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AN OPTIMIZATION OF SOLID TRANSPORTATION PROBLEM WITH
STOCHASTIC DEMAND BY LAGRANGIAN FUNCTION AND KKT

CONDITIONS

Anjana Kuiri∗, Barun Das and Sanat Kumar Mahato

Abstract. In this paper, a stochastic solid transportation problem (SSTP) is constructed where the
demand of the item at the destinations are randomly distributed. Such SSTP is formulated with profit
maximization form containing selling revenue, transportation cost and holding/shortage cost of the
item. The proposed SSTP is framed as a nonlinear transportation problem which is optimized through
Karush–Kuhn–Tucker (KKT) conditions of the Lagrangian function. The primary model is bifurcated
into three different models for continuous and discrete demand patterns. The concavity of the objective
functions is also presented here very carefully. Finally, a numerical example is illustrated to stabilize
the models.
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1. Introduction

Transportation problem (TP) is one type of Linear Programming Problem (LPP) that involves selection of
most economical shipping routes and quantities for transfer of any homogeneous commodity from a number
of origins/sources to a number of destinations. The solid transportation problem (STP) was first presented
by Haley [10], wherein addition with sources and destinations another parameter, the mode of transportation
also is considered for the transportation of heterogeneous commodities. Keeping the requirements in mind, here
three kinds of constraints are taken into account, that is, source constraint in terms of availability, destination
constraint in terms of demand and conveyance’s capacity constraint. The STP is of much use in public distri-
bution systems. The STP degenerates into the classical transportation problem if the number of conveyance is
only one. In recent years, there have been numerous papers in this area. Most of the papers only minimize the
total transportation cost. Ojha et al. [29] considered a STP for an item with fixed charge, vehicle cost and price
discounted varying charge. Interested readers may consult Bit et al. [3], Jimenez and Verdegay [16] and so on.
But in reality maximization of profit become a more essential objective to the decision-makers.

In many practical situations, the vagueness appeared in the parameters of TP. This is due to the lack of
information about the system, insufficiency in the transportation policy, different types of unexpected factors
such as lack of evidence, fluctuation in the market, artificial crisis in the market, unstable political situation,
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etc. In such situation the stochastic nature appears to the TP and STP. The stochastic transportation problem
was discussed by several researchers such as Williams [37], Holmberg [11–13], Wilson [38] and Cooper [5]. This
is a variant of the ordinary (linear) transportation problem with random demand. A STP with one or more
random parameters is termed as a stochastic solid transportation problem (SSTP). Yang and Feng [39] solved a
bicriteria STP in stochastic environment. Quddoos et al. [30] presented a multi-choice stochastic transportation
problem involving a general form of distribution. Halder et al. [9] solved a solid transportation problem through
fuzzy ranking. Ojha et al. [28] designed a multi-objective SSTP for breakable items using analytic hierarchy
process. Habiba and Quddoos [8] discussed a multi-objective stochastic transportation problem with interval
cost coefficients. Yang et al. [40] introduced the reduction methods of type-2 uncertain variables to STP. Jana
et al. [14] described the profit maximization STP with Gaussian type-2 fuzzy environments. Anukokila et al.
[2] presented a goal programming approach for solving multi-objective fractional transportation problem with
fuzzy parameters. Ojha et al. [27] framed multi-objective STP as a geometric programming problem. Das
et al. [7] proposed a new approach for solving fully fuzzy linear fractional programming problems using the
multi-objective linear programming method/technique. Jahanshahloo et al. [15] presented a solution procedure
for multi-objective linear fractional programming problem based on goal programming and data envelopment
analysis. Bhurjee and Panda [4], Roy and Midya [32], Roy et al. [35] developed a multi-objective transportation
problem with variety of conceptions. Many researchers [6, 18, 19] described STP in different environments.
In 2010, Nagarjan and Jeyaraman [26] solved a solid transportation problem by using fuzzy approach under
stochastic environment. Due to the random nature of the demand, two situations can occur-either demand is
less than the total commodity received or demand is more than that. Such respective situations lead to holding
and shortage of the commodity at the destinations.

