imprecise
data, Toloo et al. [42] put forward two interval DEA models to obtain the interval efficiency of each DMU, and
then applied the fuzzy decision-making method to obtain the final evaluation result of each DMU.

The above-mentioned literature review demonstrates that plenty of research has focused on resource allo-
cation. However, the studies focusing on resource allocation in the case where the DMUs contain imprecise
data (e.g. interval data) remain insufficient. To fill this gap, the DEA-RA approaches fit for three strategies
respectively are proposed in the present study. To be specific, the first approach is based on a conservative
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strategy. The RA scheme first ensures that low efficiency of each DMU becomes efficient, and then maximizes
the overall upper efficiency of all DMUs. The second RA model is based on a radical strategy. The allocation
model first ensures the upper efficiency of each DMU is equal to one, and then considers the maximum level
of overall lower efficiency for all DMUs. In the third model, the decision maker does not consider how to first
maximize the lower or upper efficiency of each DMU. Instead, she/he may consider that it is essential to balance
the gap between the lower and upper efficiencies of each DMU. This allocation strategy is defined as neutral in
this study. Finally, the three cases are used to validate the effectiveness of the proposed approaches.

The rest of the paper is organized as follows. In Section 2, the traditional DEA-RA models are introduced. In
Section 3, three new DEA–RA models are presented for DMUs with interval data, followed by three numerical
demonstrations made in Section 4. The conclusions are indicated in Section 5.

2. The DEA-RA models

2.1. Beasley [8]’s model

It is assumed that there are n independent homogeneous DMUs where each DMUj(j = 1, · · · , n) produces s
different outputs yrj(r = 1, · · · , s) consuming m inputs xij(i = 1, 2, · · · ,m). Without any loss of generality, an
assumption is made in this study that the fixed resource R needs to be allocated to n DMUs and the resource
allocated to DMUj is denoted as Rj .

Beasley [8] proposed a DEA-RA approach based on model (2.1), where the allocation scheme is obtained
based on maximizing the average efficiency across all DMUs, with a common set of weights used.

E∗
all = max

1
n

n∑
j=1

Ej

s.t. Ej =
∑s
r=1 uryrj∑m

i=1 vixij +Rj
≤ 1, j = 1, 2, · · · , n (2.1)

n∑
j=1

Rj = R

ur, vi, Rj ≥ 0, ∀r, i, j.

Model (2.1) is a non-linear program. In the first constraint, the weight associated with Rj is set to one for
convenience. The final allocation scheme based on model (2.1) maximizes the average efficiency of all DMUs
using a common set of weights. However, model (2.1) shows three major disadvantages. Firstly, model (2.1)
is a non-linear programming, which is difficult to solve. Secondly, model (2.1) is premised on the assumption
that the data of all DMUs are precise. However, this assumption is not necessarily correct in practice. In many
circumstances, outputs and inputs of DMUs are not as precise as expected, which may lead to a specific range
in an interval form. In these cases, traditional models are not applicable to resource allocation for these DMUs.
Thirdly, to solve the model (2.1), Beasley [8] proposed a solving procedure. Unfortunately, Amirteimoori and
Kordrostami [3] demonstrated that the solving procedure proposed by Beasley [8] is infeasible in many cases.

2.2. The proposed DEA-RA model for DMUs with interval data

The focus of this paper is to design reasonable resource allocation models that take into consideration the
interval data of DMUs. In the designed models, fixed resources are allocated to all DMUs on the same platform,
which means, a common set of weights to all DMUs is used to deal with resource allocation. It is assumed
that there are n DMUs, and each DMU has s different outputs and m different inputs. Input i and output r
for DMUj are denoted as xij and yrj , respectively. The input and output data are possibly imprecise due to
uncertainty, as a result of which only their bounded intervals [xlij , x

u
ij ] and [ylrj , y

u
rj ], with xlij > 0 and ylrj > 0,

are provided. The fixed resource R needs to be allocated to these DMUs and the allocated resource to DMUj is
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indicated as Rj . According to the idea of Beasley [8], the resource allocation model is proposed as the following
model (2.2).

max
n∑
j=1

∑s
r=1 ur

[
ylrj , y

u
rj

]∑m
i=1 vi

[
xlij , x

u
ij

]
+Rj

s.t.

∑s
r=1 ur

[
ylrj , y

u
rj

]∑m
i=1 vi

[
xlij , x

u
ij

]
+Rj

≤ 1, j = 1, 2, · · · , n, (2.2)

n∑
j=1

Rj = R,

vi, ur, Rj ≥ 0, ∀i, r.

