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ON THE DOMINATOR CHROMATIC NUMBER OF THE GENERALIZED
CATERPILLARS FOREST

SoumiA A1ouLAl, MUSTAPHA CHELLALI? AND NOUREDDINE IKHLEF-ESCHOUF?*

Abstract. A dominator coloring is a proper coloring of the vertices of a graph such that each vertex
of the graph dominates all vertices of at least one color class (possibly its own class). The dominator
chromatic number of a graph G is the minimum number of color classes in a dominator coloring of G.
In this paper, we determine the exact value of the dominator chromatic number of a subclass of forests
which we call, generalized caterpillars forest, where every vertex of degree at least three is a support
vertex.
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1. INTRODUCTION

Throughout the paper, we consider finite, simple and undirected graphs. Let G be a graph with vertez-set
V(G) and edge-set E(G). The open neighborhood of a vertex v € V(QG) is the set N(v) = {ujuv € E}. The
degree of a vertex v is dg(v) = |N(v)|. A vertex of degree one is called a leaf, and its neighbor is called a support
vertex. Given a subset A C V(G), we denote by G[A] (or sometimes G\ A) the subgraph of G induced by A.

Recall that a tree is a connected acyclic graph, and a forest is an acyclic graph. A caterpillar is a tree such
that the removal of all its leaves produces a path.

A coloring of the vertices of G is a mapping ¢ : V(G) — N, where for every vertex v the integer c¢(v) is called
the color of v. A coloring c¢ is proper if for any two adjacent vertices u and v, ¢(v) # ¢(u). The chromatic number
X(G) of graph G is the smallest integer k such that G admits a proper coloring with & colors. Let X be a color
class of a proper coloring of G. Then we say that a vertex z of G sees X if x is adjacent to all vertices in X,
and x misses X otherwise. In particular, if X = {z}, then we say that = sees its own class.

A dominator coloring of G is a proper coloring of the vertices of G such that each vertex in G sees at least one
color class (possibly its own class). The dominator chromatic number x4 (G) is the minimum number of color
classes in a dominator coloring of G. A dominator coloring of G with x4 (G) colors will be called a xg4-coloring
of G. The concept of dominator coloring was introduced by Gera et al. [6] and studied further by Gera [4, 5],
Chellali and Maffray [3] and Boumediene and Chellali [1,2]. In particular, in [2] the authors gave a polynomial
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time algorithm computing the dominator chromatic number for every nontrivial tree. It is worth noting that the
decision problem corresponding to the dominator coloring is NP-complete for arbitrary graphs [6]. Therefore, it
is natural to look for graph classes where the value of the dominator chromatic number is given either exactly
or can be computed in polynomial time.

Given a xg4-coloring ¢ of G, we denote by (). the set of color classes of ¢ containing a single vertex, and let
IT,. be the set of the remaining color classes of c. Let us also define the following sets.

— Let II% be the subset of color classes that are missed, that is Il = {X € II.| no vertex of G sees X}, and
let 112 = [T\ IL..
— For i € {1,2}, let B! be the set of all vertices belonging to color classes in IT¢, and let A. = V(G)\(BlUB?).

Clearly A., B}, B? are disjoint sets and V(G) = A. U B U B2. Also, |A.| = Q.| and |B! U B?| > 2|I1|.
It has been shown in [1] that for every yg4-coloring ¢ of a nontrivial tree either each support vertex belongs
to A, or its unique leaf neighbor belongs to A.. Moreover, they proved the following.

Proposition 1.1 ([1]). Every tree of order at least three admits a x4-coloring ¢ such that each support vertex
belongs to A. and all leaves of G have the same color.

In this paper, we are interested in determining the exact value of the dominator chromatic number for a
more general class of caterpillars which we call generalized caterpillars. A generalized caterpillar is a tree such
that each vertex of degree at least three is a support vertex. A generalized caterpillars forest is a forest such
that each component is a generalized caterpillar. A stalk in a generalized caterpillar forest G is a path whose
endvertices are support vertices in G and whose inner vertices are not. Clearly, each stalk (if any) has order at
least two. Also, if G is a generalized caterpillar forest without stalks, then each component of G is a star or a
single vertex.