Because of flexibility and uni-modality, the logistic distribution has a wide application in any real life decision
making problem. It can be used to model the data exhibiting having some skewness property. The probability
density function of a logistic distribution with location and scale parameters α and β for a random variable t is
described by

φ(t) =
1
β

e−( t−αβ )[
1 + e−( t−αβ )

]2 , 0 ≤ t <∞, 0 ≤ α <∞, andβ > 0.

The logistic distribution is more popular for the economical modeling of those items whose demand function is
concave in shape and the item is of high-risk management. The similarity of Poisson distribution finds in the
exponential distribution. It occurs in the situation of time until the failure of a part and separation between
random events happen. The probability density function of an exponential distribution is described as

φ(t) = λe−λt, t > 0, λ > 0.

These types of functions present by reverse-J shaped. It is often termed as compound Poisson distribution. In
real-life situations, it is observed that the demand of an item is not known precisely. To stimulate demand,
we have considered uncertain demand with stochastic nature. Such type of demand is found for those items
whose demand slowly decreasing. The TP with stochastic demand is a special version of the stochastic linear
programming problem. It has many economic applications. The stochastic transportation problem has been
discussed in many papers [21, 23, 25, 34] in several ways and solved by different methods. Mahapatra et al.
[20,22] and Roy et al. [31,33] presented a procedure to solve the multi-choice transportation problem where they
have converted the multi-choice transportation problem into a standard mathematical programming through the
selection of binary variables, bounds for binary codes, and restriction of binary codes using auxiliary constraints.
The optimality of the constrained optimization problem has been found out in descent directions. The KKT
conditions based on Lagrangian function are the gradient search direction condition which are necessary for
the optimization of the constrained problem. These conditions also may transform into sufficient conditions if
the objective function satisfies the convexity/concavity condition. Kim et al. [17] make a note on second-order
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Table 1. Comparisons of the problem with existing transportation problem (TP).

References Type of TP Demand of
the item

Formulation type Solution procedure

Williams [37] 2D Stochastic Cost minimization Lingo Software
Das et al. [6] 3D Constant do Fuzzy programming
Bit et al. [3] 3D do do do
Nagarjan and
Jeyaraman [26]

3D do do Chance programming

Ojha et al. [29] 3D do do Genetic algorithm
Mahapatra [22] 2D Stochastic do Lingo Software
Mahapatra [20] 2D do do do
Holemberg and Tuy
[13]

2D do do Branch and bound procedure

Jana et al. [14] 3D Constant Profit maximization Genetic algorithm
Wilson [38] 2D Stochastic Cost minimization Primal-dual algorithm
This paper 3D Stochastic Profit maximization

in Lagrangian form
KKT conditions then by Lingo
Software

Karush–Kuhn–Tucker necessary optimality conditions for smooth vector optimization problems. Recently Maity
et al. [24] and Samanta et al. [36] presented the transportation problem in a spectacular direction.

The major contributions of the paper are as follows.

– Here, a STP is considered with random demand. Due to the randomness of the demand, there may arise two
mutually exclusive events (situations). Demand is either less than the total receiving amount (this leads to
holding situation) or greater than that (leads to shortage situation).

– The STP is constructed here on the objective of profit maximization in the decision maker’s point of view,
containing the terms of selling revenue, transportation cost, expected holding cost or expected shortage cost.

– The randomness of the demand also felt an effect on the STP constraints.
– To fulfil the random criteria of the demand, here logistic and exponential distributions are taken for a

continuous case and a discrete probability distribution is also taken into consideration. The logistic demand
met the scenario when demand varies with time of use, season and socio-economic pattern of the consumers.
And the exponential distribution pattern seems to commodities whose demand starts from the non-negative
quantity and tends to zero at the end of the period.