The purpose of model (2.2) is to maximize the overall efficiency of all DMUs when the fixed resource is
shared by each DMU. However, it is difficult for model (2.2) to be transformed into a linear model due to the
presence of interval data. Model (2.2) is extended from Beasley [8]’s model, but Beasley [8]’s solving procedure
is potentially impracticable [3]. Therefore, based on Wang et al. [43]’s approach, model (2.2) is extended to the
interval data DEA-RA models in this study under three strategies as referred to in Section 3.

3. DEA-RA models under three strategies

3.1. DEA-RA model based on conservative strategy

The data of each DMU is interval-valued and its efficiency is an interval efficiency as well, e.g. the efficiency
of DMUj will be [Elj , E

u
j ]. If the decision maker considers it as necessary to base resource allocation on the

lower bound of interval efficiency, i.e. the resource allocation scheme should ensure that lower efficiencies of all
DMUs are improved to a sufficient level in the first place. Further with this, the model from the conservative
strategy is constructed as follows.

max Euall =

∑n
j=1

∑s
r=1 ury

u
rj∑n

j=1

(∑m
i=1 vix

l
ij +Ruj

)
s.t.

∑s
r=1 ury

l
rj∑m

i=1 vix
u
ij +Ruj

= 1, j = 1, 2, · · · , n, (3.1)

n∑
j=1

Ruj = R,

ur, vi, Rj ≥ 0, ∀r, i, j.

In model (3.1), the first constraint is purposed to ensure that the lower efficiency of each DMU must be efficient
when total resource is allocated to all DMUs. The objective function of model (3.1) is aimed at maximizing the
overall upper efficiency of all DMUs under the condition that the lower efficiency of each DMU is equal to 1.

Theorem 3.1. Model (3.1) has feasible solutions at all times.

Proof. Set vi = 0(i = 1, 2, · · · ,m), ur = 0(r = 1, 2, · · · , s − 1), us = R∑n
j=1 y

l
sj

, Ruj = Ryl
sj∑n

j=1 y
l
sj

, then we

have
∑s

r=1 ury
l
rj∑m

i=1 vixu
ij+R

u
j

= usy
l
sj

Ru
j

= R∑n
j=1 y

l
sj

∗ ylsj/
Ryl

sj∑n
j=1 y

l
sj

= 1, j = 1, 2, · · · , n, and
∑n
j=1R

u
j =

∑n
j=1

Ryl
sj∑n

j=1 y
l
sj

=
R
∑n

j=1 y
l
sj∑n

j=1 y
l
sj

= R. Therefore, model (3.1) always has feasible solutions. �
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Model (3.1) is a nonlinear model which can be transformed into a linear model via Charnes–Cooper trans-
formation [10]. Set

∑n
j=1

(∑m
i=1 vix

l
ij +Ruj

)
= 1

C , we have Cur = µr, Cvi = ωi, CRuj = Fuj . Model (3.1) can
be transformed into model (3.2) as follows:

max Euall =
n∑
j=1

s∑
r=1

µry
u
rj

s.t.
n∑
j=1

(
m∑
i=1

ωix
l
ij + Fuj

)
= 1,

Fuj =
s∑
r=1

µry
l
rj −

m∑
i=1

ωix
u
ij , j = 1, 2, · · · , n, (3.2)

n∑
j=1

Fuj = CR,

µr, ωi, F
u
j ≥ 0, ∀r, i, j.

Theorem 3.2. In model (3.1), if any two DMUs (e.g. DMU1 and DMU2) have the same inputs (xui1 = xui2, i =
1, 2, · · · ,m), the DMU with more outputs (e.g. ylr1 > ylr2, r = 1, 2, · · · , s) will be allocated more resources.

Proof. In model (3.2), if xui1 = xui2 and ylr1 > ylr2, we have ωix
u
i1 = ωix

u
i2 and µry

l
r1 > µry

l
r2. Then Fu1 =∑s

r=1 µry
l
r1 −

∑m
i=1 ωix

u
i1 > Fu2 =

∑s
r=1 µry

l
r2 −

∑m
i=1 ωix

u
i2, therefore, Ru1 = Fu

1
C > Ru2 = Fu

2
C . �

A set of solutions (u∗r , v
∗
i , R

∗u
j ) is provided by solving model (3.1). Under the conservative strategy, the upper

efficiency of each DMU can be calculated as CEuj =
∑s

r=1 u
∗
ry

u
rj∑m

i=1 v
∗
i x

l
ij+R

∗u
j

. Based on the efficiency results, Theorem 3.3
is obtained as follows.