It is worth mentioning that every tree T' of order at least three is a subtree of a generalized caterpillar. Indeed,
it is enough to add for any vertex of degree at least 3 that is not a support vertex a new vertex attached to
it. Clearly, in this way the supertree obtained, which will denoted by Gr, is a generalized caterpillar. In this
context, if T is a tree of order n > 3, then I will denote the set of vertices of degree at least three that are not
support vertices. Obviously, if T is a tree with It = (), then G = T. Our next observation gives a relationship
between x4 (T') and x4 (Gr) for every nontrivial tree 7.

Observation 1.2. If T' is a nontrivial tree, then x4 (Gr) — |I7| < x4 (T) < xa (GT).

Proof. Clearly, if T has order two or Ir is empty, then Gp = T and the result is valid. Hence we can assume
that T has order at least three and Iy # (). The upper bound follows from the fact that the restriction of any
xq-coloring of G to T is a dominator coloring of T. Now to prove the lower bound, consider a y4-coloring c
of T satisfying Proposition 1.1. Let M = I\ A, and 7 be a coloring of G obtained from ¢ as follows. Color
each vertex of M with a new, different color; and color the new vertices in G with the color used by the leaves
in T. The remaining vertices of G1 keep their colors already given by coloring c. It is easy to see that m is a
dominator coloring of Gp with x4 (T') + | M| colors, and thus x4 (Gr) < x4 (T) + M| < x4 (T) + |Ir|. O

The sharpness of the bounds in Observation 1.2 is given by the following result.
Observation 1.3. Forevery integer j > 0, there exists a tree T); such that ’ITJ.| = jand xq(G1;) = xa(Tj) + ‘IT]. ’

Proof. Clearly, if j = 0, then for any caterpillar T" we have G = T and thus x4(Gr) = xa(T). Hence let j > 1
be an integer. Let H; be a tree obtained from a star K 3 centered at u; by subdividing each edge exactly once,
and let v; be a support vertex of H;. Let T} be a tree obtained from Hi, Hs,...,H; by adding j — 1 edges
connecting v;’s so that they induce a path P;. For example, the tree T3 is illustrated in Figure 1. A tree T3 and
its corresponding generalized caterpillar Grs. Note that T has 3j support vertices, and since the remaining
vertices of T; that are independent, we deduce from Proposition 1.1 that x4 (T;) = 3j + 1. Moreover, the
generalized caterpillar Gr; constructed from 7} by adding for each u; a new vertex attached to it by an edge
contains 4j support vertices. One can easily see that x4(Gr;) =45 + 1 = xa(T) + J. O
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FIGURE 1. A tree T3 and its corresponding generalized caterpillar G,

By using a similar proof to that presented in [1], we can see that a generalized caterpillar forest G admits a
xq-coloring ¢ such that each support vertex belongs to A, and all leaves of G have the same color. Hence we
have the following.

Corollary 1.4. Proposition 1.1 is still valid for generalized caterpillar forest.

Observation 1.5. Let G be a generalized caterpillar forest with p > 0 single vertices and ¢ > 0 nontrivial
stars, and let H be the subgraph of G containing all components that are neither single vertices nor stars. Then
Xd(G) =p+q+ xa(H)+ i, where i = 1if ¢ > 1 and V(H) is empty, and 7 = 0 otherwise.

Proof. If G contains no edge, then clearly x4(G) = p. Hence assume that G contains at least one edge. If V(H)
is empty, then it is easy to show that x4(G) =p+ g+ 1.

From now on, we can assume that V(H) is non-empty. Let G1,Ga,...,G, be the components of G — H
(if any). Clearly xq(H) > 2, and xq(G;) < 2 since G; is a single vertex or a nontrivial star. This means that
Xa(H) > xa(G;) for every i. Moreover, each component in G — H needs at least one new color, since a vertex
in such component must see an entire color class. Hence x4(G) > p+ q + xa(H).

The equality follows by exhibiting a dominator coloring of G with p + ¢ + xa(H) colors. According to
Corollary 1.4, H admits a yg4-coloring ¢ such that all leaves have the same color, say 1. Let m be a coloring of
G defined as follows. For every x € V(H), let w(x) = ¢(z), and for each leaf v in G — H, let 7(v) = 1, unless
v belongs to a component of order 2, in which case v is one of the two leaves. Color the remaining vertices of
G differently using (p + ¢) new colors. Clearly, 7 is a dominator coloring using p + g + xq(H) colors, and thus
Xa(G) < p+aq+xa(H). O

According to Observation 1.5, we can assume in the remainder of this paper that each component of a
generalized caterpillar forest is nontrivial and different from a star. Our aim is to prove the following result.

