An optimization of solid transportation problem with stochastic demand by Lagrangian function and KKT conditions
RAIRO. Operations Research, Tome 55 (2021), pp. S2969-S2982

In this paper, a stochastic solid transportation problem (SSTP) is constructed where the demand of the item at the destinations are randomly distributed. Such SSTP is formulated with profit maximization form containing selling revenue, transportation cost and holding/shortage cost of the item. The proposed SSTP is framed as a nonlinear transportation problem which is optimized through Karush–Kuhn–Tucker (KKT) conditions of the Lagrangian function. The primary model is bifurcated into three different models for continuous and discrete demand patterns. The concavity of the objective functions is also presented here very carefully. Finally, a numerical example is illustrated to stabilize the models.

DOI : 10.1051/ro/2020136
Classification : 49Q22, 90B06, 90C08
Keywords: Solid transportation problem, stochastic demand, Lagrangian, KKT condition
@article{RO_2021__55_S1_S2969_0,
     author = {Kuiri, Anjana and Das, Barun and Mahato, Sanat Kumar},
     title = {An optimization of solid transportation problem with stochastic demand by {Lagrangian} function and {KKT} conditions},
     journal = {RAIRO. Operations Research},
     pages = {S2969--S2982},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020136},
     mrnumber = {4223200},
     zbl = {1469.49046},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020136/}
}
TY  - JOUR
AU  - Kuiri, Anjana
AU  - Das, Barun
AU  - Mahato, Sanat Kumar
TI  - An optimization of solid transportation problem with stochastic demand by Lagrangian function and KKT conditions
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2969
EP  - S2982
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020136/
DO  - 10.1051/ro/2020136
LA  - en
ID  - RO_2021__55_S1_S2969_0
ER  - 
%0 Journal Article
%A Kuiri, Anjana
%A Das, Barun
%A Mahato, Sanat Kumar
%T An optimization of solid transportation problem with stochastic demand by Lagrangian function and KKT conditions
%J RAIRO. Operations Research
%D 2021
%P S2969-S2982
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020136/
%R 10.1051/ro/2020136
%G en
%F RO_2021__55_S1_S2969_0
Kuiri, Anjana; Das, Barun; Mahato, Sanat Kumar. An optimization of solid transportation problem with stochastic demand by Lagrangian function and KKT conditions. RAIRO. Operations Research, Tome 55 (2021), pp. S2969-S2982. doi: 10.1051/ro/2020136

[1] H. G. Akdemir and F. Tiryaki, Bilevel stochastic transportation problem with exponentially distributed demand. Bitlis Eren Univ. J. Sci. Technol. 2 (2012) 32–37. | DOI

[2] P. Anukokila, B. Radhakrishnan and A. Anju, Goal programming approach for solving multi-objective fractional transportation problem with fuzzy parameters. RAIRO: OR 53 (2019) 157–178. | MR | Zbl | Numdam | DOI

[3] A. K. Bit, M. P. Biswal and S. S. Alam, Fuzzy programming approach to multi-objective solid transportation problem. Fuzzy Sets Syst. 57 (1993) 183–194. | MR | Zbl | DOI

[4] A. K. Bhurjee and G. Panda, Multi-objective optimization problem with bounded parameters. RAIRO: OR 48 (2014) 545–558. | MR | Zbl | Numdam | DOI

[5] L. Cooper and L. J. Leblanc, Stochastic transportation problems and other network related convex problems. Nav. Res. Logistics Q. 24 (1977) 327–336. | MR | Zbl | DOI

[6] A. Das, U. K. Bera and B. Das, A solid transportation problem with mixed constraint in different environment. J. Appl. Anal. Comput. 6 (2016) 179–195. | MR | Zbl

[7] S. K. Das, T. Mandal and S. A. Edalatpanah, A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming. RAIRO: OR 51 (2017) 285–297. | MR | Zbl | Numdam | DOI

[8] U. Habiba and A. Quddoos, Multiobjective stochastic interval transportation problem involving general form of distributions. Adv. Math. Sci. J. 9 (2020) 3213–3219. | DOI

[9] S. Halder, B. Das, G. Panigrahi and M. Maiti, Solving a solid transportation problems through fuzzy ranking. In: Communication, Devices, and Computing. Springer, Singapore (2017) 283–292. | DOI

[10] K. Haley, The solid transportation problem. Oper. Res. 10 (1962) 448–463. | Zbl

[11] K. Holmberg, Separable programming applied to the stochastic transportation problem. Research Report, LITH-MAT-R-1984-15, Department of Mathematics, Linkoping Institute of Technology, Sweden (1984).

[12] K. Holmberg and K. O. Jörnsten, Cross decomposition applied to the stochastic transportation problem. Eur. J. Oper. Res. 17 (1984) 361–368. | MR | Zbl

[13] K. Holmberg and H. Tuy, A production-transportation problem with stochastic demand and concave production costs. Math. Program. 85 (1999) 157–179. | MR | Zbl

[14] S. Jana, B. Das, G. Panigrahi and M. Maiti, Profit Maximization solid transportation problem with Gaussian type-2 fuzzy environments. Ann. Pure Appl. Math. 2 (2018) 323–335.