Theorem 3.3. Under the conservative strategy, the upper efficiency of each DMU is in excess of 1, i.e. CEuj ≥ 1.

Proof. From model (3.1), we know that xuij ≥ xlij and yurj ≥ ylrj . As (u∗r , v
∗
i , R

∗u
j ) is a set of common solutions,

we have CEuj =
∑s

r=1 u
∗
ry

u
rj∑m

i=1 v
∗
i x

l
ij+R

∗u
j

≥ CElj =
∑s

r=1 u
∗
ry

l
rj∑m

i=1 v
∗
i x

u
ij+R

∗u
j

. In constraints of model (3.1), the lower efficiency of

each DMU is efficient, which means CElj = 1, thus CEuj ≥ 1. �

3.2. DEA-RA model based on radical strategy

Similarly, if the decision maker believes the resource allocation scheme as based on the upper bound of interval
efficiency, he/she may consider that the allocation scheme should ensure that the upper interval efficiency of
each DMU is equal to one in the first place. Then, the resource allocation model obtained from the radical
strategy is expressed as follows.

max Elall =

∑n
j=1

∑s
r=1 ury

l
rj∑n

j=1

(∑m
i=1 vix

u
ij +Rlj

)
s.t.

∑s
r=1 ury

u
rd∑m

i=1 vix
l
id +Rlj

= 1, j = 1, 2, · · · , n, (3.3)

n∑
j=1

Rlj = R,

ur, vi, R
l
j ≥ 0, ∀r, i, j.
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Model (3.3) is a nonlinear model, which is capable to be transformed into a linear model via Charnes–Cooper
transformation [10]. By setting

∑n
j=1

(∑m
i=1 vix

u
ij +Ruj

)
= 1

C , we have Cur = µr, Cvi = ωi, CRlj = F lj . Model
(3.3) can be transformed into model (3.4) as follows:

max Euall =
n∑
j=1

s∑
r=1

µry
l
rj

s.t.
n∑
j=1

(
m∑
i=1

ωix
u
ij + F lj

)
= 1, (3.4)

F lj =
s∑
r=1

µry
u
rd −

m∑
i=1

ωix
l
id, j = 1, 2, · · · , n,

n∑
j=1

F lj = CR,

µr, ωi, F
l
j ≥ 0, ∀r, i, j.

In model (3.3), the first constraint is proposed to ensure that the upper efficiency of each DMU is efficient
when the total resource is allocated to all DMUs. The objective function of model (3.3) is aimed at maximizing
the overall lower efficiency of all DMUs under the condition that the upper efficiency of each DMU is equal to 1.

Theorem 3.4. In model (3.3), if any two DMUs (e.g. DMU1 and DMU2) share the same inputs (xli1 = xli2, i =
1, 2, · · · ,m), the DMU with more outputs (e.g. yur1 > yur2, r = 1, 2, · · · , s) will be allocated more resource.

Proof. In model (3.4), if xli1 = xli2 and yur1 > yur2, we have ωix
l
i1 = ωix

l
i2 and µry

u
r1 > µry

u
r2. Then F l1 =∑s

r=1 µry
u
r1 −

∑m
i=1 ωix

l
i1 > F l2 =

∑s
r=1 µry

u
r2 −

∑m
i=1 ωix

l
i2, therefore, Rl1 = F l

1
C > Rl2 = F l

2
C . �

Theorem 3.5. If the efficiency score obtained from model (3.3) is 1 (Elall = 1) each DMU based on the data
(xuij and ylrj) is treated as efficient. That is to say, the lower efficiency value of each DMU is 1.

Proof. Set Elall =
∑n

j=1
∑s

r=1 ury
l
rj∑n

j=1 (∑m
i=1 vixu

ij+R
l
j)
RElj =

∑s
r=1 ury

l
rj∑m

i=1 vixu
ij+R

l
j

, j = 1, · · · , n and S =
∑n
j=1 (

∑m
i=1 vix

u
ij +Rlj). We

have
∑n

j=1
∑s

r=1 ury
l
rj∑n

j=1 (∑m
i=1 vixu

ij+R
l
j)

