

ON THE DOMINATOR CHROMATIC NUMBER OF THE GENERALIZED CATERPILLARS FOREST

SOUMIA AIOULA¹, MUSTAPHA CHELLALI² AND NOUREDDINE IKHLEF-ESCHOUF^{3,*}

Abstract. A dominator coloring is a proper coloring of the vertices of a graph such that each vertex of the graph dominates all vertices of at least one color class (possibly its own class). The dominator chromatic number of a graph G is the minimum number of color classes in a dominator coloring of G . In this paper, we determine the exact value of the dominator chromatic number of a subclass of forests which we call, generalized caterpillars forest, where every vertex of degree at least three is a support vertex.

Mathematics Subject Classification. 05C15, 05C69.

Received March 20, 2020. Accepted October 24, 2020.

1. INTRODUCTION

Throughout the paper, we consider finite, simple and undirected graphs. Let G be a graph with *vertex-set* $V(G)$ and *edge-set* $E(G)$. The *open neighborhood* of a vertex $v \in V(G)$ is the set $N(v) = \{u | uv \in E\}$. The *degree* of a vertex v is $d_G(v) = |N(v)|$. A vertex of degree one is called a *leaf*, and its neighbor is called a *support vertex*. Given a subset $A \subseteq V(G)$, we denote by $G[A]$ (or sometimes $G \setminus A$) the *subgraph* of G induced by A .

Recall that a *tree* is a connected acyclic graph, and a *forest* is an acyclic graph. A *caterpillar* is a tree such that the removal of all its leaves produces a path.

A *coloring* of the vertices of G is a mapping $c : V(G) \rightarrow \mathbb{N}$, where for every vertex v the integer $c(v)$ is called the *color* of v . A coloring c is *proper* if for any two adjacent vertices u and v , $c(v) \neq c(u)$. The *chromatic number* $\chi(G)$ of graph G is the smallest integer k such that G admits a proper coloring with k colors. Let X be a color class of a proper coloring of G . Then we say that a vertex x of G *sees* X if x is adjacent to all vertices in X , and x *misses* X otherwise. In particular, if $X = \{x\}$, then we say that x sees its own class.

A *dominator coloring* of G is a proper coloring of the vertices of G such that each vertex in G sees at least one color class (possibly its own class). The *dominator chromatic number* $\chi_d(G)$ is the minimum number of color classes in a dominator coloring of G . A dominator coloring of G with $\chi_d(G)$ colors will be called a χ_d -coloring of G . The concept of dominator coloring was introduced by Gera *et al.* [6] and studied further by Gera [4, 5], Chellali and Maffray [3] and Boumediene and Chellali [1, 2]. In particular, in [2] the authors gave a polynomial

Keywords. Dominator coloring, dominator chromatic number, trees.

¹ Laboratory of Mechanics, Physics and Mathematical Modeling, Faculty of Sciences, University of Médéa, Médéa, Algeria.

² LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria.

³ Department of Mathematics and Computer Science, Faculty of Sciences, University of Médéa, Médéa, Algeria.

*Corresponding author: nour_zechouf@yahoo.fr

time algorithm computing the dominator chromatic number for every nontrivial tree. It is worth noting that the decision problem corresponding to the dominator coloring is NP-complete for arbitrary graphs [6]. Therefore, it is natural to look for graph classes where the value of the dominator chromatic number is given either exactly or can be computed in polynomial time.

Given a χ_d -coloring c of G , we denote by Ω_c the set of color classes of c containing a single vertex, and let Π_c be the set of the remaining color classes of c . Let us also define the following sets.

- Let Π_c^1 be the subset of color classes that are missed, that is $\Pi_c^1 = \{X \in \Pi_c \mid \text{no vertex of } G \text{ sees } X\}$, and let $\Pi_c^2 = \Pi_c \setminus \Pi_c^1$.
- For $i \in \{1, 2\}$, let B_c^i be the set of all vertices belonging to color classes in Π_c^i , and let $A_c = V(G) \setminus (B_c^1 \cup B_c^2)$.

