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QUADRATIC PROBLEMS WITH TWO QUADRATIC CONSTRAINTS: CONVEX
QUADRATIC RELAXATION AND STRONG LAGRANGIAN DUALITY

Abdelouahed Hamdi1,∗, Akram Taati2 and Temadher A. Almaadeed1

Abstract. In this paper, we study a nonconvex quadratic minimization problem with two quadratic
constraints, one of which being convex. We introduce two convex quadratic relaxations (CQRs) and
discuss cases, where the problem is equivalent to exactly one of the CQRs. Particularly, we show that
the global optimal solution can be recovered from an optimal solution of the CQRs. Through this
equivalence, we introduce new conditions under which the problem enjoys strong Lagrangian dual-
ity, generalizing the recent condition in the literature. Finally, under the new conditions, we present
necessary and sufficient conditions for global optimality of the problem.
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1. Introduction

Consider the following nonconvex quadratic optimization problem:

p∗ := inf q1(x) := xTAx+ 2aTx

s.t. q2(x) := xTBx+ 2bTx+ β ≤ 0, (P)

q3(x) := xTCx+ 2dTx+ γ ≤ 0,

where A,B,C ∈ Rn×n are symmetric matrices, a, b, d ∈ Rn and β, γ ∈ R. In this paper, we study the case
that matrix C is positive semidefinite. Model problem (P) arises in many areas such as constrained and uncon-
strained nonlinear optimization problems when the trust-region methods are applied to solve [13, 15], double
well potential problems [16], solving an inverse problem via regularization [17, 19], the numerical solution of
parameter identification problems [5,36], the robust formulation of convex quadratic inequalities with ellipsoidal
implementation errors [7]. More applications can be found, e.g., in [7] (Rem. 2.5 and Sect. 3). The trust-region
subproblem (TRS):

min xTAx+ 2aTx
s.t. ||x|| ≤ ∆,
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is a special case of (P) that is an essential subproblem in trust-region methods for nonlinear optimization [15]. It
is well-known that TRS can be solved efficiently both in theory and practice [2,15,18,20,35,39]. Most importantly,
TRS enjoys many useful and attractive features such as strong Lagrangian duality and exact semidefinite
optimization (SDO) relaxation [18, 48]. Problem (P) with one general quadratic inequality constraint, known
as the generalized trust-region subproblem (GTRS), has been widely studied in the literature. Several methods
have been derived for solving GTRS under various assumptions [1, 7, 8, 16, 29, 30, 32, 34, 37, 41, 45, 46, 48]. It
has strong duality and an exact SDO-relaxation under the Slater condition [37,48]. Ben-Tal and den Hertog [7]
have derived a second order cone programming reformulation for GTRS under a simultaneously diagonalizability
assumption. Most recently, in [29], the authors have introduced a new convex quadratic reformulation for GTRS
that minimizes a linear function subject to one or two convex quadratic constraints. They also have shown that
the optimal solution of GTRS can be recovered from an optimal solution of the given reformulation.

The extended trust-region subproblem (eTRS) that enforces additional linear inequality constraints on the
trust-region has been discussed in the literature [10, 22, 25–27, 33, 42–44]. Jeyakumar and Li [27] proved exact-
ness of the SDO-relaxation for eTRS under a dimension condition. Moreover, they proved that the dimension
condition together with the Slater condition ensure that strong Lagrangian duality holds for eTRS [27]. In the
case of one linear constraint that is a special case of problem (P), the dimension condition requires that the
multiplicity of the minimum eigenvalue of the matrix A must be at least 2. The dimension condition is also
extended to the trust-region subproblem with additional uniform convex quadratic inequality constraints [27].
Later, in [23], the authors improved the dimension condition for tightness of the SDO-relaxation of eTRS. Most
recently, in [22], the authors have examined variants of TRS having additional conic constraint. They derived
an exact convex relaxation under a structural condition on the conic constraint.

When B = I, b = 0 and C � 0, problem (P) reduces to the well-known Celis–Dennis–Tapia (CDT) problem.
The CDT problem appears as a subproblem in some trust-region algorithms for constrained optimization where
the original problem is to minimize a general nonlinear function subject to equality constraints [13,38]. Several
articles have examined CDT and related problems [4,6,7,9,11,14,40,49–51]. In [11], the authors proved necessary
and sufficient conditions for local and global optimality of the CDT problem via copositivity that gives a
complete characterization in the degenerate case. Problem (P) with indefinite B and positive definite C has
been studied in [4, 40]. In [4], the authors presented a necessary and sufficient condition based on an optimal
solution of the SDO-relaxation to characterize when the problem and its Lagrangian dual admit no duality
gap. Moreover, they showed that if strong duality holds then an optimal solution can be obtained from an
optimal solution of the SDO-relaxation, by means of a matrix rank-one decomposition procedure. In [40], the
authors introduced a polynomial-time algorithm that computes all KKT points by solving a two-parameter linear
eigenvalue problem. Then, the algorithm finds a global optimal solution as the KKT point with the smallest
objective value. A geometric condition ensuring exact copositive relaxation for problem (P) with indefinite
B, positive semidefinite C and additional linear inequality constraints is given in [12]. In [7, 32], the authors
derived a second order cone programming (SOCP) relaxation for problem (P) where the quadratic forms are
simultaneously diagonalizable. They proved that if certain additional conditions hold, then the optimal solution
of problem (P) can be obtained from the optimal solution of the SOCP relaxation [7]. However, they also
illustrated that the SOCP relaxation may not return the optimal solution of (P) even when B � 0 and the
second constraint is a linear inequality.

In this paper, we consider problem (P) where C � 0. We also assume that there exists λ̂ ≥ 0 such that
A + λ̂B � 0. Obviously, this problem is more general than the CDT problem since the first constraint can be
nonconvex. Motivated by [29], we present two convex quadratic relaxations (CQRs) under two different condi-
tions for problem (P). The CQRs minimize a linear objective function over three convex quadratic constraints.
In the case of GTRS, our CQRs reduce to the ones proposed in [29]. Then we discuss when the CQRs are exact
and return an optimal solution to problem (P). This results in sufficient conditions based on one (any) optimal
solution of CQRs under which problem (P) is equivalent to exactly one of the CQRs, and the optimal solution
of (P) can be recovered from an optimal solution of the CQRs. We also show that these conditions are sufficient
for strong Lagrangian duality and consequently for exactness of the SDO-relaxation of (P). Although a direct
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verification of the sufficient conditions requires an optimal solution of the CQRs, it is possible to use them in
order to find the ones which are expressed in terms of the data of the problem. These conditions are in fact an
extension of the one given in [22] for the CDT problem as a special case to more general model problem (P). The
sufficient conditions introduced in the paper, ensure the exactness of both the CQRs and the SDO-relaxation
of problem (P). It is worth noting that the solution of a semidefinite problem is still an intractable task for
many practical large-scale or dense problems, while the CQRs are significantly more tractable than SDOs, and
advanced commercial software is available to solve them [21]. Finally, as a consequence, we present necessary
and sufficient conditions for global optimality of problem (P) under the new conditions together with the Slater
condition.

