Quadratic problems with two quadratic constraints: convex quadratic relaxation and strong lagrangian duality
RAIRO. Operations Research, Tome 55 (2021), pp. S2905-S2922

In this paper, we study a nonconvex quadratic minimization problem with two quadratic constraints, one of which being convex. We introduce two convex quadratic relaxations (CQRs) and discuss cases, where the problem is equivalent to exactly one of the CQRs. Particularly, we show that the global optimal solution can be recovered from an optimal solution of the CQRs. Through this equivalence, we introduce new conditions under which the problem enjoys strong Lagrangian duality, generalizing the recent condition in the literature. Finally, under the new conditions, we present necessary and sufficient conditions for global optimality of the problem.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020130
Classification : 90C20, 90C22, 90C26, 90C42
Keywords: Quadratically constrained quadratic programming, convex quadratic relaxation, strong duality, SDO-relaxation
@article{RO_2021__55_S1_S2905_0,
     author = {Hamdi, Abdelouahed and Taati, Akram and Almaadeed, Temadher A.},
     title = {Quadratic problems with two quadratic constraints: convex quadratic relaxation and strong lagrangian duality},
     journal = {RAIRO. Operations Research},
     pages = {S2905--S2922},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020130},
     mrnumber = {4223210},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020130/}
}
TY  - JOUR
AU  - Hamdi, Abdelouahed
AU  - Taati, Akram
AU  - Almaadeed, Temadher A.
TI  - Quadratic problems with two quadratic constraints: convex quadratic relaxation and strong lagrangian duality
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2905
EP  - S2922
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020130/
DO  - 10.1051/ro/2020130
LA  - en
ID  - RO_2021__55_S1_S2905_0
ER  - 
%0 Journal Article
%A Hamdi, Abdelouahed
%A Taati, Akram
%A Almaadeed, Temadher A.
%T Quadratic problems with two quadratic constraints: convex quadratic relaxation and strong lagrangian duality
%J RAIRO. Operations Research
%D 2021
%P S2905-S2922
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020130/
%R 10.1051/ro/2020130
%G en
%F RO_2021__55_S1_S2905_0
Hamdi, Abdelouahed; Taati, Akram; Almaadeed, Temadher A. Quadratic problems with two quadratic constraints: convex quadratic relaxation and strong lagrangian duality. RAIRO. Operations Research, Tome 55 (2021), pp. S2905-S2922. doi: 10.1051/ro/2020130

[1] S. Adachi and Y. Nakatsukasa, Eigenvalue-based algorithm and analysis for nonconvex QCQP with one constraint. Math. Program. 173 (2019) 79–116. | MR | DOI

[2] S. Adachi, S. Iwata, Y. Nakatsukasa and A. Takeda, Solving the trust region subproblem by a generalized eigenvalue problem. SIAM J. Optim. 27 (2017) 269–291. | MR | DOI

[3] F. Alizadeh and D. Goldfarb, Second-order cone programming. Math. Program. 95 (2003) 3–51. | MR | Zbl | DOI

[4] W. Ai and S. Zhang, Strong duality for the CDT subproblem: a necessary and sufficient condition. SIAM J. Optim. 19 (2009) 1735–1756. | MR | Zbl | DOI

[5] S. Ansary Karbasy and M. Salahi, Quadratic optimization with two ball constraints. Numer. Algebra Control Optim. 10 (2020) 165–175. | MR | DOI

[6] A. Beck and Y. C. Eldar, Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17 (2006) 844–860. | MR | Zbl | DOI

[7] A. Ben-Tal and D. Den Hertog, Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math. Program. 143 (2014) 1–29. | MR | Zbl | DOI

[8] A. Ben-Tal and M. Teboulle, Hidden convexity in some nonconvex quadratically constrained quadratic programming. Math. Program. 72 (1996) 51–63. | MR | Zbl | DOI

[9] D. Bienstock, A note on polynomial solvability of the CDT problem. SIAM J. Optim. 26 (2016) 488–498. | MR | DOI