=
∑s

r=1 ury
l
rj

S ×
∑m

i=1 vix
u
i1+R

l
1∑m

i=1 vixu
i1+R

l
1

+ · · · +
∑s

r=1 ury
l
rn

S ×
∑m

i=1 vix
u
in+Rl

n∑m
i=1 vixu

in+Rl
n

=
∑s

r=1 ury
l
rj∑m

i=1 vixu
i1+R

l
1
×

∑m
i=1 vix

u
i1+R

l
1

S + · · ·+
∑s

r=1 ury
l
rn∑m

i=1 vixu
in+Rl

n
×
∑m

i=1 vix
u
in+Rl

n

S = REl1×
∑m

i=1 vix
u
i1+R

l
1

S + · · ·+REln×
∑m

i=1 vix
u
in+Rl

n

S Elall is the

linear combination of RElj(j = 1, · · · , n), where
∑m

i=1 vix
u
i1+R

l
1

S + · · ·+
∑m

i=1 vix
u
in+Rl

n

S =
∑n

j=1 (∑m
i=1 vix

u
ij+R

l
j)

S = 1,

0 <
∑m

i=1 vix
u
ij+R

l
j

S ≤ 1(j = 1, · · · , n), and 0 < RElj ≤ 1(j = 1, · · · , n). If one or more RElj is not equal to 1, then
Elall < 1. Thus, if Elall = 1, it must be met that each RElj is equal to 1, namely RElj = 1(j = 1, · · · , n). �

Theorem 3.6. Under the radical strategy, the lower efficiency of each DMU is less than 1, i.e. RElj ≤ 1.

Proof. From model (3.3), it can be known that xuij ≥ xlij and yurj ≥ ylrj . As
(
u∗r , v

∗
i , R

∗l
j

)
is a set of common

solutions, we have REuj =
∑s

r=1 u
∗
ry

u
rj∑m

i=1 v
∗
i x

l
ij+R

∗l
j

≥ RElj =
∑s

r=1 u
∗
ry

l
rj∑m

i=1 v
∗
i x

u
ij+R

∗l
j

. In constraints of model (3.3), upper efficiency

of each DMU is efficient, which means REuj = 1, for which RElj ≤ 1. �

Theorem 3.7. If and only if xuij = xlij and yurj = ylrj, efficiency of model (3.3) is 1 (i.e. Elall = 1).

Proof. From Theorem 3.5, it can be known that if Elall = 1, it must be met that RElj = 1, j = 1, · · · , n. From
Theorem 3.6, it can be obtained that RElj ≤ 1. Therefore, if efficiency of model (3.3) is 1

(
Elall = 1

)
, it must

meet xuij = xlij and yurj = ylrj . �
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As revealed by the comparison between models (3.1) and (3.3), the constraints of the two models are different.
In model (3.3), the DMUs with the data (xlijy

u
rj and Rlj) form best-practice frontier, and the efficiency ratings

of DMUs with the data (xuijy
l
rj and Rlj) could be obtained based on the best-practice frontier. In model (3.1),

the DMUs with the data (xuijy
l
rj and Ruj ) form a frontier, which is also called worst-practice frontier [29,45]. If

the distance of a DMU with the data (xlijy
u
rj and Rlj) from the worst-practice frontier is increased, its efficiency

is higher.

3.3. DEA-RA model based on neutral strategy

In consideration of the conservative and radical strategies of the DMUs, models (3.1) and (3.3) are proposed.
In some cases, however, the decision maker may not pay close attention to maximizing the lower or upper
efficiencies of DMUs, which is defined as a neutral strategy in this study. Considering the neutral point of view,
the following neutral resource allocation model is proposed. In this model, both lower and upper efficiencies of
each DMU shall be considered by the common weights and allocation scheme as constraint group (3.5).

s.t. E∗
j ≤

∑s
r=1 ury

u
rj∑m

i=1 vix
l
ij +Rj

≤ 1, j = 1, 2, · · · , n,∑s
r=1 ury

l
rj∑m

i=1 vix
u
ij +Rj

≤ E∗
j , j = 1, 2, · · · , n, (3.5)

n∑
j=1

Rj = R,

ur, vi, Rj ≥ 0, ∀r, i, j.