Clearly A_c, B_c^1, B_c^2 are disjoint sets and $V(G) = A_c \cup B_c^1 \cup B_c^2$. Also, $|A_c| = |\Omega_c|$ and $|B_c^1 \cup B_c^2| \geq 2|\Pi_c|$.

It has been shown in [1] that for every χ_d -coloring c of a nontrivial tree either each support vertex belongs to A_c or its unique leaf neighbor belongs to A_c . Moreover, they proved the following.

Proposition 1.1 ([1]). *Every tree of order at least three admits a χ_d -coloring c such that each support vertex belongs to A_c and all leaves of G have the same color.*

In this paper, we are interested in determining the exact value of the dominator chromatic number for a more general class of caterpillars which we call generalized caterpillars. A *generalized caterpillar* is a tree such that each vertex of degree at least three is a support vertex. A *generalized caterpillars forest* is a forest such that each component is a generalized caterpillar. A *stalk* in a generalized caterpillar forest G is a path whose endvertices are support vertices in G and whose inner vertices are not. Clearly, each stalk (if any) has order at least two. Also, if G is a generalized caterpillar forest without stalks, then each component of G is a star or a single vertex.

It is worth mentioning that every tree T of order at least three is a subtree of a generalized caterpillar. Indeed, it is enough to add for any vertex of degree at least 3 that is not a support vertex a new vertex attached to it. Clearly, in this way the supertree obtained, which will be denoted by G_T , is a generalized caterpillar. In this context, if T is a tree of order $n \geq 3$, then I_T will denote the set of vertices of degree at least three that are not support vertices. Obviously, if T is a tree with $I_T = \emptyset$, then $G_T = T$. Our next observation gives a relationship between $\chi_d(T)$ and $\chi_d(G_T)$ for every nontrivial tree T .

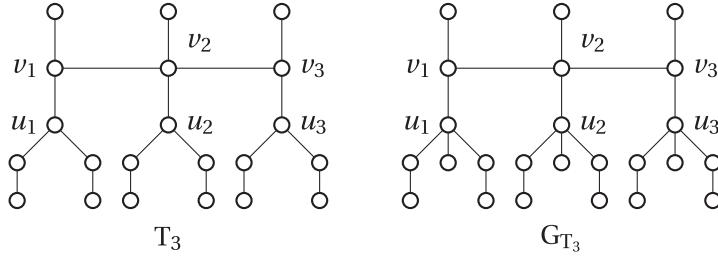
Observation 1.2. If T is a nontrivial tree, then $\chi_d(G_T) - |I_T| \leq \chi_d(T) \leq \chi_d(G_T)$.

Proof. Clearly, if T has order two or I_T is empty, then $G_T = T$ and the result is valid. Hence we can assume that T has order at least three and $I_T \neq \emptyset$. The upper bound follows from the fact that the restriction of any χ_d -coloring of G_T to T is a dominator coloring of T . Now to prove the lower bound, consider a χ_d -coloring c of T satisfying Proposition 1.1. Let $M = I_T \setminus A_c$ and π be a coloring of G_T obtained from c as follows. Color each vertex of M with a new, different color; and color the new vertices in G_T with the color used by the leaves in T . The remaining vertices of G_T keep their colors already given by coloring c . It is easy to see that π is a dominator coloring of G_T with $\chi_d(T) + |M|$ colors, and thus $\chi_d(G_T) \leq \chi_d(T) + |M| \leq \chi_d(T) + |I_T|$. \square

The sharpness of the bounds in Observation 1.2 is given by the following result.

Observation 1.3. For every integer $j \geq 0$, there exists a tree T_j such that $|I_{T_j}| = j$ and $\chi_d(G_{T_j}) = \chi_d(T_j) + |I_{T_j}|$.