– Here, STP is optimized by the formulation of Lagrangian function with Lagrange multiplier and then by
Kuhn Tuckher’s optimality conditions.

The research gap of this article with the existing literatures on the TP is shown in the following Table 1.

2. Non-linear optimization method (KKT approach)

Consider the constrained maximization problem as

Max f(x1, x2, . . . , xn)
subject to gi(x1, x2, . . . , xn) ≥ 0; i = 1, 2, . . . ,m

hj(x1, x2, . . . , xn) = 0; j = 1, 2, . . . , n.

Then the Lagrangian function of the above problem is

L(x, µ, λ) = f(x) +
m∑
i=1

µigi(x) +
n∑
j=1

λjhj(x).
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Assume that f , gi, hj are differentiable. If the function f(x∗) attains local maximum at point x∗, then the
Lagrange multipliers µi, λj satisfied the following conditions:

(i) ∂L
∂x∗ = ∂f

∂x∗ +
∑m
i=1 µi

∂gi
∂x∗ +

∑n
j=1 λj

∂hj
∂x∗ = 0 (stationarity condition).

(ii) µigi(x∗1, x
∗
2, . . . , x

∗
n) = 0, i = 1, 2, . . . ,m (complementary slackness condition).

(iii) λjhj(x∗1, x
∗
2, . . . , x

∗
n) = 0, j = 1, 2, . . . , n (complementary slackness condition).

(iv) gi(x∗1, x
∗
2, . . . , x

∗
n) ≥ 0, i = 1, 2, . . . ,m (primal feasibility condition).

(v) hj(x∗1, x
∗
2, . . . , x

∗
n) ≥ 0, j = 1, 2, . . . , n (primal feasibility condition).

(vi) µi, λj ≥ 0 (dual feasibility condition).

In other words, the conditions (i)–(vi) are necessary conditions for a local maximum of the problem. Also,
conditions (i)–(vi) are called the Karush–Kuhn–Tucker (KKT) conditions.

In the particular case of m = 0, i.e., when there are no inequality constraints, the KKT conditions turn into
the Lagrangian conditions, and the KKT multipliers are called Lagrange multipliers.

Karush–Kuhn–Tucker conditions are first-order necessary conditions for an optimal solution of nonlinear
programming, provided that some regularity conditions are satisfied.

3. Model description and formulation

3.1. Assumption

In this SSTP the following assumptions and notations are made:

(a) Availability (ai) of the ith origin is finite and known.
(b) The demand dj of the item at the jth destination is random in nature and followed probabilities density

function φj(dj).
(c) The actual received quantity yj by the jth destination may be lower or higher than the expected demand

E(dj). Depending on that situation their may be shortage or holding of the item at the destination j. In
this regard, shortage and holding cost are taken here.

(d) Capacity (ek) of the kth conveyance is finite and known.
(e) The cost (cijk) for transporting one unit item from sources i to destination j by conveyance k is finite and

known.
(f) The amount of transportation (xijk) from sources i to destination j with the aid of conveyance k is finite

and decision variable.
(g) The unit holding cost and shortage cost of the item at the jth destination are hj and pj respectively, which

are finite and known.
(h) The unit selling price of the item at the jth destination (Sj) is finite and known.

3.2. Formulation of the model

We consider a STP with m supply node, n demand node and k capacity conveyances. If xijk is the shifted
amount from ith supply to jth destination through the kth conveyance and yj be the total amount that is
shipped to the demand point j from all supply node then, yj =

∑m
i=1

∑l
k=1 xijk. Then either yj ≥ E(dj) or

yj < E(dj).
There may be two cases:

Case I. Total transported amount is greater than or equal to the random demand.
In this case, there will be a surplus and hence holding cost arises. So the expected holding charge is paid at
the destination j, which is equal to hj