[10] P. T. Boggs and J. W. Tolle, Sequential quadratic programming. Acta Numer. 4 (1995) 1–51. | MR | Zbl | DOI

[11] I. M. Bomze and M. L. Overton, Narrowing the difficulty gap for the Celis–Dennis–Tapia problem. Math. Program. 151 (2015) 459–476. | MR | DOI

[12] I. M. Bomze, V. Jeyakumar and G. Li, Extended trust-region problems with one or two balls: exact copositive and Lagrangian relaxations. J. Global Optim. 71 (2018) 551–569. | MR | DOI

[13] M. R. Celis, J. E. Dennis and R. A. Tapia, A trust region strategy for nonlinear equality constrained optimization, edited by P. T. Boggs, R. H. Byrd and R. B. Schnabel. In: Numerical Optimization. SIAM, Philadelphia (1985) 71–82. | MR | Zbl

[14] X.-D. Chen and Y.-X. Yuan, On local solutions of the Celis–Dennis–Tapia subproblem. SIAM J. Optim. 10 (1999) 359–383. | MR | Zbl | DOI

[15] A. R. Conn, N. I. M. Gould and P. L. Toint, Trust Region Methods. SIAM, Philadelphia, PA (2000). | MR | Zbl

[16] J. M. Feng, G. X. Lin, R. L. Sheu and Y. Xia, Duality and solutions for quadratic programming over single non-homogeneous quadratic constraint. J. Global Optim. 54 (2012) 275–293. | MR | Zbl | DOI

[17] G. C. Fehmers, L. P. J. Kamp and F. W. Sluijter, An algorithm for quadratic optimization with one quadratic constraint and bounds on the variables. Inverse Prob. 14 (1998) 893–901. | MR | Zbl | DOI

[18] C. Fortin and H. Wolkowicz, The trust region subproblem and semidefinite programming. Optim. Methods Softw. 19 (2004) 41–67. | MR | Zbl | DOI

[19] G. H. Golub and U. Von Matt, Quadratically constrained least squares and quadratic problems. Numer. Math. 59 (1991) 186–197. | MR | Zbl | DOI

[20] N. I. Gould, S. Lucidi, M. Roma and P. L. Toint, Solving the trust-region subproblem using the Lanczos method. SIAM J. Optim. 9 (1999) 504–525. | MR | Zbl | DOI

[21] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014) 21–57.

[22] N. Ho-Nguyen and F. Kilinç-Karzan, A Second-order cone based approach for solving the trust-region subproblem and its variants. SIAM J. Optim. 27 (2017) 1485–1512. | MR | DOI

[23] Y. Hsia and R. L. Sheu, Trust region subproblem with a fixed number of additional linear inequality constraints has polynomial complexity. Preprint arXiv:1312.1398 (2013).

[24] Y. Hsia, G.-X. Lin and R.-L. Sheu, A revisit to quadratic programming with one inequality quadratic constraint via matrix pencil. Pac. J. Optim. 10 (2014) 461–481. | MR | Zbl

[25] V. Jeyakumar and G. Li, Strong duality in robust convex programming: complete characterizations. SIAM J. Optim. 20 (2010) 3384–3407. | MR | Zbl | DOI

[26] V. Jeyakumar and G. Li, A robust von-Neumann minimax theorem for zero-sum games under bounded payoff uncertainty. Oper. Res. Lett. 39 (2011) 109–114. | MR | Zbl | DOI

[27] V. Jeyakumar and G. Y. Li, Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. 147 (2014) 171–206. | MR | Zbl | DOI

[28] R. Jiang and D. Li, Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming, SIAM J. Optim. 26 (2016) 1649–1668. | MR | DOI

[29] R. Jiang and D. Li, Novel reformulations and efficient algorithms for the generalized trust region subproblem. SIAM J. Optim. 29 (2019) 1603–1633. | MR | DOI