As mentioned before, a necessary and sufficient condition for strong Lagrangian duality of problem (P) where
C � 0 is given in [4]. The condition requires an optimal solution of the SDO-relaxation and hence can not
be verified for large-scale instances. In contrast, both of our sufficient conditions, the one based on an optimal
solution of the CQRs and the other based on the data of the problem, can be verified efficiently for large-scale
instances. From a convex reformulation perspective, both the SOCP relaxation studied in [7,32] and our CQRs
are convex quadratic problems and significantly more tractable than the SDO-relaxation. It should be noted
that the former covers instances of problem (P) where the Hessian of the quadratic forms are simultaneously
diagonalizable, but, in general, this property does not hold for the underlying problem in the paper. Conditions
for simultaneous diagonalizability and corresponding algorithms are investigated recently in [28]. Most recently,
in [47], it has been shown that under the simultaneously diagonalizability assumption, the SDO-relaxation is
in fact equivalent to the SOCP relaxation from [7, 32]. Therefore, when the simultaneously diagonalizability
assumption and the given sufficient conditions in the paper hold, the CQRs and the SOCP relaxation are
equivalent.

The rest of the paper is organized as follows. In Section 2, we introduce the CQRs. Then, in Section 3, we
discuss when and how one can obtain an optimal solution of problem (P) from an optimal solution of the CQRs,
revealing new sufficient conditions for strong Lagrangian duality of problem (P). In Section 4, we give sufficient
conditions for exactness of the CQRs and strong Lagrangian duality of problem (P) in terms of the data of the
problem and then compare them with the related conditions from the literature. We also present necessary and
sufficient conditions for global optimality of problem (P).

Notations. Throughout this paper, for a symmetric matrix A, A � 0(A � 0) denotes A is positive definite
(positive semidefinite). Moreover, Null(A) and Rank(A) denote its Null space and Rank. For two symmetric
matrices A and B, we use λmin(A,B) to denote the smallest generalized eigenvalue of the pencil A − λB and
λmin(A) to denote the smallest eigenvalue of matrix A. Finally, A • B := trace(AB) is the usual matrix inner
product of two symmetric matrices A and B.

2. Convex quadratic relaxations

In this section, we present two new CQRs for problem (P) under two different conditions. These CQRs are
later used to solve problem (P) globally and to derive sufficient conditions under which problem (P) enjoys strong
Lagrangian duality and exact SDO-relaxation. We assume that C is positive semidefinite and also consider the
following assumptions.

Assumption 2.1. There exists λ̂ ≥ 0 such that A+ λ̂B � 0.

Assumption 2.2. The Slater condition holds for problem (P), i.e., there exists x̂ with q2(x̂) < 0 and q3(x̂) < 0.

Under Assumptions 2.1 and 2.2, problem (P) is solvable due to the following lemma.

Lemma 2.3. Suppose that Assumptions 2.1 and 2.2 hold. Then problem (P) is solvable, i.e., the infimum in
(P) is always attainable.
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Proof. It is obvious that problem (P) is equivalent to its epigraph reformulation as follows:

p∗ = inf
t,x

t

s.t. q1(x) ≤ t, (P0)
q2(x) ≤ 0,
q3(x) ≤ 0.

Under Assumptions 2.1 and 2.2, it is well-known that problem (P) without the second constraint is bounded
from below (see [24], Thm. 5). This implies that (P0) is equivalent to the following problem:

p∗ = inf
t,x

t

s.t. q1(x) ≤ t,
q2(x) ≤ 0, (2.1)
q3(x) ≤ 0,
t̃ ≤ t ≤M,

where t̃ is the optimal (infimum) value of q1(x) over the constraint q2(x) ≤ 0 and M is a sufficiently large
constant. Let S denote the feasible region of problem (2.1). The set S is closed and the objective function in
problem (2.1) is continuous. Therefore, to prove the assertion, it is sufficient to establish that S is bounded.
Since t̃ ≤ t ≤M , we only need to show that there exists M̂ > 0 such that ||x|| ≤ M̂ for all (x, t) ∈ S. To do so,
let h(x) := q1(x) + λ̂q2(x) where λ̂ is the same as in Assumption 2.1. The function h is strictly convex and for
any (x, t) ∈ S, we have h(x) ≤M which completes the proof. �

By Assumption 2.1, matrices A and B are simultaneously diagonalizable by congruence [31], i.e., there
exists an invertible matrix Q and diagonal matrices D = diag(α1, . . . , αn) and E = diag(e1, . . . , en) such that
QTAQ = D and QTBQ = E. It is easy to verify that A+ λB � 0 if and only if λ ∈ [λ1, λ2] where

λ1 = max
{
−αi
ei
|ei > 0

}
, λ2 = min

{
−αi
ei
|ei < 0

}
.

If A � 0, λ1 < 0 else λ1 ≥ 0. We have two cases for the set IPSD = {λ ≥ 0|A + λB � 0} as follows, where
λ̂1 = max{0, λ1}:

Condition 1. IPSD = [λ̂1, λ2] if B is not positive semidefinite.

Condition 2. IPSD = [λ̂1,∞) if B is positive semidefinite.
Note that, in Condition 1, the interval [λ̂1, λ2] is not a singleton, i.e., λ̂1 < λ2. To see this, first let λ̂1 = λ1.

By Assumption 2.1, the open interval (λ1, λ2) is nonempty. Therefore, λ̂1 < λ2. Next, let λ̂1 = 0. Then λ1 < 0
and consequently A � 0. This implies that D � 0 and thus αi > 0 for all i = 1, . . . , n. Therefore, by the
definition of λ2, we have λ2 > 0, implying that λ̂1 < λ2.

Now we are ready to introduce two new CQRs (P1) and (P2) corresponding to Conditions 1 and 2, respectively,
by defining h1(x) = q1(x) + λ̂1q2(x) and h2(x) = q1(x) + λ2q2(x):

p∗1 := inf
x,t

t

s.t. h1(x) ≤ t, (P1)
h2(x) ≤ t,
q3(x) ≤ 0,
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and

p∗2 := inf
x

h1(x)

s.t. q2(x) ≤ 0, (P2)
q3(x) ≤ 0.

Recall that we assumed C is positive semidefinite. When both A and B are positive semidefinite, then Condition
2 holds with λ̂1 = 0 and thus problem (P2) reduces to problem (P) which is already a convex quadratic problem.
Hence, from now on, we assume that at least one of q1(x) and q2(x) is nonconvex. Problems (P1) and (P2) are
both convex. Suppose that Condition 1 holds and x is a feasible solution of (P0). Since q2(x) ≤ 0 and λ̂1, λ2 ≥ 0,
then

h1(x) = q1(x) + λ̂1q2(x) ≤ q1(x) ≤ t,
h2(x) = q1(x) + λ2q2(x) ≤ q1(x) ≤ t.

Therefore, the feasible region of (P1) contains that of (P0) and since the two problems have the same objective
function, then we have p∗1 ≤ p∗, i.e., (P1) is a convex relaxation of (P0). Next, suppose that Condition 2 holds.
Problems (P2) and (P) have the same feasible region and since h1(x) ≤ q1(x), we have p∗2 ≤ p∗, implying that
(P2) is a convex relaxation of (P). The following lemma states that problems (P1) and (P2) are bounded from
below and their optimal values are attained.

Lemma 2.4. Under Assumptions 2.1 and 2.2, problems (P1) and (P2) are bounded from below and their optimal
values are attained.