In model (3.3), the upper efficiency RE∗u
j and lower efficiency RE∗l

j of each DMU could be obtained after

resource allocation. In the constraint group (3.5), it is set that E∗
j =

REl
j+

REu
j

2 . Based on constraints group
(3.5), the neutral RA model is proposed as model (3.6).

min
n∑
j=1

αj +
n∑
j=1

βj

s.t. E∗
j

(
m∑
i=1

ωix
l
ij +Rj

)
−

s∑
r=1

µry
u
rj + αj = 0, j = 1, 2, · · · , n, (3.6)

E∗
j

(
m∑
i=1

ωix
u
ij +Rj

)
−

s∑
r=1

µry
l
rj − βj = 0, j = 1, 2, · · · , n,

m∑
i=1

ωix
l
ij +Rj −

s∑
r=1

µry
u
rj ≥ 0, j = 1, 2, · · · , n,

n∑
j=1

Rj = R,

µr, ωi, Rj , αj , βj ≥ 0, ∀r, i, j

αj and βj represent the deviations of DMUj . The objective function of model (3.6) is to minimize the sum
deviations, which means, model (3.6) attempts to make the lower efficiency of each DMU approach its upper
efficiency.

Theorem 3.8. If α∗j = β∗j = 0, it must be met that xuij = xlij and yurj = ylrj.
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Proof. Set (µ∗r , ω
∗
i , R

∗
j ) is the solution of model (12). If α∗j = β∗j = 0, we have

∑s
r=1 µ

∗
ry

u
rj∑m

i=1 ω
∗
i x

l
ij+R

∗
j

=
∑s

r=1 µ
∗
ry

l
rj∑m

i=1 ω
∗
i x

u
ij+R

∗
j

=

E∗
j (∗). As xuij ≥ xlij , yurj ≥ ylrj , if the formula (*) is true, then it must be met that xuij = xlij and yurj = ylrj . �

4. Illustrations

In this section, three numerical examples will be provided to validate the proposed methods. The data of the
three examples are presented in Tables 1, 4 and 7, respectively.

4.1. A simple numerical example

In Table 1, there are 10 DMUs and each DMU has 2 inputs (X1 and X2) and 2 outputs (Y1 and Y2). The
data of inputs and outputs are all presented in the form of interval. It is assumed that the total resources are
allocated for 10 DMUs R = 10.

By comparing the results obtained from different models, we have several findings. Firstly, from Table 1, it is
noted that there are two characteristics exhibited by the data of all DMUs. Firstly, input data gradually increase
from DMU1 to DMU10. Secondly, output data gradually decrease from DMU1 to DMU10. If a DMU produces
more outputs with less resources (inputs), it will achieve a superior performance. These findings indicate that
the performance of these DMUs gradually deteriorate. Secondly, from Table 2, it can be found out that the
resources allocated to all DMUs gradually diminish from DMU1 to DMU10, which suggests that, if an individual
DMU produces more outputs, it is supposed to be capable of obtaining more resources. For instance DMU5

Table 1. A simple numerical example.

DMU X1 X2 Y1 Y2

1 [1, 2] [2, 3] [23, 24] [22, 24]
2 [2, 3] [4, 4] [21, 22] [22, 23]
3 [3, 4] [5, 6] [20, 21] [20, 21]
4 [3, 4] [5, 7] [16, 18] [19, 19]
5 [3, 5] [5, 7] [14, 17] [13, 15]
6 [4, 5] [6, 7] [12, 15] [10, 14]
7 [4, 5] [7, 8] [10, 15] [9, 14]
8 [4, 6] [8, 8] [9, 14] [8, 13]
9 [5, 6] [8, 9] [9, 14] [8, 13]
10 [5, 7] [8, 9] [8, 12] [7, 13]

Table 2. The cost allocation results of all DMUs from three models.

DMU Model (3.1) Model (3.3) Model (3.6)

1 2.3463 1.3953 1.2942
2 1.9903 1.2791 1.1886
3 1.7476 1.2209 1.1359
4 1.2945 1.0465 1.0063
5 0.9385 0.9884 0.9845
6 0.7120 0.8721 0.8800
7 0.4854 0.8721 0.9504
8 0.2427 0.8140 0.8999
9 0.2427 0.8140 0.8999
10 0.0000 0.6977 0.7603
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Table 3. The interval efficiency results of all DMUs from three models.