Proof. Clearly, if $j = 0$, then for any caterpillar T we have $G_T = T$ and thus $\chi_d(G_T) = \chi_d(T)$. Hence let $j \geq 1$ be an integer. Let H_i be a tree obtained from a star $K_{1,3}$ centered at u_i by subdividing each edge exactly once, and let v_i be a support vertex of H_i . Let T_j be a tree obtained from H_1, H_2, \dots, H_j by adding $j-1$ edges connecting v_i 's so that they induce a path P_j . For example, the tree T_3 is illustrated in Figure 1. A tree T_3 and its corresponding generalized caterpillar G_{T_3} . Note that T_j has $3j$ support vertices, and since the remaining vertices of T_j that are independent, we deduce from Proposition 1.1 that $\chi_d(T_j) = 3j + 1$. Moreover, the generalized caterpillar G_{T_j} constructed from T_j by adding for each u_i a new vertex attached to it by an edge contains $4j$ support vertices. One can easily see that $\chi_d(G_{T_j}) = 4j + 1 = \chi_d(T_j) + j$. \square

FIGURE 1. A tree T_3 and its corresponding generalized caterpillar G_{T_3}

By using a similar proof to that presented in [1], we can see that a generalized caterpillar forest G admits a χ_d -coloring c such that each support vertex belongs to A_c and all leaves of G have the same color. Hence we have the following.

Corollary 1.4. *Proposition 1.1 is still valid for generalized caterpillar forest.*

Observation 1.5. Let G be a generalized caterpillar forest with $p \geq 0$ single vertices and $q \geq 0$ nontrivial stars, and let H be the subgraph of G containing all components that are neither single vertices nor stars. Then $\chi_d(G) = p + q + \chi_d(H) + i$, where $i = 1$ if $q \geq 1$ and $V(H)$ is empty, and $i = 0$ otherwise.

Proof. If G contains no edge, then clearly $\chi_d(G) = p$. Hence assume that G contains at least one edge. If $V(H)$ is empty, then it is easy to show that $\chi_d(G) = p + q + 1$.

From now on, we can assume that $V(H)$ is non-empty. Let G_1, G_2, \dots, G_r be the components of $G - H$ (if any). Clearly $\chi_d(H) \geq 2$, and $\chi_d(G_i) \leq 2$ since G_i is a single vertex or a nontrivial star. This means that $\chi_d(H) \geq \chi_d(G_i)$ for every i . Moreover, each component in $G - H$ needs at least one new color, since a vertex in such component must see an entire color class. Hence $\chi_d(G) \geq p + q + \chi_d(H)$.

The equality follows by exhibiting a dominator coloring of G with $p + q + \chi_d(H)$ colors. According to Corollary 1.4, H admits a χ_d -coloring c such that all leaves have the same color, say 1. Let π be a coloring of G defined as follows. For every $x \in V(H)$, let $\pi(x) = c(x)$, and for each leaf v in $G - H$, let $\pi(v) = 1$, unless v belongs to a component of order 2, in which case v is one of the two leaves. Color the remaining vertices of G differently using $(p + q)$ new colors. Clearly, π is a dominator coloring using $p + q + \chi_d(H)$ colors, and thus $\chi_d(G) \leq p + q + \chi_d(H)$. \square

According to Observation 1.5, we can assume in the remainder of this paper that each component of a generalized caterpillar forest is nontrivial and different from a star. Our aim is to prove the following result.

Theorem 1.6. *Let G be a generalized caterpillar forest with s support vertices and p connected components, each is nontrivial and different from a star. Let $n_i \geq 2$ be the order of the i^{th} stalk of G . Then*

$$\chi_d(G) = \alpha + s + \sum_{i=1}^{s-p} \left\lfloor \frac{n_i - 2}{3} \right\rfloor,$$

where $\alpha = \begin{cases} 1 & \text{if each } n_i \in \{2, 3, 5\}, \\ 2 & \text{otherwise.} \end{cases}$

2. PROOF OF THEOREM 1.6

The proof of Theorem 1.6 is based on the following preliminary results.

Observation 2.1. Let G be a generalized caterpillar forest such that each component is nontrivial and different from a star. Then G admits a χ_d -coloring c such that the following properties hold.

- (i) All leaves of G are in B_c^1 and hence every vertex in $A_c \cup B_c^2$ has degree at least two.
- (ii) Every vertex in B_c^1 has degree at most two.
- (iii) Every vertex in B_c^2 has degree exactly two.