[15] G. R. Jahanshahloo, B. Talebian, I. Hosseinzadeh Lotfi and J. Sadeghi, Finding a solution for multi-objective linear fractional programming problem based on goal programming and data envelopment analysis. RAIRO: OR 51 (2017) 199–210. | MR | Zbl | Numdam

[16] F. Jiménez and J.-L. Verdegay, Uncertain solid transportation problems. Fuzzy Sets Syst. 100 (1998) 45–57. | MR

[17] D. S. Kim and N. V. Tuyen, A note on second-order Karush–Kuhn–Tucker necessary optimality conditions for smooth vector optimization problems. RAIRO:OR 52 (2018) 567–575. | MR | Zbl | Numdam

[18] A. Kuiri and B. Das, A non-linear transportation problem with additional constraints in fuzzy environment. J. Emerg. Technol. Innov. Res. 5 (2018) 277–283.

[19] A. Kuiri and B. Das, An application of dynamic programming problem in multi stage transportation problem with fuzzy random parameters. IOSR J. Eng. 9 (2019) 30–41.

[20] D. R. Mahapatra, Multi-choice stochastic transportation problem involving Weibull distribution. Int. J. Optim. Control Theor. App. 4 (2014) 45–55. | MR | Zbl | DOI

[21] D. Mahapatra, S. Roy and M. Biswal, Computation of multi-objective stochastic transportation problem involving normal distribution with joint constraints. J. Fuzzy Math. 19 (2011) 865–876. | MR | Zbl

[22] D. R. Mahapatra, S. K. Roy and M. P. Biswal, Multi-choice stochastic transportation problem involving extreme value distribution. Appl. Math. Modell. 37 (2013) 2230–2240. | MR | Zbl | DOI

[23] G. Maity and S. K. Roy, Multi-item multi-choice integrated optimisation in inventory transportation problem with stochastic supply. Int. J. Oper. Res. 35 (2019) 318–339. | MR | DOI

[24] G. Maity, S. K. Roy and J.-L. Verdegay, Analyzing multimodal transportation problem and its application to artificial intelligence. Neural Comput. App. 32 (2020) 2243–2256. | DOI

[25] S. Midya and S. K. Roy, Solving single-sink, fixed-charge, multi-objective, multi-index stochastic transportation problem. Am. J. Math. Manage. Sci. 33 (2014) 300–314.

[26] A. Nagarjan and K. Jeyaraman, Solution of chance constrained programming problem for multi-objective interval solid transportation problem under stochastic environment using fuzzy approach. Int. J. Comput. App. 10 (2010) 19–29.

[27] A. K. Ojha and R. Ranjan, Multi-objective geometric programming problem with Karush–Kuhn–Tucker condition using ε constraint method. RAIRO: OR 48 (2014) 429–453. | MR | Zbl | Numdam | DOI

[28] A. Ojha, B. Das, S. Mondal and M. Maiti, A stochastic discounted multi-objective solid transportation problem for breakable items using analytical hierarchy process. Appl. Math. Modell. 34 (2010) 2256–2271. | MR | Zbl | DOI

[29] A. Ojha, B. Das, S. Mondal and M. Maiti, A solid transportation problem for an item with fixed charge, vechicle cost and price discounted varying charge using genetic algorithm. Appl. Soft Comput. 10 (2010) 100–110. | DOI

[30] A. Quddoos, G. Hasan and M. M. Khalid, Multi-choice stochastic transportation problem involving general form of distributions. SpringerPlus 3 (2014) 1–9. | DOI

[31] S. K. Roy, Transportation problem with multi-choice cost and demand and stochastic supply. J. Oper. Res. Soc. Ch. 4 (2016) 193–204. | MR | Zbl | DOI

[32] S. K. Roy and S. Midya, Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. Appl. Intell. 49 (2019) 3524–3538. | DOI

[33] S. K. Roy, D. R. Mahapatra and M. P. Biswal, Multi-choice stochastic transportation problem with exponential distribution. J. Uncertain Syst. 6 (2012) 200–213.

[34] S. K. Roy, S. Midya and V. F. Yu, Multi-objective fixed-charge transportation problem with random rough variables. Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 26 (2018) 971–996. | MR | Zbl | DOI

[35] S. K. Roy, S. Midya and G. W. Weber, Multi-objective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural Comput. App. 31 (2019) 8593–8613. | DOI

[36] S. Samanta, B. Das and S. K. Mondal, A new method for solving a fuzzy solid transportation model with fuzzy ranking. Asian J. Math. Phys. 2 (2018) 73–83.

[37] A. C. Williams, A stochastic transportation problem. Oper. Res. 11 (1963) 759–770. | MR | Zbl | DOI

[38] D. Wilson, An a priori bounded model for transportation problems with stochastic demand and integer solutions. AIIE Trans. 4 (1972) 186–193. | DOI

[39] L. Yang and Y. Feng, A bicriteria solid transportation problem with fixed charge under stochastic environment. Appl. Math. Modell. 31 (2007) 2668–2683. | Zbl | DOI

[40] L. Yang, P. Liu, S. Li, Y. Gao and D. A. Ralescu, Reduction methods of type-2 uncertain variables and their applications to solid transportation problem. Inf. Sci. 291 (2015) 204–237. | MR | Zbl | DOI

Cité par Sources :