DMU Wang et al. [43] Model (3.1) Model (3.3) Model (3.6)
Lower Upper Lower Upper Lower Upper Lower Upper
efficiency efficiency efficiency efficiency efficiency efficiency efficiency efficiency

1 0.6389 1.0000 1.0000 1.0980 0.9583 1.0000 0.9384 0.9792
2 0.4583 0.4792 1.0000 1.1079 0.9545 1.0000 0.9329 0.9773
3 0.2778 0.3500 1.0000 1.1136 0.9524 1.0000 0.9297 0.9762
4 0.2262 0.3167 1.0000 1.2115 0.8889 1.0000 0.8395 0.9444
5 0.1667 0.2833 1.0000 1.4512 0.8235 1.0000 0.7509 0.9118
6 0.1429 0.2083 1.0000 1.3816 0.8000 1.0000 0.7200 0.9000
7 0.1042 0.1786 1.0000 1.6935 0.6667 1.0000 0.5556 0.8333
8 0.0937 0.1458 1.0000 2.0851 0.6429 1.0000 0.5281 0.8214
9 0.0833 0.1458 1.0000 1.7818 0.6429 1.0000 0.5281 0.8214
10 0.0741 0.1354 1.0000 2.1000 0.6667 1.0000 0.5556 0.8333

Table 4. The data of input and output of all schools.

School Number
of staff

School building area
(Square meters)

Copies of
books

Fixed asset
(Million
RMB)

Number of
students

1 [47, 53] 3964 8947 3.54 [313, 360]
2 [39, 40] 965 4247 2.04 [102, 110]
3 [65, 70] 2222 8543 2.23 [263, 300]
4 [43, 54] 2316 7560 2.42 [261, 274]
5 [47, 49] 3362 11 035 1.23 [292, 312]
6 [49, 59] 3273 6120 5.61 [261, 289]
7 [30, 36] 1534 7439 2.55 [256, 270]
8 [45, 57] 1130 4043 2.25 [73, 81]
9 [38, 45] 2278 7306 1.51 [293, 311]
10 [104, 124] 7321 25 218 16.91 [1129, 1195]
11 [92, 110] 6218 11 552 10.86 [410, 455]
12 [38, 40] 1878 4155 3.89 [191, 202]
13 [42, 46] 2649 6986 1.41 [242, 263]
14 [39, 50] 2402 8623 2.18 [264, 341]
15 [55, 57] 2359 7200 5.06 [221, 264]
16 [30, 39] 1328 6260 1.87 [179, 227]
17 [132, 137] 11 922 53 840 8.28 [2672, 3122]
18 [59, 62] 3552 11 674 6.76 [417, 505]
19 [17, 19] 1666 3926 2.98 [125, 147]
20 [173, 180] 23 200 40 000 23.09 [3066, 3122]
21 [73, 74] 3271 21 484 2.34 [360, 386]
22 [59, 72] 4301 10 300 2.26 [290, 363]
23 [99, 112] 21 175 47 060 7.34 [1995, 2317]
24 [35, 41] 1410 13 803 1.65 [212, 230]
25 [65, 105] 30 705 22 000 38.30 [1252, 1276]

and DMU6 have the same inputs (xui1 = xui2) and the DMU5 with more outputs (e.g. ylr1 > ylr2) is allocated
more resources. Thirdly, Table 3 shows the efficiencies of all DMUs before resource allocation, using the interval
efficiency model of Wang et al. [43]. Comparing the efficiency results obtained from our proposed models and
that of Wang et al. [43], it is noted that the efficiency of each DMU improves after resource allocation by



ALLOCATING FIXED RESOURCES 515

Table 5. The allocation results of all schools.

School Original allocation Model (3.1) Model (3.3) Model (3.6)

1 9.26 4.65 4.92 5.37
2 3.41 0.96 1.31 1.59
3 12.07 3.29 4.35 4.46
4 5.70 3.64 3.88 3.91
5 5.90 4.35 4.14 4.49
6 8.53 3.52 3.73 4.23
7 5.73 3.98 4.01 3.87
8 10.07 0.00 0.67 1.19
9 7.60 4.46 4.77 4.47
10 15.73 18.39 17.80 17.14
11 13.95 5.10 5.17 6.67
12 6.43 2.65 2.74 2.90
13 6.22 3.47 3.74 3.82
14 7.25 3.79 5.13 5.36
15 8.57 2.81 3.42 4.01
16 5.68 2.45 3.39 3.54
17 20.07 47.33 53.59 46.91
18 8.20 6.40 7.33 7.71
19 2.83 1.91 1.80 2.22
20 25.18 53.76 50.38 43.93
21 10.90 5.03 4.46 5.57
22 10.14 3.75 4.88 5.63
23 14.35 35.11 35.58 34.72
24 5.37 3.02 2.67 3.34
25 15.99 21.19 11.15 17.96

applying our models, which indicates that our models allocate resources to each DMU from the perspective
of resource utilization efficiency. Finally, as indicated by Table 2, when different preferences are given to the
lower or upper bound of the interval, the final allocation results are different. If the decision maker would like
to allocate resource to DMUs with interval data, the first thing to do is to determine which bound (lower or
upper) is of more importance.