Proof. Let c be a χ_d -coloring satisfying Corollary 1.4.

- (i) Let X be the color class containing all leaves of G . Since G has at least one stalk, each vertex in G misses X , and the first part of item (i) follows. The second part of item (i) is obvious.
- (ii) If B_c^1 has a vertex of degree at least three, then such a vertex would be a support vertex, contradicting the choice of c .
- (iii) Using the fact that every vertex of degree at least three is a support vertex, the desired result follows from item (i).

□

Lemma 2.2. Let c be a χ_d -coloring of a graph G and let $\mu_c = |\Pi_c^1|$. Then

- (i) $\mu_c \leq \chi(G)$. In particular, if G is bipartite, then $\mu_c \in \{0, 1, 2\}$.
- (ii) Moreover, if G is a generalized caterpillar forest such that each component is nontrivial and different from a star, then $\mu_c \in \{1, 2\}$.

Proof. (i) Suppose to the contrary that $\mu_c \geq \chi(G) + 1$, that is, at least $\chi(G) + 1$ colors appear in B_c^1 . Without loss of generality, we may assume that vertices in B_c^1 use colors $1, 2, \dots, \mu_c$. Since no color can appear in both B_c^1 and $V(G) \setminus B_c^1$, vertices in $V(G) \setminus B_c^1$ must use the remaining colors, that is, colors $\mu_c + 1, \dots, \chi_d(G)$. Define a new coloring π of G as follows. Recolor properly all vertices of B_c^1 with $\chi(G[B_c^1])$ colors among $\{1, 2, \dots, \mu_c\}$ (this is possible since $\chi(G[B_c^1]) \leq \chi(G) \leq \mu_c - 1$), while vertices of $V(G) \setminus B_c^1$ keep their colors already given by c . Clearly π is a dominator coloring of G with $\chi_d(G) - \mu_c + \chi(G[B_c^1]) < \chi_d(G)$ colors, a contradiction. The second part of item (i) follows from the fact that $\chi(G) \leq 2$ for bipartite graphs.

(ii) Note first that $\mu_c \neq 0$, since B_c^1 is nonempty (by Observation 2.1(i)). This together with Lemma 2.2(i) yield the desired result.

□

Lemma 2.3. Let G be a generalized caterpillar forest such that each component is nontrivial and different from a star. Then G admits a χ_d -coloring π such that Π_π^2 is empty and Corollary 1.4 is fulfilled for π .

Proof. Among all χ_d -colorings of G fulfilling Corollary 1.4, let c be chosen so that

- (C1) $|\Omega_c|$ is maximized.
- (C2) Subject to (C1), $|\Pi_c^1|$ is maximized.

Put $k = \chi_d(G)$ and $\mu_c = |\Pi_c^1|$. Let X_1, X_2, \dots, X_k be the color classes of c in which vertices in X_i get color i for $i \in \{1, \dots, k\}$. Assume to the contrary that Π_c^2 is nonempty. Pick t from $\{1, \dots, k\}$ such that $X_t \in \Pi_c^2$ and let $X_t = \{x_1, x_2, \dots, x_p\}$. By definition, $p \geq 2$ and each $x_i \in B_c^2$. Also, by Observation 2.1(iii), we have

$$d_G(x_i) = 2 \text{ for every } i \in \{1, \dots, p\}. \quad (2.1)$$

Let us denote by $W(X_t)$ the set of vertices of G that see X_t . Then, since G is acyclic, we have

$$|W(X_t)| = 1. \quad (2.2)$$

Thus, let $W(X_t) = \{w_t\}$. Clearly,

$$d_G(w_t) \geq p \geq 2. \quad (2.3)$$

In view of (2.1), let $N_G(x_i) = \{w_t, y_i\}$ for $i \in \{1, \dots, p\}$ and put $Y_t = \{y_1, y_2, \dots, y_p\}$. Obviously $N_G(X_t) = Y_t \cup \{w_t\}$. Observe that, since G is acyclic, $N_G[X_t]$ induces a subdivided star of order $2p + 1$ centered at w_t .