∫ yj
0

(yj − t)φj(t)dt or hj
∑
t<yj

(yj − t)P (dj = t), hj > 0, where φj(t)
is the probability density function (p.d.f) of the random variable dj .
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Case II. Total transported amount is less than the random demand.
In this case, there will be a shortage, so the destination manager need to pay the expected shortage cost
pj
∫∞
yj

(t− yj)φj(t)dt or pj
∑
t>yj

(t− yj)P (dj = t), pj > 0.
Since the above two events are mutually exclusive i.e., cannot occur simultaneously, so probabilitically, the
expected cost consists the sum of the individual.
For the whole system, the total holding/shortage cost

n∑
j=1

[
hj

∫ yj

0

(yj − t)φj(t)dt+ pj

∫ ∞
yj

(t− yj)φj(t)dt
]

or
n∑
j=1

[
hj
∑
t<yj

(yj − t)P (dj = t) + pj
∑
t>yj

(t− yj)P (dj = t)
]

is a convex function (cf. [13]).

So the expected profit function (Z) of the decision maker is given by:

〈Expected Profit〉 = 〈Selling revenue〉 − 〈Transportation cost〉
− 〈Expected holding cost〉 − 〈Expected shortage cost〉.

The aim of this problem is to determine the optimum expected profit of the transportation system for delivering
homogenous/heterogeneous commodities from various sources to different destinations in different conveyances.
Mathematically,

Max Z =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

[
hj

∫ yj

0

(yj − t)φj(t)dt
]

−
n∑
j=1

[
pj

∫ ∞
yj

(t− yj)φj(t)dt
]

(for continuous case) (3.1)

and

Max Z =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

[
hj
∑
t<yj

(yj − t)P (dj = t)
]

−
n∑
j=1

[
pj
∑
t>yj

(t− yj)P (dj = t)
]

(for discrete case). (3.2)

After simplification and neglecting the constant term [1], equations (3.1) and (3.2) are equivalent to

Max Z =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

(hj + pj)
∫ yj

0

(yj − t)φj(t)dt+
n∑
j=1

pjyj (3.3a)

Max Z =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

(hj + pj)
∑
r<yj

(yj − r)µrj +
n∑
j=1

pjyj . (3.3b)

And the constraints of the proposed stochastic solid transportation problem (SSTP) are

Capacity constraints of the origins:
n∑
j=1

l∑
k=1

xijk ≤ ai for i = 1, 2, . . . ,m (3.4)
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Demand constraints at the destination:
m∑
i=1

l∑
k=1

xijk = yj for j = 1, 2, . . . , n (3.5)

Capacity constraints of the conveyances:
m∑
i=1

n∑
j=1

xijk ≤ ek for k = 1, 2, . . . , l (3.6)

And feasibility constraints amount of transportation: xijk ≥ 0 ∀ i, j, k. (3.7)

Any set of allocations which satisfied the equations (3.4)–(3.7) is called a feasible solution of the solid trans-
portation problem (without boundedness of the demand). A feasible solution to that problem is said to be basic,
i.e., BFS if the set of allocations are independent. The BFS which maximizes equations (3.3a) and (3.3b) is
called an optimal basic feasible solution. Again, if the number of non zero variables is less than m+ n+ l − 2,
then the problem is called degenerate.

4. Model with distribution functions

Here, the model is bifurcated into different sub-models, based on different types (continuous and discrete) of
a probability distribution of the random demand.
− Sub-Model 1. Let the random demands bj (j = 1, 2, . . . , n) of the jth destinations followed logistic distri-
bution with the following probability density function φ(bj). The logistic distribution is the “normal”-shaped
pattern of its cumulative distribution function (the logistic function) and quantile function (the logit function)
have been extensively used in different areas.

φ(bj) =
1
βj

e
−
(
bj−αj
βj

)

[
1 + e

−
(
bj−αj
βj

)]2 , 0 ≤ bj <∞, 0 ≤ αj <∞, and βj > 0.