Proof. Consider problem (P1). By Theorem 2.9 of [29], problem

inf
x,t

t

s.t. h1(x) ≤ t, (2.2)
h2(x) ≤ t,

is bounded from below and its optimal value is attained. This implies that problem (P1) is equivalent to the
following problem:

p∗1 = inf
x,t

t

s.t. h1(x) ≤ t, (2.3)
h2(x) ≤ t,
q3(x) ≤ 0,
t̂ ≤ t ≤M,

where t̂ is the optimal value of (2.2) and M is a sufficiently large constant. Let S denote the feasible region of
(2.3). The set S is closed and the objective function in (2.3) is continuous. Therefore, to prove the assertion,
it is sufficient to establish that S is bounded. Since t̂ ≤ t ≤ M , we only need to show there exists M̂ > 0 such
that ||x|| ≤ M̂ for all (x, t) ∈ S. To this end, let h(x) := α1h1(x) + α2h2(x) where α1, α2 > 0 and α1 + α2 = 1.
The function h is strictly convex and for any (x, t) ∈ S, we have h(x) ≤ M . The proof for problem (P2) is
similar. �

Remark 2.5. Recall that we have assumed that there exists λ̂ ≥ 0 such that A+ λ̂B � 0. Then, λ1 and λ2 can
be efficiently computed via finding some generalized eigenvalues of a matrix pencil, see [29, 37, 45]. Precisely,
A+ λB � 0 if and only if λ1 ≤ λ ≤ λ2 where λ1 = λ+ λ̂, λ2 = λ̄+ λ̂,

λ =

{
1

λmin(−B,A+λ̂B)
if λmin(−B,A+ λ̂B) < 0,

−∞ otherwise,
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and

λ̄ =

{
1

λmin(B,A+λ̂B)
if λmin(B,A+ λ̂B) < 0,

∞ otherwise.

3. Global minimization and strong duality

Here, we discuss cases where the nonconvex problem (P) is equivalent to one of the CQRs (P1) and (P2), i.e.,
p∗ = p∗1 or p∗ = p∗2 and the optimal solution of (P) can be recovered from an optimal solution of the CQRs.
Moreover, through this equivalence, new conditions under which problem (P) enjoys strong Lagrangian duality
are introduced.

The following theorem states a necessary and sufficient condition for the exactness of the CQRs (P1) and
(P2).

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold.

(i) Under Condition 1, problem (P) is equivalent to the CQR (P1), i.e., p∗ = p∗1 if and only if there exists
an optimal solution (x∗, t∗) to problem (P1) such that h1(x∗) = h2(x∗) = t∗ or h2(x∗) < t∗ and λ̂1 = 0.
Moreover, x∗ is optimal for problem (P).

(ii) Under Condition 2, problem (P) is equivalent to the CQR (P2), i.e., p∗ = p∗2 if and only if there exists an
optimal solution x∗ to problem (P2) such that q2(x∗) = 0. Moreover, x∗ is optimal for problem (P).

Proof. (i) First note that for any optimal solution (x∗, t∗) of problem (P1), we have h1(x∗) = t∗ or h2(x∗) = t∗.
To see this, suppose by contradiction that h1(x∗) < t∗ and h2(x∗) < t∗. Set t̃ = max{h1(x∗), h2(x∗)}. Then
t̃ < t∗ and (x∗, t̃) is a feasible solution of (P1) with smaller objective value than t∗. This contradicts the fact
that (x∗, t∗) is an optimal solution of (P1). Now suppose that there exists an optimal solution (x∗, t∗) to
problem (P1) such that h1(x∗) = h2(x∗) = t∗. Then h1(x∗) = h2(x∗) = t∗ implies that (λ̂1 − λ2)q2(x∗) = 0.
Furthermore, since λ̂1 6= λ2, we obtain q2(x∗) = 0, and consequently, q1(x∗) = h1(x∗) − λ̂1q2(x∗) = t∗.
These together with q3(x∗) ≤ 0 show that (x∗, t∗) is also feasible for (P0) and since (P1) is a relaxation of
(P0), then (x∗, t∗) solves (P0), p∗ = p∗1 and thus x∗ solves (P). Next, suppose that there exists an optimal
solution (x∗, t∗) to problem (P1) such that h2(x∗) < t∗ and λ̂1 = 0. Then, since h2(x∗) < t∗, we have
h1(x∗) = t∗. Furthermore, h2(x∗) < t∗ and h1(x∗) = t∗ imply that (λ2 − λ̂1)q2(x∗) < 0. Then λ2 > λ̂1

results in q2(x∗) < 0. Moreover, we have q1(x∗) = h1(x∗)− λ̂1q2(x∗) = t∗. These together with the fact that
q3(x∗) ≤ 0 show that (x∗, t∗) is also feasible for (P0) and since (P1) is a relaxation of (P0), then (x∗, t∗)
solves (P0), p∗ = p∗1 and thus x∗ solves problem (P). To prove the converse, we show that p∗1 < p∗ if for
every optimal solution (x∗, t∗) of problem (P1), h1(x∗) < t∗ or h2(x∗) < t∗ with λ̂1 > 0. First suppose that
h1(x∗) < t∗ for every optimal solution (x∗, t∗) of problem (P1). In this case, we have h2(x∗) = t∗. Then
h1(x∗) < t∗ and h2(x∗) = t∗ imply that (λ̂1 − λ2)q2(x∗) < 0. Since λ̂1 < λ2, we obtain

q2(x∗) > 0. (3.1)

Suppose by contradiction that p∗1 = p∗ and let (x̄, t̄) be an optimal solution of (P0). Then (x̄, t̄) is feasible
for (P1) and p∗1 = t∗ = p∗ = t̄. This implies that (x̄, t̄) is also optimal for (P1). Therefore, q2(x̄) > 0
that contradicts the fact that (x̄, t̄) is feasible for (P0). Next consider the case where h2(x∗) < t∗ and
λ̂1 > 0 for every optimal solution (x∗, t∗) of (P1). To prove that p∗1 < p∗, suppose by contradiction that
p∗1 = p∗. Let (x̄, t̄) be an optimal solution of (P0). Then, (x̄, t̄) is feasible for (P1) and p∗1 = t∗ = p∗ = t̄.
This implies that (x̄, t̄) is also optimal for (P1). Then, h2(x̄) < t̄ and consequently h1(x̄) = t̄. Therefore,
q1(x̄) = h1(x̄) − λ̂1q2(x̄) > t̄ since λ̂1 > 0 and q2(x̄) ≤ 0. Then q1(x̄) > t̄ contradicts the fact that (x̄, t̄) is
feasible for (P0).

(ii) First note that since we have assumed that q1(x) and q2(x) are not both convex, then λ̂1 > 0. Suppose
that there exists an optimal solution x∗ to problem (P2) such that q2(x∗) = 0. Since q2(x∗) = 0 and (P2) is a
relaxation of (P0), then q1(x∗) = p∗2 ≤ p∗ ≤ q1(x∗) and consequently p∗ = p∗2 = q1(x∗) and x∗ solves (P). To
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prove the converse, we show that p∗2 < p∗ if for every optimal solution x∗ of problem (P2), q2(x∗) < 0. To see
this, suppose by contradiction that p∗2 = p∗ and let x̄ be an optimal solution of (P2). Since x̄ is feasible for
(P2) and p∗2 = p∗, x̄ is also optimal for (P2) and thus q2(x̄) < 0. On the other hand, p∗2 = q1(x̄) + λ̂1q2(x̄) =
p∗ = q1(x̄). Since λ̂1 > 0, we obtain q2(x̄) = 0 that contradicts the fact that q2(x̄) < 0. �

The following theorem gives a sufficient condition under which strong Lagrangian duality holds for problem
(P).

Theorem 3.2. Suppose that Assumptions 2.1 and 2.2 hold.

(i) Under Condition 1, if there exists an optimal solution (x∗, t∗) to problem (P1) such that h1(x∗) = h2(x∗) =
t∗ or h2(x∗) < t∗ and λ̂1 = 0, then strong duality holds for problem (P) and its Lagrangian dual problem is
solvable.

(ii) Under Condition 2, if there exists an optimal solution x∗ to problem (P2) such that q2(x∗) = 0, then strong
duality holds for problem (P) and its Lagrangian dual problem is solvable.