Recall that Lemma 2.2(ii) shows that $\mu_c \in \{1, 2\}$. Without loss of generality, we can assume that $\Pi_c^1 = \{X_1\}$ when $\mu_c = 1$ and $\Pi_c^1 = \{X_1, X_2\}$ when $\mu_c = 2$. In this case, we have $t \geq \mu_c + 1$ (since $X_t \in \Pi_c^2$). Let π be a χ_d -coloring of G obtained from c and defined according to the following cases.

Case 1. $w_t \in B_c^1 \cup B_c^2$.

Items (ii) and (iii) of Observation 2.1 together with (2.3) yield $d_G(w_t) = 2$. Then $p = 2$ and $N_G(X_t) = \{w_t, y_1, y_2\}$. Thus $N_G(X_t)$ induces a path $P_5 : y_1 - x_1 - w_t - x_2 - y_2$. Next, we will show that y_1 and y_2 either are both in A_c or one of them is in A_c and the other one is in B_c^2 having a neighbor in A_c . In each case, we will recolor some vertices of G and increase the number of color classes of Ω_c or Π_c^1 . To this end, consider the following situations whether w_t is in B_c^1 or B_c^2 .

Subcase 1. $w_t \in B_c^1$. Note that since $d_G(x_1) = d_G(x_2) = 2$, neither x_1 nor x_2 can see a color class of Π_c^2 , for otherwise, one of them will be of degree at least 3, which contradicts (2.1). Therefore, both y_1 and y_2 must be in A_c , for otherwise, one of x_1 and x_2 misses all color classes of c , which contradicts the definition of c . Define π as follows: assign color 1 to x_1 and x_2 , and assign color t to w_t . The remaining vertices of G keep their colors (given by c). It is easy to see that π is a χ_d -coloring of G fulfilling Corollary 1.4 such $\Omega_\pi = \Omega_c \cup \{w_t\}$ (that is, Ω_π contains more color classes than Ω_c), which contradicts the choice of c .

Subcase 2. $w_t \in B_c^2$. Let $X_s = \{x'_1, x'_2, \dots, x'_q\}$ be the color class containing $w_t = x'_1$. Clearly $t \neq s \geq \mu_c + 1$. Since $X_s \in \Pi_c^2$, (2.2) says that $W(X_s) = \{w_s\}$. If $w_s \notin \{x_1, x_2\}$, then $d_G(w_t) \geq 3$, contradicting the fact that $d_G(w_t) = 2$. Hence, $w_s \in \{x_1, x_2\}$, say $w_s = x_1$. Since w_s and X_s play the same role as w_t and X_t , respectively, we conclude that $q = 2$, and each vertex in $X_t \cup X_s$ has degree 2. Thus $x'_2 = y_1$ and $X_s = \{w_t, y_1\}$. Also, since $d_G(y_1) = 2$, there is a vertex $z_1 \neq x_1$ such that $y_1 z_1 \in E(G)$. Hence $N_G(X_t \cup X_s)$ induces a path $P_6 : z_1 - y_1 - x_1 - w_t - x_2 - y_2$. Using the same argument as in Subcase 1, we can see that $y_2, z_1 \in A_c$. Now assigning color 1 to x_2 and y_1 and keep the colors already given to the remaining vertices (under c) provides a χ_d -coloring π of G fulfilling Corollary 1.4 such that $\Omega_\pi = \Omega_c \cup \{\{x_1\}, \{w_t\}\}$, which contradicts again the choice of c .

Case 2. $w_t \in A_c$.