Then equation (3.3a) becomes

MaxZ =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk

−
n∑
j=1

(hj + pj)

yj e
αj
βj

1 + e
αj
βj

+ βj log
1 + e

(αj−yj)
βj

1 + e
αj
βj

+
n∑
j=1

pjyj (4.1)

subject to the constraints (3.4)–(3.7).
The Lagrange’s function of the above problem is

L(X,u, v, z) =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk

−
n∑
j=1

(hj + pj)

yj e
αj
βj

1 + e
αj
βj

+ βj log
1 + e

(αj−yj)
βj

1 + e
αj
βj

+
n∑
j=1

pjyj

+
m∑
i=1

ui

n∑
j=1

l∑
k=1

(ai − xijk) +
l∑

k=1

vk

m∑
i=1

n∑
j=1

(ek − xijk)

+
m∑
i=1

n∑
j=1

l∑
k=1

zijkxijk (4.2)
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where the variable ui, vk, zijk are Lagrange multipliers and ui, vk, zijk ≥ 0. The KKT conditions for the problem
(4.2) are 

∂L

∂xijk
= cijk − ui − vk + zijk = 0

m∑
i=1

ui

( n∑
j=1

l∑
k=1

(ai − xijk)
)

= 0

l∑
k=1

vk

( m∑
i=1

n∑
j=1

(ek − xijk)
)

= 0

m∑
i=1

n∑
j=1

l∑
k=1

zijkxijk = 0

Now, the KKT conditions, lead the optimization problem to

MaxZ =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

(hj + pj)

yj e
αj
βj

1 + e
αj
βj

+ βj log
1 + e

(αj−yj)
βj

1 + e
αj
βj

+
n∑
j=1

pjyj

subject to
cijk − ui − vk ≤ 0
xijk(cijk − ui − vk) = 0
n∑
j=1

l∑
k=1

xijk ≤ ai for i = 1, 2, . . . ,m

m∑
i=1

n∑
j=1

xijk ≤ ek for k = 1, 2, . . . , l

xijk ≥ 0 ∀i, j, k

.

Proposition 4.1. The objective function Z is concave with respect to yj and xijk.

Proof. To show the objective function Z is concave, we have differentiate the function Z (presence in Eq. (4.1)),
partially with respect to yj and xijk respectively. Then,

∂Z

∂yj
= Sj − (hj + pj)

 e
αj
βj

1 + e
αj
βj

− e
(αj−yj)

βj

1 + e
(αj−yj)

βj

− pj
∂2Z

∂y2
j

= −(hj + pj)
e

(αj−yj)
βj

βj

[
1 + e

(αj−yj)
βj

]2 ·
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Similarly,

∂2Z

∂x2
ijk

= − (hj + pj)


 e

αj
βj

1 + e
αj
βj

− e
(αj−yj)

βj

1 + e
(αj−yj)

βj

 ∂2yj
∂x2

ijk

− e
αj−yj
βj

βj

[
1 + e

(αj−yj)
βj

]2 ( ∂yj
∂xijk

)2

− (pj − Sj)
∂2yj
∂x2

ijk

·

As hj , pj , βj are positive parameters. From the expression, it is clear that ∂2Z
∂y2
j
< 0. Hence we conclude that Z

is concave with respect to yj . By similar arguments ∂2Z
∂x2
ijk

< 0. So Z is concave function with respect to xijk

also. Hence the objective function Z is concave with respect to yj and xijk. �

− Sub-Model 2. When demands bj (j = 1, 2, . . . , n) follow exponential distribution with probability density
function

φ(bj) = λje
−λjbj , bj > 0, λj > 0.