4.2. The case of primary schools

The illustrative application involves a dataset of all primary schools located in China’s Jinhu County, Jiangsu,
China. To be consistent with extant studies in literature, the number of staff, school building area (in Square
meters), copies of books and fixed assets (in 106 RMB Yuan) are taken as input variables. The number of stu-
dents in each school is taken as the output variable. All the data is collected from the Education Bureau of Jinhu
County. The school profile is shown in Table 4. The total budget for these schools is 245 (in 106 RMB Yuan).

Table 4 indicates the significant differences in inputs and outputs of these primary schools, and the maximum
value is shown to be 31 times higher than the minimum value. The differences between variables of school building
area, fixed assets and number of students among schools are found substantial. Of these indicators, the number
of staff and the number of students are indicated in an interval form. As the staff and students might quit the
school or move from one school to another, these data are not fixed and are collected from the beginning and
end of the year, in an interval form.

The second column of Table 5 shows the allocation results obtained from the local government. The second
to fifth columns of Table 6 present the efficiency results before and after government allocation. The comparison
performed among the results obtained from different models leads to a number of findings.
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Firstly, by comparing the efficiencies of DMUs before and after the original allocation, it can be known that
there is no significant improvement to efficiency for most schools, which indicates that the original allocation
scheme from the perspective of the government does not take into account of the efficiency of resource utilization.

Secondly, it is worthy that the efficiency of each school after budget allocation using any one of the proposed
models is significantly higher than before allocation which suggests that our proposed models will improve
efficiency to the highest possible level for each school, for the full utilization of educational resources.

Thirdly, Table 5 indicates that there are numerous instances of unreasonable allocations of government funds.
For example, School 2 educates a small number of students with a substantial amount of educational resources. In
other words, the educational resources allocated to School 2 fail to be fully utilized. Thus, what the government
needs to do is finding ways to assist School 2 with the overall planning and full utilization of the existing
educational resources. Actually, however, the government allocates 1207 million RMB to School 2, which does
not appear in our models as our models allocate 329 million RMB, 435 million RMB and 446 million RMB
to School 2, respectively. The resource allocation scheme of our method is primarily based on the efficiency of
DMU. The efficiency of school 10 before the resource allocation is [0.7239 0.7662], higher compared with other
similar-sized schools. Therefore, school 10 obtains more resources than other similar-sized school.

Finally, three types of allocation results are found to be different, which is because each proposed model
adopts a different strategy. Therefore, the decision maker could be allowed flexibility in the selection of the
appropriate model based on the practicalities

4.3. The case of Hatami-Marbini et al. [18]

Table 7 shows the interval data for the case of 12 DMUs, which comes from Hatami-Marbini et al. [18]. In
this section, the results of Hatami-Marbini et al. [18]’s approach and our proposed approach will be compared
through these 12 DMUs. As for the data, Hatami-Marbini et al. [18] assumed that the upper bound of each
input (or output) is 1.105 times the lower bound, and the total resources to be allocated are interval data as
well (R = [90, 110]). However, our approach is based on the assumption that the total resources are fixed. In
this section, the total resources to be allocated in our approach are set to 110.

Table 8 shows the calculation results of the two methods, which leads to three major findings. Firstly, Hatami-
Marbini et al. [18] assumed that the total resources are the interval data (R = [90, 110]), and the allocation
result is in the form of interval as well. The results in the interval forms may still make the decision-makers
confused over how to allocate resources. However, this problem is avoided in our approach, and a set of accurate

Table 7. The case of 12 DMUs from Hatami-Marbini et al. [18].

DMU Input 1 Input 2 Input 3 Output 1 Output 2
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound bound bound bound