Proof. (i) Since problem (P1) is convex and satisfies the Slater condition, there exist nonnegative multipliers
µ∗1, µ

∗
2 and µ∗3 such that(

A+
(
µ∗1λ̂1 + µ∗2λ2

)
B + µ∗3C

)
x∗ = −

(
a+

(
µ∗1λ̂1 + µ∗2λ2

)
b+ µ∗3d

)
, (3.2)

µ∗1 (h1(x∗)− t∗) = 0, (3.3)
µ∗2 (h2(x∗)− t∗) = 0, (3.4)

µ∗3q3(x∗) = 0, (3.5)
µ∗1 + µ∗2 = 1, (3.6)
h1(x∗) ≤ t∗, (3.7)
h2(x∗) ≤ t∗, (3.8)
q3(x∗) ≤ 0. (3.9)

First suppose that there exists an optimal solution (x∗, t∗) to problem (P1) such that h1(x∗) = h2(x∗) = t∗.
Then h1(x∗) = h2(x∗) = t∗ implies that q2(x∗) = 0. Set λ∗ = µ∗1λ̂1 + µ∗2λ2. Since µ∗1 ≥ 0, µ∗2 ≥ 0 and
µ∗1 + µ∗2 = 1, then λ∗ ∈ [λ̂1, λ2] and thus A+ λ∗B � 0. Furthermore, since µ∗3 ≥ 0 and C � 0, we have

A+ λ∗B + µ∗3C � 0. (3.10)

Also, we have

p∗ ≥ d∗ : = max
γ1,γ2≥0

min
x
{q1(x) + γ1q2(x) + γ3q3(x)} (3.11)

≥ min
x
{q1(x) + λ∗q2(x) + µ∗3q3(x)}

= q1(x∗) + λ∗q2(x∗) + µ∗3q3(x∗)
= q1(x∗) ≥ p∗,

where the first inequality follows from the weak duality property, the second equality follows from (3.2)
and (3.10), the third equality follows from (3.5) and q2(x∗) = 0 and the last inequality follows from the
feasibility of x∗. Therefore, we have p∗ = d∗, i.e., strong duality holds for problem (P) and the maximum in
(3.11) is attained. Next consider the case where there exists an optimal solution of (P) such that h2(x∗) < t∗

and λ̂1 = 0. By setting λ∗ = 0, the same approach as above can be applied to show that strong duality
holds for (P) and the Lagrangian dual problem is solvable.
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(ii) Suppose that there exists an optimal solution to (P2) such that q2(x∗) = 0. Problem (P2) is convex, satisfies
the Slater condition and by Lemma 2.4 is solvable. Therefore, there exist nonnegative multipliers µ∗1 and
µ∗2 such that (

A+
(
λ̂1 + µ∗1

)
B + µ∗2C

)
x∗ = −

(
a+

(
µ∗1 + λ̂1

)
b+ µ∗2d

)
, (3.12)

µ∗1q2(x∗) = 0, (3.13)
µ∗2q3(x∗) = 0, (3.14)
q2(x∗) ≤ 0, (3.15)
q3(x∗) ≤ 0. (3.16)

By setting λ∗ = µ∗1 + λ̂1, the same discussion as part (i) can be applied to show that strong duality holds for
problem (P) and the Lagrangian dual problem is solvable. �

When the CQRs (P1) and (P2) have unique optimal solution, the conditions given in Theorems 3.1 and 3.2
can be verified easily. In contrast, when there are multiple optimal solutions to the CQRs, Theorems 3.1 and 3.2
require scanning the set of optimal solutions for the one satisfying the conditions. The following two theorems
give sufficient conditions for exactness of the CQRs and strong Lagrangian duality based on one (any) optimal
solution of the CQRs. In fact, these sufficient conditions ensure that there is always an optimal solution to the
CQRs (P1) and (P2) satisfying the conditions given in Theorems 3.1 and 3.2. Before that, we need the following
proposition.

Proposition 3.3 ([37], Lem. 2.5). Suppose that Assumption 2.1 holds. Then zTBz < 0 for all z ∈ Null(A+λ2B)
and zTBz > 0 for all z ∈ Null(A+ λ1B).

Proof. Let λ̂ be the same as in Assumption 2.1 and z ∈ Null(A+λ2B). We have A+ λ̂B = A+λ2B+(λ̂−λ2)B.
Then

0 < zT (A+ λ̂B)z = zT (A+ λ2B)z + (λ̂− λ2)zTBz = (λ̂− λ2)zTBz.

Since λ̂ < λ2, we conclude that zTBz < 0. Similarly, we have

0 < zT (A+ λ̂B)z = zT (A+ λ1B)z + (λ̂− λ1)zTBz = (λ̂− λ1)zTBz.

Since λ̂ > λ1, we conclude that zTBz > 0. �

Theorem 3.4. Suppose that Assumptions 2.1, 2.2 and Condition 1 hold, (x∗, t∗) is an optimal solution of
problem (P1) and one of the following holds:

(1) h1(x∗) = h2(x∗) = t∗.
(2) h1(x∗) < t∗, q3(x∗) < 0 and there exists nonzero z ∈ Null(A+ λ2B) ∩Null(C).
(3) h1(x∗) < t∗, q3(x∗) = 0 and there exists nonzero z ∈ Null(A+ λ2B) ∩Null(C) such that (a+ λ2b)T z = 0.
(4) h1(x∗) < t∗, q3(x∗) < 0, Null(A+λ2B)∩Null(C) = ∅ and either α1 ≤ α′1 or α2 ≥ α′2 where α1 and α2 are the

positive and negative roots of the quadratic equation q2(x∗+αz) = 0, respectively, α′1 and α′2 are the positive
and negative roots of the quadratic equation q3(x∗ + αz) = 0, respectively, and 0 6= z ∈ Null(A+ λ2B).

(5) h2(x∗) < t∗ and λ̂1 = 0.
(6) h2(x∗) < t∗, λ̂1 > 0, q3(x∗) < 0 and there exists nonzero z ∈ Null(A+ λ̂1B) ∩Null(C).
(7) h2(x∗) < t∗, λ̂1 > 0, q3(x∗) = 0 and there exists nonzero z ∈ Null(A+λ̂1B)∩Null(C) such that (a+λ̂1b)T z =

0.
(8) h2(x∗) < t∗, λ̂1 > 0, q3(x∗) < 0, Null(A + λ̂1B) ∩ Null(C) = ∅ and either α1 ≤ α′1 or α2 ≥ α′2 where

α1 and α2 are the positive and negative roots of the quadratic equation q2(x∗ + αz) = 0, respectively, α′1
and α′2 are the positive and negative roots of the quadratic equation q3(x∗ + αz) = 0, respectively, and
0 6= z ∈ Null(A+ λ̂1B).
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Then problem (P) is equivalent to (P1), i.e., p∗ = p∗1, strong duality holds for (P) and its Lagrangian dual
problem is solvable. Also, in cases (1) and (5), x∗ is an optimal solution to (P) and in cases (2), (3), (6)
and (7), x̄∗ := x∗ + α∗z is an optimal solution for (P) where α∗ is the positive root of the quadratic equation
q2(x∗+αz) = 0 and in cases (4) and (8), x̄∗ solves problem (P) that x̄∗ := x∗+α1z if α1 ≤ α′1 and x̄∗ := x∗+α2z
if α2 ≥ α′2.