[30] R. Jiang, D. Li and B. Wu, SOCP reformulation for the generalized trust region subproblem via a canonical form of two symmetric matrices. Math. Program. 169 (2018) 531–563. | MR | DOI

[31] P. Lancaster and L. Rodman, Canonical forms for hermitian matrix pairs under strict equivalence and congruence. SIAM Rev. 47 (2005) 407–443. | MR | Zbl | DOI

[32] M. Locatelli, Some results for quadratic problems with one or two quadratic constraints. Oper. Res. Lett. 43 (2015) 126–131. | MR | DOI

[33] M. Locatelli, Exactness conditions for an SDP relaxation of the extended trust region problem. Optim. Lett. 10 (2016) 1141–1151. | MR | DOI

[34] J. J. Moré, Generalizations of the trust region problem. Optim. Methods Softw. 2 (1993) 189–209. | DOI

[35] J. J. Moré and D. C. Sorensen, Computing a trust region step. SIAM J. Sci. Stat. Comput. 4 (1983) 553–572. | MR | Zbl | DOI

[36] S. Omatu and J. H. Seinfeld, Distributed Parameter Systems: Theory and Applications. Clarendon Press (1989). | MR | Zbl

[37] T. K. Pong and H. Wolkowicz, The generalized trust region subproblem. Comput. Optim. App. 58 (2014) 273–322. | MR | Zbl | DOI

[38] M. J. D. Powell and Y. Yuan, A trust region algorithm for equality constrained optimization. Math. Program. 49 (1991) 189–211. | MR | Zbl | DOI

[39] M. Rojas, S. A. Santos and D. C. Sorensen, A new matrix-free algorithm for the large-scale trust-region subproblem. SIAM J. Optim. 11 (2001) 611–646. | MR | Zbl | DOI

[40] S. Sakaue, Y. Nakatsukasa, A. Takeda and S. Iwata, Solving generalized CDT problems via two-parameter eigenvalues. SIAM J. Optim. 26 (2016) 1669–1694. | MR | DOI

[41] M. Salahi and A. Taati, An efficient algorithm for solving the generalized trust region subproblem. Comput. Appl. Math. 37 (2018) 395–413. | MR | DOI

[42] M. Salahi and A. Taati, A fast eigenvalue approach for solving the trust region subproblem with an additional linear inequality. Comput. Appl. Math. 37 (2018) 329–347. | MR | DOI

[43] M. Salahi, A. Taati and H. Wolkowicz, Local nonglobal minima for solving large-scale extended trust-region subproblems. Comput. Optim. App. 66 (2017) 223–244. | MR | DOI

[44] J. F. Sturm and S. Zhang, On cones of nonnegative quadratic functions. Math. Oper. Res. 28 (2003) 246–267. | MR | Zbl | DOI

[45] A. Taati and M. Salahi, A conjugate gradient-based algorithm for large-scale quadratic programming problem with one quadratic constraint. Comput. Optim. App. 74 (2019) 195–223. | MR | DOI

[46] A. Taati and M. Salahi, On local non-global minimizers of quadratic optimization problem with a single quadratic constraint. Numer. Funct. Anal. Optim. 41 (2020) 969–1005. | MR | DOI

[47] A. L. Wang and F. Kilinç-Karzan, On the tightness of SDP relaxations of QCQPs. Technical Report, arXiv:1911.09195 (2019).

[48] Y. Ye and S. Zhang, New results on quadratic minimization. SIAM J. Optim. 14 (2003) 245–267. | MR | Zbl | DOI

[49] Y. Yuan, On a subproblem of trust region algorithms for constrained optimization. Math. Program. 47 (1990) 53–63. | MR | Zbl | DOI

[50] Y. Yuan, A dual algorithm for minimizing a quadratic function with two quadratic constraints. J. Comput. Math. 9 (1991) 348–359. | MR | Zbl

[51] Y. Zhang, Computing a Celis–Dennis–Tapia trust-region step for equality constrained optimization. Math. Program. 55 (1992) 109–124. | MR | Zbl | DOI

Cité par Sources :