1 332.5 367.5 37.05 40.95 8.55 9.45 63.65 70.35 713.45 788.55
2 283.1 312.9 24.7 27.3 7.6 8.4 69.35 76.65 580.45 641.55
3 400.9 443.1 29.45 32.55 6.65 7.35 71.25 78.75 554.8 613.2
4 266.95 295.05 15.2 16.8 8.55 9.45 66.5 73.5 631.75 698.25
5 285.95 316.05 15.2 16.8 5.7 6.3 71.25 78.75 422.75 467.25
6 342 378 27.55 30.45 16.15 17.85 78.85 87.15 1016.5 1123.5
7 513 567 17.1 18.9 9.5 10.5 68.4 75.6 434.15 479.85
8 262.2 289.8 31.35 34.65 4.75 5.25 74.1 81.9 560.5 619.5
9 306.85 339.15 23.75 26.25 4.75 5.25 71.25 78.75 1020.3 1127.7
10 421.8 466.2 60.8 67.2 5.7 6.3 70.3 77.7 1018.4 1125.6
11 306.85 339.15 23.75 26.25 4.75 5.25 23.75 26.25 332.5 367.5
12 421.8 466.2 60.8 67.2 5.7 6.3 98.8 109.2 1139.05 1258.95
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Table 8. The results of two approaches.

DMU Hatami-Marbini
et al. [18]’s RA
approach

Hatami-Marbini
et al. [18]’s Efficiency
evaluation approach

Our approach
Model (3.3)

Rl∗
j Ru∗

j Lower
efficiency

Upper
efficiency

R∗
j Lower

efficiency
Upper
efficiency

1 7.2855 7.2855 0.9847 1.0000 9.2587 0.9048 1.0000
2 6.6510 6.6510 1.0000 1.0000 7.6881 0.9048 1.0000
3 3.7643 9.2516 0.7083 1.0000 7.3923 0.9048 1.0000
4 8.5474 8.5474 1.0000 1.0000 8.2881 0.9048 1.0000
5 4.2810 4.2810 1.0000 1.0000 5.7829 0.9048 1.0000
6 14.1509 14.1509 0.9959 1.0000 13.0867 0.9048 1.0000
7 0.1484 4.5606 0.6877 1.0000 5.8966 0.9048 1.0000
8 6.3419 7.4261 0.9416 1.0000 7.4870 0.9048 1.0000
9 15.0964 15.0964 0.9985 1.0000 13.0658 0.9048 1.0000
10 10.2222 12.1773 0.9070 1.0000 13.0342 0.9048 1.0000
11 0 7.0612 0.4946 1.0000 4.2626 0.9048 1.0000
12 13.5110 13.5110 1.0000 1.0000 14.7569 0.9048 1.0000

(Sum)
90

(Sum)
110

(Ave.)
0.8932

(Ave.)
1.0000

(Sum)
110

(Ave.)
0.9048

(Ave.)
1.0000

allocation results are obtained. Secondly, in Hatami-Marbini et al. [18]’s results, the lower bound efficiencies of
DMUs show a significant fluctuation, and the average value is lower compared with our approach. Thirdly, in
the data of case, Hatami-Marbini et al. [18] assumed that the upper bound of each input (or output) is 1.105
times the lower bound. According to the DEA axiom, the input and output of a DMU increase (or decrease)
simultaneously by the same multiple, and its efficiency will remain unchanged. After resource allocation, a new
input is added to each DMU. The upper efficiency and lower efficiency of each DMU by our approach are 1 and
0.9048, respectively, which conforms to the characteristics of case data and DEA axiom.

5. Conclusion

DEA has played a significant role in the performance evaluation and benchmarking since it was first proposed.
Recently, scholars have extended DEA to the allocation of fixed resource for a group of DMUs. The existing DEA-
RA models are premised on the assumption that the data of all DMUs are precise. However, this assumption
is not necessarily correct in practice. Under many circumstances, the outputs and inputs of DMUs are not as
precise as assumed, i.e. the data are only in a range in an interval form. In these cases, the existing DEA models
cannot be applicable to resource allocation. In order to resolve this problem, three DEA resource allocation
models with different strategies are proposed in this study. The first model is based on a conservative strategy,
while the second model is based on a radical strategy. In the resource allocation models, the conservative
(radical) strategy first ensures the lower (upper) efficiencies of all DMUs to be efficient and then maximizes
the overall upper (lower) efficiency of all DMUs. The third model is based on a neutral strategy, i.e. resource
allocation scheme pays attention to reducing the gap between the lower and the upper efficiencies of each DMU
in the first place. The proposed models are illustrated and validated by introducing three demonstrative cases.
It is concluded that the proposed approaches are effective in resources allocation to DMUs with interval data,
and are capable to produce fair results for all DMUs.

This study features the proposal of three DEA resource allocation models for DMUs with interval data. In
the future these models could be extended by taking a robust optimization DEA approach proposed by Toloo
and Mensah [40]. In addition, this study could be extended for resource allocation of DMUs with random data
(or fuzzy data) in future research.
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