Proof. (1) It follows from Theorems 3.1 and 3.2.
(2) Consider the optimality conditions (3.2)–(3.9). In this case, µ∗2 = 1 and hence, h2(x∗) = t∗. Then h1(x∗) < t∗

and h2(x∗) = t∗ imply that (λ̂1 − λ2)q2(x∗) < 0. Since λ̂1 < λ2, we obtain

q2(x∗) > 0. (3.17)

By the assumption, there exists nonzero z ∈ Null(A+λ2B)∩Null(C). By replacing z with −z if necessary,
we assume without loss of generality that dT z ≤ 0. Consider the following quadratic equation of variable α:

q2 (x∗ + αz) = α2zTBz + 2α
(
zTBx∗ + bT z

)
+ q2(x∗) = 0. (3.18)

By Proposition 3.3, zTBz < 0. This together with (3.17) imply that the above equation has a positive root
α∗. Moreover, we have

q3(x∗ + α∗z) = 2dT zα∗ + q3(x∗) < 0,

since Cz = 0, dT z ≤ 0, α∗ > 0 and q3(x∗) < 0. Set x̄∗ = x∗ + α∗z. We have q2(x̄∗) = 0 and q3(x̄∗) < 0.
Furthermore, since q3(x∗) < 0, then µ∗3 = 0 and thus relation (3.2) reduces to

(A+ λ2B)x∗ = −(a+ λ2b),

implying that (a+ λ2b)T z = 0. This further implies that

h2(x̄∗) = x̄∗
T

(A+ λ2B)x̄∗ + 2(a+ λ2b)T x̄∗ + λ2β = h2(x∗) = t∗. (3.19)

Next, it follows from (3.19) and q2(x̄∗) = 0 that q1(x̄∗) = t∗ and consequently h1(x̄∗) = t∗. The above
discussion together with the fact that (A + λ2B)x̄∗ = −(a + λ2b), indicate that (x̄∗, t∗) is an optimal
solution of (P1) for which h1(x̄∗) = h2(x̄∗) = t∗. Therefore, by Theorems 3.1 and 3.2, p∗ = p∗1, x̄∗ solves
(P) and strong Lagrangian duality holds for (P) and the Lagrangian dual problem is solvable.

(3) By the assumption, there exists nonzero z ∈ Null(A + λ2B) ∩ Null(C) such that (a + λ2b)T z = 0. By
replacing z with −z if necessary, we assume without loss of generality that dT z ≤ 0. Similar to part (2), we
have µ∗2 = 1, h2(x∗) = t∗, q2(x∗) > 0 and the following quadratic equation of variable α:

q2(x∗ + αz) = α2zTBz + 2α
(
zTBx∗ + bT z

)
+ q2(x∗) = 0, (3.20)

has a positive root α∗. Moreover, since Cz = 0, dT z ≤ 0 and q3(x∗) = 0, then q3(x∗ + α∗z) ≤ 0. Set
x̄∗ = x∗ + α∗z. We have q2(x̄∗) = 0 and q3(x̄∗) ≤ 0. Furthermore, since (a+ λ2b)T z = 0, then

h2(x̄∗) = x̄∗
T

(A+ λ2B)x̄∗ + 2(a+ λ2b)T x̄∗ + λ2β = h2(x∗) = t∗. (3.21)

Next, it follows from (3.21) and q2(x̄∗) = 0 that q1(x̄∗) = t∗ and thus h1(x̄∗) = t∗. These together with the
fact that (A + λ2B + µ∗3C)x̄∗ = −(a + λ2b + µ∗3d) indicate that (x̄∗, t∗) is an optimal solution of (P1) for
which h1(x̄∗) = h2(x̄∗) = t∗. Therefore, by Theorems 3.1 and 3.2, p∗ = p∗1, x̄∗ solves (P), strong Lagrangian
duality holds for (P) and the Lagrangian dual problem is solvable.

(4) In this case, similar to part (2), µ∗2 = 1, h2(x∗) = t∗ and q2(x∗) > 0. Take z ∈ Null(A + λ2B) (note that
(A+ λ2B) is singular) and consider the following quadratic equation of variable α:

q2(x∗ + αz) = α2zTBz + 2α
(
zTBx∗ + bT z

)
+ q2(x∗) = 0.
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The facts that zTBz < 0 and q2(x∗) > 0 imply that the above equation has two roots, namely α1 > 0 and
α2 < 0. On the other hand, since C � 0 and z 6∈ Null(C), zTCz > 0. This with q3(x∗) < 0 prove that the
quadratic equation of variable α:

q3(x∗ + αz) = α2zTCz + 2α
(
zTCx∗ + dT z

)
+ q3(x∗) = 0,

has two roots, namely α′1 > 0 and α′2 < 0. Now let α1 ≤ α′1 and set x̄∗ = x∗ + α1z. Then, obviously
q2(x̄∗) = 0 and q3(x̄∗) ≤ 0. The same discussion as in part (2) proves that p∗ = p∗1, x̄∗ solves (P), strong
duality holds for (P) and the Lagrangian dual problem is solvable. For the case where α2 ≥ α′2, it is easy
to see that x̄∗ = x∗ + α2z solves problem (P).

(5) It follows from Theorems 3.1 and 3.2.
(6) In this case, it is easy to see that µ∗1 = 1, h1(x∗) = t∗ and q2(x∗) < 0. By the assumption, there exists

nonzero z ∈ Null(A + λ̂1B) ∩ Null(C). By replacing z with −z if necessary, we assume without loss of
generality that dT z ≤ 0. Consider the following quadratic equation of variable α:

q2(x∗ + αz) = α2zTBz + 2α
(
zTBx∗ + bT z

)
+ q2(x∗) = 0.

The fact that zTBz > 0 (see Prop. 3.3) with q2(x∗) < 0 imply that the above equation has a positive root
α∗. Moreover, we have

q3(x∗ + α∗z) = 2dT zα∗ + q3(x∗) < 0,

since Cz = 0, dT z ≤ 0, α∗ > 0 and q3(x∗) < 0. Set x̄∗ = x∗ + α∗z. We have q2(x̄∗) = 0 and q3(x̄∗) < 0.
Furthermore, since q3(x∗) < 0, then µ∗3 = 0 and thus relation (3.2) reduces to

(A+ λ̂1B)x∗ = −(a+ λ̂1b),

implying that (a+ λ̂1b)T z = 0. This further implies that

h1(x̄∗) = x̄∗
T

(A+ λ̂1B)x̄∗ + 2(a+ λ̂1b)T x̄∗ + λ̂1β = h1(x∗) = t∗. (3.22)

Next, it follows from (3.22) and q2(x̄∗) = 0 that q1(x̄∗) = t∗ and consequently h2(x̄∗) = t∗. The above
discussion together with the fact that (A + λ̂1B)x̄∗ = −(a + λ̂1b), indicate that (x̄∗, t∗) is an optimal
solution of (P1) for which h1(x̄∗) = h2(x̄∗) = t∗. Therefore, by Theorems 3.1 and 3.2, p∗ = p∗1, x̄∗ solves
(P), strong duality holds for (P) and the Lagrangian dual problem is solvable.

(7) In this case, µ∗1 = 1, h1(x∗) = t∗ and q2(x∗) < 0. Then following the same discussion as in part (3) where
λ2 is replaced by λ̂1 and h2(x̄∗) in (3.21) is replaced by h1(x̄∗) completes the proof.

(8) In this case, µ∗1 = 1, h1(x∗) = t∗ and q2(x∗) < 0. Then following the same discussion as in part (4) where
λ2 is replaced by λ̂1 completes the proof.