The exponential distribution is one of the widely used distribution function as a demand function in the decision
making problems.
Then the objective function (3.3a) becomes

MaxZ =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

(hj + pj)
{
yj +

e−λjyj − 1
λj

}
+

n∑
j=1

pjyj (4.3)

subject to the constraints (3.4)–(3.7).
The Lagrange’s function of the above problem is

L(X,u, v, z) =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

(hj + pj)
{
yj +

e−λjyj − 1
λj

}
+

n∑
j=1

pjyj

+
m∑
i=1

ui

n∑
j=1

l∑
k=1

(ai − xijk) +
l∑

k=1

vk

m∑
i=1

n∑
j=1

(ek − xijk)

+
m∑
i=1

n∑
j=1

l∑
k=1

zijkxijk (4.4)

where the variable ui, vk, zijk are Lagrange multipliers and ui, vk, zijk ≥ 0. The KKT conditions for the problem
(4.4) are 

∂L

∂xijk
= cijk − ui − vk + zijk = 0

m∑
i=1

ui

 n∑
j=1

l∑
k=1

(ai − xijk)

 = 0

l∑
k=1

vk

 m∑
i=1

n∑
j=1

(ek − xijk)

 = 0

m∑
i=1

n∑
j=1

l∑
k=1

zijkxijk = 0

.
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Now, the KKT conditions, lead the optimization problem to

MaxZ =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

(hj + pj)
{
yj +

e−λjyj − 1
λj

}
+

n∑
j=1

pjyj

subject to
cijk − ui − vk ≤ 0
xijk(cijk − ui − vk) = 0
n∑
j=1

l∑
k=1

xijk ≤ ai for i = 1, 2, . . . ,m

m∑
i=1

n∑
j=1

xijk ≤ ek for k = 1, 2, . . . , l

xijk ≥ 0 ∀i, j, k

.

Proposition 4.2. The objective function Z is concave with respect to yj and xijk.

Proof. To show the objective function Z is concave with respect to yj and xijk, we have differentiate Z partially
twice with respect to yj and xijk respectively, as

∂Z

∂yj
= Sj − (hj + pj){1− e−λjyj} − pj

∂2Z

∂y2
j

= −(hj + pj)λje−λjyj .

Similarly,

∂2Z

∂x2
ijk

= −(hj + pj)
{

(1− e−λjyj ) ∂
2yj

∂x2
ijk

− λje−λjyj
(
∂yj
∂xijk

)2}
− (pj − Sj)

∂2yj
∂x2

ijk

·

As hj , pj are positive parameters. Obviously ∂2Z
∂y2
j
< 0. Hence we conclude that Z is concave with respect to yj .

By similar arguments, ∂2Z
∂x2
ijk

< 0, so Z is concave function with respect to xijk also. Hence the objective function
Z is concave in nature with respect to yj and xijk. �

− Sub-Model 3. Let the demands bj of the jth destination has a discrete distribution, i.e., demand of the item
are frequently accept some real values (r) with certain probabilities (µrj), i.e., P (dj = r) = µrj , r = 1, 2, . . . ,K.
Where 1, 2, . . . ,K denotes the event space of the demand dj at jth destination and

∑K
r=1 µ

r
j = 1.

Then the equation (3.3b) becomes

Max Z =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

(hj + pj)
∑
r<yj

(yj − r)µrj +
n∑
j=1

pjyj (4.5)

subject to the constraints (3.4)–(3.7).
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Now, the Lagrangian function of (4.5) is

L(X,u, v, z) =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

(hj + pj)
∑
r<yj

(yj − r)µrj +
n∑
j=1

pjyj

+
m∑
i=1

ui

n∑
j=1

l∑
k=1

(ai − xijk) +
l∑

k=1

vk

m∑
i=1

n∑
j=1

(ek − xijk)

+
m∑
i=1

n∑
j=1

l∑
k=1

zijkxijk (4.6)

where the variable ui, vk, zijk are Lagrange multipliers and ui, vk, zijk ≥ 0. The KKT conditions for the problem
(4.5) are 

∂L

∂xijk
= cijk − ui − vk + zijk = 0

m∑
i=1

ui

 n∑
j=1

l∑
k=1

(ai − xijk)

 = 0

l∑
k=1

vk

 m∑
i=1

n∑
j=1

(ek − xijk)

 = 0

m∑
i=1

n∑
j=1

l∑
k=1

zijkxijk = 0

.