Then $c(w_t) \neq 1$. We claim that $Y_0 = Y_t \cap B_c^1$ is nonempty. Suppose to the contrary that $Y_0 = \emptyset$. Then each vertex in Y_t has color different from 1. By recoloring all vertices of X_t with color 1 (this is possible since $t \geq \mu_c + 1$), we would obtain a dominator coloring of G with $\chi_d(G) - 1$, a contradiction, which proved the claim. Now, let y_{i_0} be any vertex in Y_0 . By Observation 2.1(ii), y_{i_0} has degree at most two. If $d_G(y_{i_0}) = 1$, then y_{i_0} misses all color classes of c , which is impossible. So $d_G(y_{i_0}) = 2$ and let $N_G(y_{i_0}) = \{x_{i_0}, z_{i_0}\}$. A similar argument as to the previous cases shows that vertex z_{i_0} is in A_c . In this case, we define π by interchanging colors of x_{i_0} and y_{i_0} and keeping the same colors for the remaining vertices of G . Clearly, π is a χ_d -coloring of G fulfilling Corollary 1.4. In addition, $\Omega_\pi = \Omega_c$, but $\Pi_\pi^1 = \Pi_c^1 \cup \{(X_t \setminus \{x_{i_0}\}) \cup \{y_{i_0}\}\}$, which contradicts the choice of c . \square

In the rest of this paper, we denote by T_i the i^{th} stalk of order $n_i \geq 2$ in the generalized caterpillar forest G , where $V(T_i) = \{x_1^i, x_2^i, \dots, x_{n_i-1}^i, x_{n_i}^i\}$ and $x_j^i x_{j+1}^i \in E(G)$ for every $j \in \{1, 2, \dots, n_i - 1\}$. We also denote by $I_i = \{x_2^i, x_3^i, \dots, x_{n_i-1}^i\}$ (possibly empty) the set of inner vertices in T_i .

Lemma 2.4. *Let G be a generalized caterpillar forest such that each component is nontrivial and different from a star. If c is a χ_d -coloring fulfilling the statement of Lemma 2.3, with $\mu_c = |\Pi_c^1|$, then*

- (i) *If $|I_i| \geq 3$, then for every three consecutive vertices of I_i , one of them belongs to B_c^1 and another to A_c .*
- (ii) *If $\mu_c = 1$ and $|I_i| \geq 2$, then one of any two consecutive vertices of I_i belongs to A_c .*
- (iii) *$x_1^i, x_{n_i}^i \in A_c$.*

Proof. We first observe that by Lemma 2.3, each vertex of G is in $B_c^1 \cup A_c$.

- (i) Let $|I_i| \geq 3$, and suppose to the contrary, that for some $j_0 \in \{2, \dots, n_i - 3\}$ all of $x_{j_0}^i, x_{j_0+1}^i, x_{j_0+2}^i$ belong to A_c . Then, recoloring $x_{j_0+1}^i$ with a color used by the leaves provides a dominator coloring of G with $\chi_d(G) - 1$ colors, a contradiction. Therefore, for every $j \in \{2, \dots, n_i - 3\}$, one of $x_j^i, x_{j+1}^i, x_{j+2}^i$ belongs to B_c^1 . Moreover, one of $x_{j_0}^i, x_{j_0+1}^i, x_{j_0+2}^i$ must be in A_c , for otherwise, these three vertices will be all in B_c^1 and thus $x_{j_0+1}^i$ misses all color classes of c , which is impossible.
- (ii) Follows from the fact that each vertex of G is in $B_c^1 \cup A_c$.
- (iii) Follows from the definition of the stalk T_i and Corollary 1.4.

□

Lemma 2.5. *Let G be a generalized caterpillar forest with $r \geq 1$ stalks T_1, \dots, T_r , s support vertices and p components each is nontrivial and different from a star. Consider a χ_d -coloring c of G satisfying Lemma 2.3 and μ_c be the number of colors of c appearing in $G[B_c^1]$. Then*

- (i) $\chi_d(G) = s + \mu_c + \sum_{i=1}^r \left\lfloor \frac{|V(T_i)|-2}{3} \right\rfloor$ with $r = s - p$.
- (ii) If $|V(T_i)| \in \{2, 3, 5\}$ for each $i \in \{1, \dots, r\}$, then $\mu_c = 1$. Otherwise, G admits a χ_d -coloring φ such that $\mu_\varphi = 2$.