�

Theorem 3.5. Suppose that Assumptions 2.1, 2.2 and Condition 2 hold, x∗ is an optimal solution of problem
(P2) and one of the following holds:

(1) q2(x∗) = 0.
(2) q2(x∗) < 0 , q3(x∗) < 0 and there exists nonzero z ∈ Null(A+ λ̂1B) ∩Null(C).
(3) q2(x∗) < 0, q3(x∗) = 0 and there exists nonzero z ∈ Null(A+ λ̂1B) ∩Null(C) such that (a+ λ̂1b)T z = 0.
(4) q2(x∗) < 0 , q3(x∗) < 0, Null(A+λ̂1B)∩Null(C) = ∅ and either α1 ≤ α′1 or α2 ≥ α′2 where α1 and α2 are the

positive and negative roots of the quadratic equation q2(x∗+αz) = 0, respectively, α′1 and α′2 are the positive
and negative roots of the quadratic equation q3(x∗ + αz) = 0, respectively, and 0 6= z ∈ Null(A+ λ̂1B).

Then problem (P) is equivalent to (P2), i.e., p∗ = p∗2, strong duality holds for (P) and its Lagrangian dual
problem is solvable. Also, in case (1), x∗ is an optimal solution to (P), in case (2) and (3), x̄∗ := x∗ + α∗z is
optimal for (P) where α∗ is the positive root of the quadratic equation q2(x∗+αz) = 0 and in case (4), x̄∗ solves
problem (P) that x̄∗ := x∗ + α1z if α1 ≤ α′1 and x̄∗ := x∗ + α2z if α2 ≥ α′2.
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Proof. (1) It follows from Theorems 3.1 and 3.2.
(2) Consider the optimality conditions (3.12)–(3.16). In this case µ∗1 = 0. By the assumption, there exists nonzero

z ∈ Null(A+ λ̂1B)∩Null(C). By replacing z with −z if necessary, we may assume without loss of generality
that dT z ≤ 0. Consider the following quadratic equation of variable α:

q2(x∗ + αz) = α2zTBz + 2α
(
zTBx∗ + bT z

)
+ q2(x∗) = 0.

Since we have assumed that q1(x) and q2(x) are not both convex, λ̂1 > 0 and consequently λ̂1 = λ1. Then
by Proposition 3.3, we have zTBz > 0. This together with q2(x∗) < 0 imply that the above equation has a
positive root α∗. Moreover, we have

q3(x∗ + α∗z) = 2dT zα∗ + q3(x∗) < 0,

since Cz = 0, dT z ≤ 0, α∗ > 0 and q3(x∗) < 0. Set x̄∗ = x∗ + α∗z. We have q2(x̄∗) = 0 and q3(x̄∗) < 0.
Now it is easy to see that optimality conditions of problem (P2) hold for x̄∗ with µ∗1 and µ∗2, i.e., x̄∗ is an
optimal solution of (P2) for which q2(x̄∗) = 0. Therefore, by Theorems 3.1 and 3.2, p∗ = p∗2, x̄∗ solves (P)
and strong duality holds for (P) and the Lagrangian dual problem is solvable.

(3) By the assumption, there exists nonzero z ∈ Null(A+λ̂1B)∩Null(C) such that (a+λ̂1b)T z = 0. By replacing
z with −z if necessary, we assume without loss of generality that dT z ≤ 0. Now consider x̄∗ = x∗ + α∗z
where α∗ is defined as in part (2). We have q2(x̄∗) = 0 and q3(x̄∗) ≤ 0. Moreover, we have

h1(x̄∗) = x̄∗
T

(A+ λ̂1B)x̄∗ + 2(a+ λ̂1b)T x̄∗ + λ̂1β = h1(x∗) = t∗,

since z ∈ Null(A + λ̂1B) and (a + λ̂1b)T z = 0. This means that x̄∗ is also optimal for (P2) for which
q2(x̄∗) = 0. Therefore, by Theorems 3.1 and 3.2, p∗ = p∗2, x̄∗ solves (P) and strong duality holds for (P) and
the Lagrangian dual problem is solvable.

(4) In this case, µ∗1 = 0. Take z ∈ Null(A + λ̂1B) (note that (A + λ̂1B) is singular) and consider the following
quadratic equation of variable α:

q2(x∗ + αz) = α2zTBz + 2α
(
zTBx∗ + bT z

)
+ q2(x∗) = 0.

The facts that zTBz > 0 and q2(x∗) < 0 imply that the above equation has two roots, namely α1 > 0 and
α2 < 0. On the other hand, since zTCz > 0 and q3(x∗) < 0, the quadratic equation of variable α:

q3(x∗ + αz) = α2zTCz + 2α
(
zTCx∗ + dT z

)
+ q3(x∗) = 0,

has two roots, namely α′1 > 0 and α′2 < 0. Now let α1 ≤ α′1 and set x̄∗ = x∗ + α1z. Then, obviously
q2(x̄∗) = 0 and q3(x̄∗) ≤ 0. The same discussion as in part (2) proves that p∗ = p∗2, x̄∗ solves (P), strong
duality holds for (P) and the Lagrangian dual problem is solvable. For the case where α2 ≥ α′2, it is easy to
see that x̄∗ = x∗ + α2z solves problem (P).

�

Remark 3.6. Each of Items (1)–(8) in Theorem 3.4 and (1)–(4) in Theorem 3.5 is sufficient for strong
Lagrangian duality and exactness of the CQRs (P1) and (P2), respectively. In the following example we illustrate
that none of the Items may hold while the CQR is exact. Moreover, we may not be able to give an exact CQR
when none of the Items holds.

Example 3.7. Consider the following problem:

min q1(x) := −x2
1 + x2

2

s.t. q2(x) := x2
1 + x2

2 ≤ 1, (3.23)

q3(x) := x2
1 + x2

2 − 2x1 +
3
4
≤ 0.
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The CQR (P2) of (3.23) is:

min h1(x) := 2x2
2 − 1

s.t. q2(x) = x2
1 + x2

2 ≤ 1, (3.24)

q3(x) = x2
1 + x2

2 − 2x1 +
3
4
≤ 0.

The set of optimal solutions of the CQR (3.24) is X∗ = {(x∗1, x∗2)| 12 ≤ x∗1 ≤ 1, x∗2 = 0}. Set x∗ = ( 1
2 , 0). It

is an optimal solution of (3.23) for which none of Items (1)–(4) in Theorem 3.5 holds. Precisely, q2(x∗) < 0,
q3(x∗) = 0 and since C � 0, there is no nozero vector z ∈ Null(A+ λ̂1B)∩NullC such that (a+ λ̂b)T z = 0. The
CQR (3.24) is exact since x∗ = (1, 0) is an optimal solution of (3.24) for which q2(x∗) = 0. Next change q1(x)
to x2

1 − x2
2. Then the corresponding CQR is

min h1(x) := 2x2
1 − 1

s.t. q2(x) = x2
1 + x2

2 ≤ 1, (3.25)

q3(x) = x2
1 + x2

2 − 2x1 +
3
4
≤ 0.

x∗ = (1
2 , 0) is the unique optimal solution of (3.25) for which none of Items (1)–(4) in Theorem 3.5 hold. Since

x∗ is the unique optimal solution of (3.25) and q2(x∗) < 0, by Theorem 3.1, the CQR is not exact.