Now, the KKT conditions, lead the optimization problem to

MaxZ =
n∑
j=1

Sjyj −
n∑
j=1

m∑
i=1

l∑
k=1

cijkxijk −
n∑
j=1

(hj + pj)
∑
r<yj

(yj − r)µrj +
n∑
j=1

pjyj

subject to
cijk − ui − vk ≤ 0
xijk(cijk − ui − vk) = 0
n∑
j=1

l∑
k=1

xijk ≤ ai for i = 1, 2, . . . ,m

m∑
i=1

n∑
j=1

xijk ≤ ek for k = 1, 2, . . . , l

xijk ≥ 0 ∀i, j, k

.

5. Numerical example

In order to show the application of the proposed model, we shall present the phenomenon of coal transporta-
tion problem. Coal is a kind of important energy source in the development of economy and society. Accordingly,
how to transport coal from mines to different areas is an important issue in coal transportation. For the simplic-
ity of description, we summarize the problem as follows. Suppose that there are three coal mines (i.e., m = 3) to
supply the coal in two companies (i.e., n = 2). During the process of transportation, two kinds of conveyances to
be selected, i.e., train and cargo ship (k = 2). Now, the task for the decision-maker is to make the transportation
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Table 2. Input data.

Unit transportation cost Holding cost Shortage cost Availability Convaynce Selling price

cij1 cij2 hj pj ai ek Sj
c111 = 5, c211 = 5, c311 = 7 c212 = 8, c112 = 11, c312 = 8 h1 = 7 p1 = 18 a1 = 50, a2 = 53 e1 = 100 S1 = 39

c121 = 6, c221 = 12, c321 = 4 c122 = 9, c222 = 9, c322 = 7 h2 = 9 p2 = 12 a3 = 72 e2 = 75 S2 = 42

Table 3. Resulting solutions of Sub-Model-1 for different αj , βj .

Demand parameters Conveyance K 1 2 Lagrange Multipliers Z

i/j 1 2 1 2

α1 = 62, α2 = 74 1 0 0 6 38 u1 = 4.39 v1 = 3.97 5703.79
β1 = 12, β2 = 18 2 0 49 0 0 u2 = 8.39 v2 = 7.97

3 43 0 25 0

α1 = 78, α2 = 84 1 0 0 47 0 u1 = 4.39 v1 = 3.97 6157.87

β1 = 16, β2 = 10 2 0 53 0 0 u2 = 8.39 v2 = 7.97
3 40.15 6.84 0 25

α1 = 79, α2 = 85 1 0 0 0 47 u1 = 4.39 v1 = 3.97 6477.34
β1 = 17, β2 = 11 2 14.65 38.34 0 0 u2 = 8.39 v2 = 7.97

3 47 0 25 0

Table 4. Resulting solutions of Sub-Model-2 for different λj .

Demand parameters Conveyance K 1 2 Lagrange Multipliers Z

i/j 1 2 1 2
λ1 = 0.018, λ2 = 0.012 1 34.56 0 0 0 u1 = 4.67 v1 = 9.32 4575.41

2 0 49.34 0 3.23 u2 = 4.67 v2 = 6.32

3 0 0 39 31.14

λ1 = 0.015, λ2 = 0.012 1 43.19 0 0 6 u1 = 4.67 v1 = 9.32 5209.39
2 0 49.75 0 0 u2 = 4.67 v2 = 6.32

3 0 0 31 37

λ1 = 0.014, λ2 = 0.018 1 32.25 0 0 0 u1 = 4.67 v1 = 9.32 5914.08
2 0 34 18.25 0 u2 = 4.67 v2 = 6.32
3 32.5 0 0 32.8

plan in order to maximize the profit. At the beginning of this problem, the decision maker needs the basic data,
such as availability of the origin, demand of the destination, capacity of the conveyances, transportation cost of
unit product, and so on. In this regard, the following input values are taken into consideration, common to all
the three Sub-Models (Tab. 2 ).