Theorem 1.6. Let G be a generalized caterpillar forest with s support vertices and p connected components,
each is nontrivial and different from a star. Let n; > 2 be the order of the it" stalk of G. Then

1 if each n; € {2,3,5},

where o = { 2 otherwise.
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2. PROOF OF THEOREM 1.6

The proof of Theorem 1.6 is based on the following preliminary results.

Observation 2.1. Let G be a generalized caterpillar forest such that each component is nontrivial and different
from a star. Then G admits a yg4-coloring ¢ such that the following properties hold.

(i) All leaves of G are in B! and hence every vertex in A, U B2 has degree at least two.
(ii) Every vertex in B! has degree at most two.
(iii) Every vertex in B2 has degree exactly two.

Proof. Let ¢ be a yg4-coloring satisfying Corollary 1.4.

(i) Let X be the color class containing all leaves of G. Since G has at least one stalk, each vertex in G misses
X, and the first part of item (i) follows. The second part of item (i) is obvious.
(ii) If B! has a vertex of degree at least three, then such a vertex would be a support vertex, contradicting the
choice of c.
(iii) Using the fact that every vertex of degree at least three is a support vertex, the desired result follows from
item (i).

O

Lemma 2.2. Let ¢ be a x4-coloring of a graph G and let p. = ‘Hi’ Then

(i) pe < x(Q). In particular, if G is bipartite, then u. € {0,1,2}.
(ii) Moreover, if G is a generalized caterpillar forest such that each component is nontrivial and different from
a star, then u. € {1,2}.

Proof. (i) Suppose to the contrary that u. > x(G) + 1, that is, at least x(G) + 1 colors appear in B}. Without
loss of generality, we may assume that vertices in B! use colors 1,2, ..., .. Since no color can appear in both
Bl and V(G)\B., vertices in V(G)\ B! must use the remaining colors, that is, colors p. + 1,..., x4 (G).
Define a new coloring 7 of G as follows. Recolor properly all vertices of B} with x(G[B}]) colors among
{1,2,..., .} (this is possible since x(G[BL]) < x(G) < pe—1), while vertices of V(G)\ B} keep their colors
already given by c. Clearly 7 is a dominator coloring of G with x4 (G) — . + X(G[BL]) < x4 (G) colors, a
contradiction. The second part of item (i) follows from the fact that x(G) < 2 for bipartite graphs.
(ii) Note first that p. # 0, since B! is nonempty (by Observation 2.1(i)). This together with Lemma 2.2(i) yield
the desired result.
O

Lemma 2.3. Let G be a generalized caterpillar forest such that each component is nontrivial and different from
a star. Then G admits a xg4-coloring T such that 12 is empty and Corollary 1.4 is fulfilled for .

Proof. Among all y4-colorings of G fulfilling Corollary 1.4, let ¢ be chosen so that

(C1) |92| is maximized.
(C2) Subject to (C1), |II}| is maximized.

Put k = x4(G) and p. = |Hé| Let X1, Xo,..., Xk be the color classes of ¢ in which vertices in X; get color 7
for i € {1,...,k}. Assume to the contrary that I1? is nonempty. Pick ¢ from {1,...,k} such that X; € II? and
let X; = {x1,22,...,2,}. By definition, p > 2 and each z; € B2. Also, by Observation 2.1(iii), we have

dg(z;) = 2 for every i € {1,...,p}. (2.1)
Let us denote by W (X;) the set of vertices of G that see X;. Then, since G is acyclic, we have

W(X,)| = 1. (2.2)
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Thus, let W(X;) = {w;}. Clearly,
dg(w) > p > 2. (2.3)

In view of (2.1), let Ng(z;) = {wyy} for @ € {1,...,p} and put ¥; = {y1,y2,...,¥p}. Obviously
Ng(X:) = Yi U {w;}. Observe that, since G is acyclic, Ng[X;] induces a subdivided star of order 2p + 1
centered at wy.

Recall that Lemma 2.2(ii) shows that p. € {1,2}. Without loss of generality, we can assume that Il = {X}
when . = 1 and II! = {X7, X5} when p. = 2. In this case, we have t > u. + 1 (since X; € II2). Let 7 be a
xq-coloring of G obtained from ¢ and defined according to the following cases.