3.1. How to compute the vector z in Theorems 3.4 and 3.5

Here we show that the conditions

∃0 6= z ∈ Null(A+ λ2B) ∩Null(C), (3.26)

and

∃0 6= z ∈ Null(A+ λ2B) ∩Null(C), such that (a+ λ2b)T z = 0, (3.27)

in Items 2 and 3 of Theorem 3.4 can be verified efficiently via solving an eigenvalue problem. Since both
A + λ2B and C are positive semidefinite, then condition (3.26) holds if and only if λmin(A + λ2B + C) = 0
and z is the corresponding eigenvector. Now consider condition (3.27). If (a + λ2b) = 0, then condition (3.27)
reduces to condition (3.26). Let (a + λ2b) 6= 0. Then (a + λ2b)T z = 0 if and only if z = Wy for some
y ∈ Rn−1 where W ∈ Rn×n−1 is a basis of Null((a + λ2b)T ). Therefore, condition (3.27) holds if and only if
λmin(WT (A + λ2B + C)W ) = 0 and z = Wy∗ where y∗ is the corresponding eigenvector. A similar discussion
holds when λ2 is replaced by λ̂1.

4. New condition for exact CQRs, SDO-relaxation and strong duality

We note that although a direct verification of the sufficient conditions in Theorems 3.4 and 3.5 requires
a solution of the CQRs, we will show that it is possible to use these conditions in order to find a sufficient
condition in terms of the data of the original problem for exactness of the CQRs, strong Lagrangian duality
and equivalently for tightness of the SDO-relaxation of problem (P). Recall that we have assumed at least
one of A and B is not positive semidefinite. Otherwise, by Assumption 2.2, problem (P) is a convex quadratic
optimization problem which satisfies the Slater condition and hence, it enjoys useful features such as strong
duality and exact SDO-relaxation.
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The so-called SDO-relaxation of (P) is

p∗r := min M •X
s.t. M0 •X ≤ 0, (SDO)

M1 •X ≤ 0,
I0 •X = 1,
X � 0,

where

M =
[
A a
aT 0

]
,M0 =

[
B b
bT β

]
,M1 =

[
C d
dT γ

]
, I0 =

[
On×n On×1

O1×n 1

]
.

The dual of (SDO) is

d∗ := max s

s.t. M + y0M0 + y1M1 − sI0 � 0, (D-SDO)
y0, y1 ≥ 0,

which is also the Lagrangian dual problem of (P). Note that by Assumption 2.1, problem (D-SDO) is strictly
feasible and hence, d∗ = p∗r . This together with the fact d∗ ≤ p∗r ≤ p∗ imply that strong duality holds for (P) if
and only if the SDO-relaxation for (P) is exact.

In what follows, we introduce a sufficient condition based on the data of problem (P) that ensures one of
Items (1)–(8) in Theorem 3.4 and (1)–(4) in Theorem 3.5 holds. Therefore, it guarantees exactness of the CQRs
(P1) and (P2) and strong Lagrangian duality.

Condition 3. Consider problem (P). We say that problem (P) satisfies Condition 3 whenever one of the
following holds:

(1) Condition 1 holds, λ̂1 = 0 and there exists nonzero z ∈ Null(A+λ2B)∩Null(C) such that (a+λ2b)T z ≤ 0
and dT z ≤ 0.

(2) Condition 1 holds, λ̂1 > 0 and there exist nonzero z1 ∈ Null(A+λ2B)∩Null(C) and z2 ∈ Null(A+ λ̂1B)∩
Null(C) such that (a+ λ2b)T z1 ≤ 0, dT z1 ≤ 0, (a+ λ̂1b)T z2 ≤ 0 and dT z2 ≤ 0.

(3) Condition 2 holds and there exists nonzero z ∈ Null(A + λ̂1B) ∩ Null(C) such that (a + λ̂1b)T z ≤ 0 and
dT z ≤ 0.

Theorem 4.1. Suppose that Assumptions 2.1, 2.2 and Condition 3 hold for problem (P). Then the CQRs (P1)
and (P2) are exact and problem (P) enjoys strong duality and exact SDO-relaxation.

Proof. Suppose that Condition 1 holds and let (x∗, t∗) be an optimal solution of (P1). If h1(x∗) = h2(x∗) = t∗,
then by Theorem 3.4, the CQR (P1) is exact, strong Lagrangian duality holds for problem (P) and the SDO-
relaxation is exact. Otherwise, either h1(x∗) < t∗ or h2(x∗) < t∗. We show that in both cases, Condition 3 implies
the existence of vector z in Theorem 3.4 and thus the assertion holds. First let h1(x∗) < t∗. If q3(x∗) < 0, then
by Condition 3, Item (2) in Theorem 3.4 holds. Next suppose that q3(x∗) = 0. We show that, in this case, for
all z ∈ Null(A + λ2B) ∩ Null(C) satisfying Condition 3, we have (a + λ2b)T z = 0, implying that Item (3) in
Theorem 3.4 holds. To this end, suppose by contradiction that there exists z ∈ Null(A + λ2B) ∩ Null(C) such
that (a+ λ2b)T z < 0 and dT z ≤ 0. Set x̄∗ = x∗ +α∗z where α∗ is the positive root of equation (3.20). We have
q2(x̄∗) = 0, q3(x̄∗) ≤ 0 and since (a+ λ2b)T z < 0,

h2(x̄∗) = x̄∗
T

(A+ λ2B)x̄∗ + 2(a+ λ2b)T x̄∗ + λ2β < h2(x∗) = t∗.
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On the other hand, since q2(x̄∗) = 0, we have t̄ := h1(x̄∗) = h2(x̄∗) < t∗. These mean that (x̄∗, t̄) is a feasible
solution of (P1) with t̄ < t∗ that contradicts the fact that (x∗, t∗) is optimal for (P1). Next, suppose that
h2(x∗) < t∗. If λ̂1 = 0, then by Theorem 3.4, the assertion holds. Otherwise, a similar discussion as above
proves the existence of vector z in Items (6) and (7) of Theorem 3.4. Similarly, we can prove the existence of
vector z in Items (2) and (3) of Theorem 3.5 when Condition 2 holds. �

Remark 4.2. Condition 3 can be checked easily by solving a linear programming problem. In fact, condition

∃0 6= z ∈ Null(A+ λ2B) ∩Null(C) s.t (a+ λ2b)T z ≤ 0 and dT z ≤ 0, (4.1)

holds if and only if the linear programming problem

p̂ := min (a+ λ2b)T z
s.t. (A+ λ2B)z = 0, (4.2)

Cz = 0,

dT z ≤ 0,

is either unbounded from below or has multiple optimal solutions. If problem (4.2) is unbounded from below,
then obviously condition (4.1) holds. If problem (4.2) is bounded, then obviously p̂ = 0. In this case, since z = 0
is an optimal solution of (4.2), condition (4.1) holds if and only if (4.2) has multiple optimal solutions. The
same discussion holds when λ2 is replaced by λ̂1.

Remark 4.3. We point out that the sufficient conditions established in Theorems 3.4 and 3.5 are more general
than Condition 3. The following is an example where Condition 3 does not hold, while the condition in Theorem
3.5 holds.

Example 4.4. Consider the following problem:

min q1(x) := − x2
1 + 2x2

2

s.t. q2(x) := x2
1 + x2

2 − 1 ≤ 0, (4.3)
q3(x) := x2

1 + x2
2 − 2x1 − 2x2 + 1 ≤ 0.

The CQR relaxation of (4.3) is

min h1(x) = 3x2
2 − 1

s.t. q2(x) := x2
1 + x2

2 − 1 ≤ 0, (4.4)
q3(x) := x2

1 + x2
2 − 2x1 − 2x2 + 1 ≤ 0.

The optimal solution of (4.4) is (x∗1, x
∗
2) = (1, 0) and q2(x∗) = 0. Hence, the sufficient condition in Theorem 3.5

is fulfilled. However, Condition 3 is not fulfilled sinc C = I is nonsingular. Moreover, it is easy to verify that
strong duality holds for problem (4.3) and the SDO-relaxation and the CQR (4.4) are exact.