For the above forecast input data, each sub-model, random demand parameters are presented in the first
column of the respective Tables 3–5.

From the above illustration, it is seen that the optimal solutions are basic i.e., the solutions are basic feasible
solutions, since the number of non-trivial solutions is (m + n + l − 2). From Tables 3 to 5, it is clear that
more expected demand influences the decision-makers to transport more quantity of items. Consequently, more
amount transportation increases the total cost of the system as well as profit of the system. Here, it is also
seen that most of the Lagrangian multipliers are positive, which indicate for the global optimal solution of the
model.
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Table 5. Resulting solutions of Sub-Model-3 for different dj .

Demand parameters Conveyance K 1 2 Lagrange Multipliers Z

i/j 1 2 1 2

d1 = (57, 0.3), d2 = (51, 0.2) 1 37.34 0 0 0 u1 = 4.11 v1 = 2.44 5600.84

d1 = (58, 0.4), d2 = (52, 0.5) 2 0 19 29.23 0 u2 = 6.11 v2 = 3.10

d1 = (59, 0.3), d2 = (53, 0.3) 3 0 21.56 0 31.14

d1 = (61, 0.3), d2 = (54, 0.2) 1 29.25 0 20.2 0 u1 = 4.11 v1 = 2.44 6189.45

d1 = (62, 0.4), d2 = (55, 0.5) 2 0 46 0 0 u2 = 6.11 v2 = 3.10

d1 = (63, 0.3), d2 = (56, 0.3) 3 23.5 0 0 31.6

d1 = (59, 0.3), d2 = (59, 0.2) 1 0 49.75 0 0 u1 = 4.11 v1 = 2.44 6554.3

d1 = (60, 0.4), d2 = (60, 0.5) 2 38.1 0 12 0 u2 = 6.11 v2 = 3.10

d1 = (61, 0.3), d2 = (61, 0.3) 3 0 0 24.2 37

6. Practical implementation

In developing countries, like India, Bangladesh, Nepal, China, etc., due to several reasons, the parameters
especially the demand of an item is uncertain in nature. For these reasons, if we collect the previous data from
any management system belong to these countries and followed by statistical regularity criteria, its probability
distribution can be obtained for future correspondence. For this type of random demand with exponential and
logistic distribution, has a wide range of applications (cf. [22]) has been considered here. Not only that, the
more realistic discrete demand distribution is taken here. Such type of transportation system is found for the
seasons products, like-winter garments, raincoats, summer creams, seasonal fruit juice, etc., or the attractive
items, like bikes, cars, and mobile phones, etc. Here as per reality, profit maximization criteria are introduced
instead of cost minimization of the system. So the above transportation model has a wide practical area of the
above mentioned transportation management.

7. Discussion and conclusion

In today’s highly comparative market, the decision-makers deliver the product to the customer in effective
ways, although the system has a heavy uncertainty. The literature focused on a solid transportation problem
(STP) where the demand of the destinations are not fixed quantities, but uncertain in nature. The presented
numerical result is a choice of such decision making problem for a particular illustration. Here such a STP is
taken into consideration with a more realistic profit maximization form. The formulated STP is simplified with
different probability distributions and their comparative results are illustrated.

The proposed model is one of the realistic models, so it can be developed with other different types of
environments, like rough, fuzzy rough, fuzzy stochastic, etc. The model can be extended with a multi-item solid
transportation problem, model with fixed charge, model with more vehicle costs, etc. The proposed SSTP can
be solved with some other programming problems, like genetic algorithms, simulation methods, etc. All these
can be taken as future research.
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