A dominator coloring is a proper coloring of the vertices of a graph such that each vertex of the graph dominates all vertices of at least one color class (possibly its own class). The dominator chromatic number of a graph G is the minimum number of color classes in a dominator coloring of G. In this paper, we determine the exact value of the dominator chromatic number of a subclass of forests which we call, generalized caterpillars forest, where every vertex of degree at least three is a support vertex.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020122
Keywords: Dominator coloring, dominator chromatic number, trees
@article{RO_2021__55_S1_S1647_0,
author = {Aioula, Soumia and Chellali, Mustapha and Ikhlef-Eschouf, Noureddine},
title = {On the dominator chromatic number of the generalized caterpillars forest},
journal = {RAIRO. Operations Research},
pages = {S1647--S1655},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
doi = {10.1051/ro/2020122},
mrnumber = {4223184},
zbl = {1469.05053},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2020122/}
}
TY - JOUR AU - Aioula, Soumia AU - Chellali, Mustapha AU - Ikhlef-Eschouf, Noureddine TI - On the dominator chromatic number of the generalized caterpillars forest JO - RAIRO. Operations Research PY - 2021 SP - S1647 EP - S1655 VL - 55 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2020122/ DO - 10.1051/ro/2020122 LA - en ID - RO_2021__55_S1_S1647_0 ER -
%0 Journal Article %A Aioula, Soumia %A Chellali, Mustapha %A Ikhlef-Eschouf, Noureddine %T On the dominator chromatic number of the generalized caterpillars forest %J RAIRO. Operations Research %D 2021 %P S1647-S1655 %V 55 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro/2020122/ %R 10.1051/ro/2020122 %G en %F RO_2021__55_S1_S1647_0
Aioula, Soumia; Chellali, Mustapha; Ikhlef-Eschouf, Noureddine. On the dominator chromatic number of the generalized caterpillars forest. RAIRO. Operations Research, Tome 55 (2021), pp. S1647-S1655. doi: 10.1051/ro/2020122
and , On the dominator colorings in trees. Discuss Math. Graph Theory 32 (2012) 677–683. | MR | Zbl | DOI
and , An algorithm for the dominator chromatic number of a tree. J. Combin. Optim. 30 (2015) 27–33. | MR | Zbl | DOI
and , Dominator colorings in some classes of graphs. Graphs Combin. 28 (2012) 97–107. | MR | Zbl | DOI
, On dominator colorings in graphs. Graph Theory Notes New York 52 (2007) 25–30. | MR
, On the dominator colorings in bipartite graphs. In: Proceedings of the 4th International Conference on Information Technology: New Generations (ITNG) (2007) 947–952. | DOI
, and , Dominator colorings and safe clique partitions. Congr. Numer. 181 (2006) 19–32. | MR | Zbl
Cité par Sources :