Proof. According to Lemma 2.3, Π_c^2 is empty and Corollary 1.4 is fulfilled for c . Hence $\chi_d(G) = |\Pi_c^1| + |\Omega_c|$. Also, since $|\Pi_c^1| = \mu_c$ and $|\Omega_c| = |A_c|$, we get

$$\chi_d(G) = \mu_c + |A_c|. \quad (2.4)$$

Let $n_i = |V(T_i)|$ and recall that $V(T_i) = \{x_1^i, x_2^i, \dots, x_{n_i}^i\}$ and $I_i = V(T_i) \setminus \{x_1^i, x_{n_i}^i\}$. Let S_G be the set of support vertices of G and $|S_G| = s$. Clearly,

$$A_c = S_G \cup (\bigcup_{i=1}^r I_i \cap A_c) \quad (2.5)$$

and

$$n_i = 2 + |I_i \cap B_c^1| + |I_i \cap A_c|. \quad (2.6)$$

- (i) It is easy to check that $r = s - p$. Hence, combining this together with (2.4) and (2.5), we obtain

$$\chi_d(G) = \mu_c + s + \sum_{i=1}^{s-p} |I_i \cap A_c|. \quad (2.7)$$

In the sequel, we shall show that

$$|I_i \cap A_c| = \left\lfloor \frac{n_i-2}{3} \right\rfloor \text{ for all } i. \quad (2.8)$$

To do this, we need to prove the following three claims. Let λ_c^i denote the number of colors of c appearing in $G[I_i \cap B_c^1]$.

Claim 2.6. If $n_i = 2$, then $\lambda_c^i = 0$, while if $n_i \geq 3$, then $1 \leq \lambda_c^i \leq \mu_c \leq 2$.

Proof. Clearly, by (2.6), $n_i \geq 2$. If $n_i = 2$, then $I_i = \emptyset$ and thus $\lambda_c^i = 0$. Hence, assume that $n_i \geq 3$. Then $I_i \neq \emptyset$. If $\lambda_c^i = 0$, then all vertices of I_i are in A_c . In this case, recoloring one of these vertices with a color used by the leaves provides a dominator coloring of G with $\chi_d(G) - 1$ colors, a contradiction. Therefore $\lambda_c^i \geq 1$. Now, using the fact that $\mu_c \in \{1, 2\}$ (by Lem. 2.2(ii)), and the definition of λ_c^i we obtain $\lambda_c^i \leq \mu_c \leq 2$. This achieves the proof of Claim 2.6. □

In what follows, we can assume, without loss of generality, that vertices in B_c^1 use either colors 1 and 2 when $\mu_c = 2$ or only color 1 when $\mu_c = 1$. We will additionally assume that all leaves are colored with color 1.

Claim 2.7. If $\mu_c = 2$, then for all $i \in \{1, 2, \dots, r\}$ either $n_i \in \{2, 3, 5\}$ or $\lambda_c^i = 2$.

Proof. Suppose, to the contrary, that there is an integer $i_0 \in \{1, 2, \dots, r\}$ such that $n_{i_0} \notin \{2, 3, 5\}$ and $\lambda_c^{i_0} \neq 2$. By Claim 2.6, $\lambda_c^{i_0} = 1$. Let $I_{i_0} = \{x_2^{i_0}, x_3^{i_0}, \dots, x_{n_{i_0}-1}^{i_0}\}$, and observe that every vertex of I_{i_0} not colored with 1 uses a color belonging to A_c (because of $\lambda_c^{i_0} = 1$), and thus

$$|I_{i_0} \cap A_c| = \left\lfloor \frac{n_{i_0} - 2}{2} \right\rfloor. \quad (2.9)$$

Since $\mu_c = 2$, we can define a dominator coloring φ of G obtained from c as follows. For each $x \notin I_{i_0}$, $\varphi(x) = c(x)$; for each $i \equiv 2 \pmod{3}$, let $\varphi(x_i^{i_0}) = 1$; for each $i \equiv 0 \pmod{3}$, let $\varphi(x_i^{i_0}) = 2$; for the remaining vertices of I_{i_0} , we color them differently among colors used by $I_{i_0} \cap A_c$. Clearly now under φ , each vertex of I_{i_0} not colored with 1 or 2 uses a color belonging to A_φ , and thus

$$|I_{i_0} \cap A_\varphi| = \left\lfloor \frac{n_{i_0} - 2}{3} \right\rfloor. \quad (2.10)$$