Case 1. w; € B} U B2,

Items (ii) and (iii) of Observation 2.1 together with (2.3) yield dg(w;) = 2. Then p = 2 and
Ng(Xi) = {wi,y1,y2}. Thus Ng(X:) induces a path Ps : y;—z1—wi—zo—ys. Next, we will show that y;
and gy either are both in A, or one of them is in A. and the other one is in B? having a neighbor in A.. In
each case, we will recolor some vertices of G and increase the number of color classes of Q. or II. To this end,
consider the following situations whether wy is in B! or B2.

Subcase 1. w; € B!. Note that since dg(z1) = dg(w2) = 2, neither z; nor z2 can see a color class of 112, for
otherwise, one of them will be of degree at least 3, which contradicts (2.1). Therefore, both y; and y» must be
in A, for otherwise, one of x; and x5 misses all color classes of ¢, which contradicts the definition of ¢. Define
7 as follows: assign color 1 to x; and x5, and assign color ¢ to w;. The remaining vertices of G keep their colors
(given by c). It is easy to see that 7 is a x4-coloring of G fulfilling Corollary 1.4 such Q. = Q. U {w;} (that is,
Q. contains more color classes than €.), which contradicts the choice of c.

Subcase 2. w, € B?. Let X, = {a},z5,..., 2/} be the color class containing w; = /. Clearly t # s > . + 1.
Since X, € II2, (2.2) says that W (X,) = {ws}. If ws ¢ {x1,22}, then dg(w;) > 3, contradicting the fact
that dg(w¢) = 2. Hence, ws € {z1,2z2}, say ws = x1. Since w, and X, play the same role as w; and X,
respectively, we conclude that ¢ = 2, and each vertex in X; U X, has degree 2. Thus z, = y; and X5 = {wy, y1}.
Also, since dg(y1) = 2, there is a vertex z; # x1 such that y;21 € E(G). Hence Ng(X; U X,) induces a path
Ps : z1-y1-x1-w-x2-yo. Using the same argument as in Subcase 1, we can see that yo,21 € A.. Now assigning
color 1 to x5 and y; and keep the colors already given to the remaining vertices (under ¢) provides a xg4-coloring
m of G fulfilling Corollary 1.4 such that Q. = Q. U {{x1}, {w:}}, which contradicts again the choice of c.

Case 2. w; € A,.

Then c(w;) # 1. We claim that Yy = Y; N B! is nonempty. Suppose to the contrary that Yy, = (). Then
each vertex in Y; has color different from 1. By recoloring all vertices of X; with color 1 (this is possible since
t > e+ 1), we would obtain a dominator coloring of G with x4(G) — 1, a contradiction, which proved the
claim. Now, let y;, be any vertex in Yy. By Observation 2.1(ii), y;, has degree at most two. If dg(y;,) = 1,
then y;, misses all color classes of ¢, which is impossible. So dg(y;,) = 2 and let Ng(vi,) = {%i,, 2ig }- A similar
argument as to the previous cases shows that vertex z;, is in A.. In this case, we define 7 by interchanging
colors of z;, and y;, and keeping the same colors for the remaining vertices of G. Clearly, 7 is a x4-coloring of G
fulfilling Corollary 1.4. In addition, Q, = Q., but IIL = T U {(X,\{zs, }) U{¥i, }}, which contradicts the choice
of c. O

In the rest of this paper, we denote by T; the i*" stalk of order n; > 2 in the generalized caterpillar forest G,

where V(T;) = {af,2,..., 2k, 1,z } and zlab, | € E(G) for every j € {1,2,...,n; — 1}. We also denote by

M , J
Iy = {xy, 2%,...,2;, _,} (possibly empty) the set of inner vertices in Tj.

Lemma 2.4. Let G be a generalized caterpillar forest such that each component is nontrivial and different from
a star. If ¢ is a xq-coloring fulfilling the statement of Lemma 2.3, with p. = |Hi|, then

(i) If |I;| > 3, then for every three consecutive vertices of I;, one of them belongs to B} and another to A..
(ii) If pe = 1 and |I;| > 2, then one of any two consecutive vertices of I; belongs to A..
(i) «i, 2%, € Ac.
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Proof. We first observe that by Lemma 2.3, each vertex of G is in B! U A..

(i) Let |I;] > 3, and suppose to the contrary, that for some jo € {2,...,n; — 3} all of o, 2% o
belong to A.. Then, recoloring 11 with a color used by the leaves provides a dominator coloring of G with
xd(G) — 1 colors, a contradiction. Therefore, for every j € {2,...,n; — 3}, one of %,z ;, %, , belongs to B,.