4.1. Comparison with the related conditions from the literature

Recently, Ho-Nguyen and Kilinç-Karzan [22] have examined variants of TRS having additional conic con-
straints,

min q1(x) = xTAx+ 2aTx
s.t. ||x|| ≤ 1, (4.5)

Hx− h ∈ K,
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where A ∈ Rn×n is a symmetric matrix, H ∈ Rm×n, h ∈ Rm and K ⊆ Rm is a closed convex cone. Assuming
λmin(A) < 0, they proposed the following convex relaxation for (4.5):

min q1(x) + λmin(A)(1− ||x||2)
s.t. ||x|| ≤ 1, (4.6)

Hx− h ∈ K,

They showed that this convex relaxation is exact if the following condition is satisfied.

Condition 4. There exists nonzero z ∈ Null(A− λmin(A)I) such that Hz ∈ K and aT z ≤ 0.
Problem (4.5) covers the CDT problem (problem (P) with B = I, b = 0 and C � 0) as a special case since the
convex quadratic constraint

xTCx+ 2dTx+ γ ≤ 0,

can be expressed as the conic constraint Hx− h ∈ K where K is the second-order cone and

H =

−dTC
1
2

dT

 , h =

 −1+γ
2

On×n
− 1+γ

2

 .
Note that the convex relaxation (4.6) is equal to problem (P2). We have the following result.

Proposition 4.5. For the CDT problem, Conditions 3 and 4 are equal.

Proof. By Condition 4, there exists nonzero z ∈ Null(A− λmin(A)I) such that Hz ∈ K and aT z ≤ 0. It follows
from Hz ∈ K that ∥∥∥∥[C 1

2 z
dT z

]∥∥∥∥ ≤ −dT z,
implying that dT z ≤ 0 and z ∈ Null(C). �

Jeyakumar and Li [27] proved exactness of the SDO-relaxation for the following extended trust-region sub-
problem (eTRS):

min xTAx+ 2aTx
s.t. ||x||2 + β ≤ 0,

cTi x ≤ di, i = 1, . . . ,m,

under the dimension condition,

dim( Null(A− λmin(A)I)) ≥ s+ 1, (DC)

where s = dim( span{c1, . . . , cm}). Later, in [23], the authors proved tightness of the SDO-relaxation of eTRS
under the following condition

Rank([A− λmin(A)I c1, . . . , cm]) ≤ n− 1, (RC)

which is more general than the dimension condition (DC).
In [22], it has been shown that, in the case of eTRS, Condition 4 generalizes conditions (DC) and (RC).

Therefore, by Proposition 4.5, Condition 3 generalizes conditions (DC) and (RC) in the case of eTRS with
m = 1. Jeyakumar and Li [27] extended the dimension condition (DC) to problem (P) with B = I and C � 0
as follows:

dim(Null(A− λmin(A)I) ∩Null(C)) ≥ 2. (EDC)

In this case, Condition 2 holds and λ̂1 = −λmin(A). The following proposition shows that Condition 3 actually
improves condition (EDC).
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Proposition 4.6. For problem (P) with B = I and C � 0, Condition 3 is more general than condition (EDC).

Proof. We have

dim(Null(A− λmin(A)I) ∩Null(C)) ≥ 2

⇐⇒ dim(Null([A− λmin(A)I C]T )) ≥ 2
⇐⇒ n− Rank([A− λmin(A)I C]) ≥ 2
⇐⇒ Rank([A− λmin(A)I C]) ≤ n− 2
=⇒ Rank([A− λmin(A)I C a− λmin(A)b]) ≤ n− 1,

implying that there exists nonzero z ∈ Null(A−λmin(A)I)∩Null(C) such that (a−λmin(A)b)T z = 0. If dT z ≤ 0,
then Condition 3 holds. If dT z > 0, then Condition 3 holds with z := −z. �

Clearly, if matrix C is positive definite (nonsingular), then both condition (EDC) and Condition 3 fail. In
this case, the sufficient conditions provided in Theorem 3.5 may still hold. Example 4.4 is of such a situation.

We now present necessary and sufficient conditions for global optimality of (P) whenever Condition 3 and
Assumptions 2.1 and 2.2 are satisfied.

Corollary 4.7. For (P), suppose that Condition 3, Assumptions 2.1 and 2.2 hold. Let x∗ be a feasible solution
of (P). Then x∗ is a global minimizer of (P) if and only if there exist nonnegative multipliers µ∗1 and µ∗2 such
that the following conditions hold

(A+ µ∗1B + µ∗2C)x∗ = − (a+ µ∗1b+ µ∗2d) , (4.7)
µ∗1q2(x∗) = 0, (4.8)
µ∗2q3(x∗) = 0, (4.9)

(A+ µ∗1B + µ∗2C) � 0. (4.10)

Proof. Let x∗ be a global minimizer of (P). Recall that by Lemma 4.1, strong duality holds for (P). Suppose
that (µ∗1, µ

∗
2) is an optimal solution of Lagrangian dual of (P) and d∗ denotes the dual optimal value. We have

p∗ = d∗ = min
x
{q1(x) + µ∗1q2(x) + µ∗2q3(x∗)}

≤ q1(x∗) + µ∗1q2(x∗) + µ∗2q3(x∗)
≤ q1(x∗) = p∗,

where the last inequality follows from µ∗i ≥ 0, i = 1, 2 and feasibility of x∗. We conclude that the two inequalities
in this chain hold with equality. Since the inequality in the second line is an equality, we conclude that x∗ is a
minimizer of the minimization problem in the first line. This gives relations (4.7) and (4.10). Moreover, it follows
from the last line that µ∗1q2(x∗) + µ∗2q3(x∗) ≤ 0 which with the fact that each term in this sum is nonpositive,
we obtain (4.8) and (4.9). Conversely, suppose that x∗ satisfies (4.7) to (4.10). We have the following chain of
inequalities:

p∗ ≥ d∗ : = max
µ1,µ2≥0

min {q1(x) + µ1q2(x) + µ2q3(x)}

≥ min {q1(x) + µ∗1q2(x) + µ∗2q3(x)}
= q1(x∗) + µ∗1q2(x∗) + µ∗2q3(x∗)
= q1(x∗) ≥ p∗,

where the first inequality follows from weak duality property, the second equality follows from (4.7) and (4.10),
the third equality follows from (4.8) and (4.9) and the last inequality follows from the primal feasibility of x∗.
Therefore, q1(x∗) = p∗ and so x∗ solves (P). �
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5. Conclusions

We studied problem (P) with positive semidefinite C and under the assumption that A + λ̂B � 0 for some
λ̂ ≥ 0. We introduced two convex quadratic relaxations (CQRs) corresponding to two different conditions
for model problem (P) that minimize a linear objective function over three convex quadratic constraints. We
presented sufficient conditions based on an optimal solution of the CQRs under which problem (P) is equivalent
to exactly one of the CQRs. We also showed that this equivalence reveals strong Lagrangian duality holds for
(P) and consequently problem (P) enjoys exact SDO-relaxation. Furthermore, we derived sufficient conditions
based on the data of the problem for exactness of the CQRs, strong Lagrangian duality and equivalently for
exactness of the SDO-relaxation. Finally, we presented necessary and sufficient conditions for global optimality
of (P) under the new conditions.

Possible topics for future research direction would be the identification of further conditions under which the
CQRs are exact (maybe even necessary and sufficient conditions), and of other relaxations which are as simple
as (P1) and (P2), but exactness holds under more general conditions.
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