Moreover, one of $§<0, x§0 115 :c;»o 4o must be in A, for otherwise, these three vertices will be all in B! and
thus z} ., misses all color classes of ¢, which is impossible.

(ii) Follows from the fact that each vertex of G is in B} U A..

(iii) Follows from the definition of the stalk T; and Corollary 1.4.

O

Lemma 2.5. Let G be a generalized caterpillar forest with v > 1 stalks T1,...,T,, s support vertices and p
components each is nontrivial and different from a star. Consider a xq-coloring ¢ of G satisfying Lemma 2.3
and ji. be the number of colors of ¢ appearing in G[BL]. Then

1) xa(G)=s+pc+ >, [WJ with r = s — p.
(i) If |[V(Ty)| € {2,3,5} for each i € {1,...,r}, then u. = 1. Otherwise, G admits a x4-coloring ¢ such that
fe = 2.

Proof. According to Lemma 2.3, II? is empty and Corollary 1.4 is fulfilled for c. Hence x4(G) = |IIL] + |€|.
Also, since [II}| = e and || = |A.|, we get

Xa(G) = pe + [Acl. (2.4)

Let n; = |V(T})| and recall that V(T;) = {af,25,..., 2} } and I; = V(T;)\{z},z},}. Let Sg be the set of
support vertices of G and |Sg| = s. Clearly,

Ac=ScU (Ui LinA) (2.5)

and
n; =2+ |LNBY| +|I;N A (2.6)

(i) It is easy to cheek that r = s — p. Hence, combining this together with (2.4) and (2.5), we obtain

s—p
Xa(G) = pe+5+ > |[LNA. (2.7)
i=1
In the sequel, we shall show that
1I; N A| = | 252 ] for all i. (2.8)

To do this, we need to prove the following three claims. Let A! denote the number of colors of ¢ appearing
in G[Il n Bcl]

Claim 2.6. If n; = 2, then A’ = 0, while if n; > 3, then 1 < \! < p,. < 2.

Proof. Clearly, by (2.6), n; > 2. If n; = 2, then I; = () and thus A\’= 0. Hence, assume that n; > 3. Then
I; # 0. If AL = 0, then all vertices of I; are in A.. In this case, recoloring one of these vertices with a color used
by the leaves provides a dominator coloring of G' with x4(G) — 1 colors, a contradiction. Therefore A% > 1.
Now, using the fact that p. € {1,2} (by Lem. 2.2(ii)), and the definition of A} we obtain A’ < p, < 2. This
achieves the proof of Claim 2.6. O

In what follows, we can assume, without loss of generality, that vertices in B! use either colors 1 and 2 when
e = 2 or only color 1 when p. = 1. We will additionally assume that all leaves are colored with color 1.



ON THE DOMINATOR CHROMATIC NUMBER S1653

Claim 2.7. If y. = 2, then for all i € {1,2,...,7} either n; € {2,3,5} or A\ = 2.

Proof. Suppose, to the contrary, that there is an integer ip € {1,2,...,r} such that n;,, ¢ {2,3,5} and
Ao = 2. By Claim 2.6, A = 1. Let I;, = {z%*,z,...,2,° _;}, and observe that every vertex of I;, not

? nio—l

colored with 1 uses a color belonging to A, (because of A% = 1), and thus
=2
o Ad = | "2 (2.9

Since p. = 2, we can define a dominator coloring ¢ of G obtained from ¢ as follows. For each x ¢ I,
¢(z) = c(x); for each i = 2(mod3), let p(z!°) = 1; for each i = 0(mod3), let (zL) = 2; for the remaining
vertices of I;,, we color them differently among colors used by I;, N A.. Clearly now under ¢, each vertex of
I;, not colored with 1 or 2 uses a color belonging to A, and thus

Ny — 2

Now, since |I;, N A,| < |I;, N Acl, ¢ is a dominator coloring of G using less colors than ¢, which leads to a
contradiction. This achieves the proof of Claim 2.7. (]

Claim 2.8. If n;, ¢ {2,3,5} for some ig € {1,2,...,r}, then G admits a x4-coloring with p = 2.

Proof. If p. = 2, we are done. Hence assume that p, = 1 and thus, by Claim 2.6, A% = 1. First, assume
that n; = 4 for each i. Define a new dominator coloring 7 as follows: color each support vertex with a new
color starting from 3, and color all its neighbors by colors 1 or 2 so that both colors appear in each stalk.
Clearly, |7| = |c| and p, = 2. For the next, we can assume that n; > 6 for at least some i. Without loss of
generality, we can assume that color 2 appears in I;, N A.. Let ¢ be the dominator coloring of G defined as
in Claim 2.7 with |p| colors. A similar argument as in Claim 2.6 shows that (2.9) and (2.10) remain valid.
In addition, we have

po = e+ 1and [I;NA| = |I;N A for all i # g (2.11)
and
s=p
ol = pp + 5+ Ly NAg|+ Y [LiNA. (2.12)
i=1(ii0)

By replacing the expressions of (2.11) together with (2.10) and (2.9) in (2.12), we obtain

Ng, — 2 ng, — 2 <=
|<pl=uc+s+1+{ = J—{ o J+Z|ImAc|.
=1

Using (2.7), we get

ol =1 | =2 - | 222 |k i

Now, since {"103_2 < n”)T_QJ — 1, it follows that || < xa(G). That is ¢ is xg4-coloring of G with p, = 2.
This achieves the proof of Claim 2.8. O
Now we turn our attention to prove equality (2.8). Pick i from {1,2,...,r} and consider the following
cases.

Case 1. n;, € {2,3,5}.
If n;, = 2, then I;, = () and thus (2.8) holds since |I;, N A.| = 0. If n;, = 3, then clearly |I;,| = 1. In this
case, again |I;; N A.| = 0, for otherwise recoloring the vertex of I;, with a color used by the leaves provides
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a dominator coloring of G with x4(G) — 1 colors, a contradiction. Thus (2.8) holds for n;, = 3. Finally, let
n;, = 5. Then |I;,| = 3, where two vertices of I;, do not belong to A, (for otherwise recoloring the two
non-adjacent vertices of I;, with the color used by the leaves and the other vertex with a color already used
by I;, N A. provides a dominator coloring of G with x4(G) — 1 colors, a contradiction). Thus |I;, N A.| < 1.
This together with Lemma 2.4(i) yield |I;, N A.| = 1 and thus (2.8) holds for n;, = 5.

Case 2. n;, ¢ {2,3,5}.

By Claim 2.8, we may assume that u. = 2 and thus by Claim 2.7, we have A% = 2. Moreover, we have
|Ii0 N B;‘ > 2. This together with (2.6) imply that n;, > 4. Consider the dominator coloring ¢ of G as
defined in the proof of Claim 2.7. Note that (2.10) and (2.12) remain valid. In addition, we have

He = e and |I; N Ay| = |I; N Ac| for all ¢ # . (2.13)
Now, by substituting the expressions of (2.10) and (2.13) in formula (2.12), we obtain

s—p

=2
e L R S V¥ (214
i=1(ii0)

Now, since |¢|> x4(G), (2.14) and (2.7) together yield |I;, N A.| < Lniﬁng.

On the other hand, Lemma 2.4(i) yields |I;, N A.| > V”’;QJ, and thus equality (2.8) follows. This achieves
the proof of Item (i).

(ii) Assume that n, € {2,3,5} for all i € {1,2,...,7} and let [ be the number of stalks of order 5. In this case,
we have Y :_7 | 22| = . By replacing this in the expression of item (i), we get

Xd(G) = pe + s +1. (2.15)

Now, let ¥ be a coloring of G obtained from c as follows. For each I;, let @D(x;) =1 if j is even, and color
the vertices x; with j odd differently among colors used by I; N A.. The remaining vertices of G keep their
colors given by coloring c. It is easy to show that ¢ is dominator coloring using at least x4(G) colors such

that p,, = 1 and |I; N Ay| = | 252 | for each i, where

5—p
Wl =145+ [2F2]. (2.16)
i=1
Using the fact that n; € {2,3,5}, (2.16) becomes
[ =1+s+1. (2.17)

Since |¢| > xq(G) and p. € {1,2}, (2.15) and (2.17) together yield u. = 1.
The second part follows by Claim 2.8. This completes the proof of Lemma 2.5.

Now, we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. If n; € {2,3,5} for all 4, then by items (i) and (ii) of Lemma 2.5, we have p, = 1 and
thus x4(G) = s+ 14+ Y7 |®52|. Now if n; ¢ {2,3,5} for some i, then by the second part of Lemma 2.5(ii),

we can take y. = 2. Using Lemma 2.5(i), we obtain xa(G) =s+2+ > ;1 [ 252]. O
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