Now, since $|I_{i_0} \cap A_\varphi| < |I_{i_0} \cap A_c|$, φ is a dominator coloring of G using less colors than c , which leads to a contradiction. This achieves the proof of Claim 2.7. \square

Claim 2.8. If $n_{i_0} \notin \{2, 3, 5\}$ for some $i_0 \in \{1, 2, \dots, r\}$, then G admits a χ_d -coloring with $\mu = 2$.

Proof. If $\mu_c = 2$, we are done. Hence assume that $\mu_c = 1$ and thus, by Claim 2.6, $\lambda_c^{i_0} = 1$. First, assume that $n_i = 4$ for each i . Define a new dominator coloring π as follows: color each support vertex with a new color starting from 3, and color all its neighbors by colors 1 or 2 so that both colors appear in each stalk. Clearly, $|\pi| = |c|$ and $\mu_\pi = 2$. For the next, we can assume that $n_i \geq 6$ for at least some i . Without loss of generality, we can assume that color 2 appears in $I_{i_0} \cap A_c$. Let φ be the dominator coloring of G defined as in Claim 2.7 with $|\varphi|$ colors. A similar argument as in Claim 2.6 shows that (2.9) and (2.10) remain valid. In addition, we have

$$\mu_\varphi = \mu_c + 1 \text{ and } |I_i \cap A_\varphi| = |I_i \cap A_c| \text{ for all } i \neq i_0 \quad (2.11)$$

and

$$|\varphi| = \mu_\varphi + s + |I_{i_0} \cap A_\varphi| + \sum_{i=1(i \neq i_0)}^{s-p} |I_i \cap A_\varphi|. \quad (2.12)$$

By replacing the expressions of (2.11) together with (2.10) and (2.9) in (2.12), we obtain

$$|\varphi| = \mu_c + s + 1 + \left\lfloor \frac{n_{i_0} - 2}{3} \right\rfloor - \left\lfloor \frac{n_{i_0} - 2}{2} \right\rfloor + \sum_{i=1}^{s-p} |I_i \cap A_c|.$$

Using (2.7), we get

$$|\varphi| = 1 + \left\lfloor \frac{n_{i_0} - 2}{3} \right\rfloor - \left\lfloor \frac{n_{i_0} - 2}{2} \right\rfloor + \chi_d(G).$$

Now, since $\left\lfloor \frac{n_{i_0} - 2}{3} \right\rfloor \leq \left\lfloor \frac{n_{i_0} - 2}{2} \right\rfloor - 1$, it follows that $|\varphi| \leq \chi_d(G)$. That is φ is χ_d -coloring of G with $\mu_\varphi = 2$. This achieves the proof of Claim 2.8. \square

Now we turn our attention to prove equality (2.8). Pick i_0 from $\{1, 2, \dots, r\}$ and consider the following cases.

Case 1. $n_{i_0} \in \{2, 3, 5\}$.

If $n_{i_0} = 2$, then $I_{i_0} = \emptyset$ and thus (2.8) holds since $|I_{i_0} \cap A_c| = 0$. If $n_{i_0} = 3$, then clearly $|I_{i_0}| = 1$. In this case, again $|I_{i_0} \cap A_c| = 0$, for otherwise recoloring the vertex of I_{i_0} with a color used by the leaves provides

a dominator coloring of G with $\chi_d(G) - 1$ colors, a contradiction. Thus (2.8) holds for $n_{i_0} = 3$. Finally, let $n_{i_0} = 5$. Then $|I_{i_0}| = 3$, where two vertices of I_{i_0} do not belong to A_c (for otherwise recoloring the two non-adjacent vertices of I_{i_0} with the color used by the leaves and the other vertex with a color already used by $I_{i_0} \cap A_c$ provides a dominator coloring of G with $\chi_d(G) - 1$ colors, a contradiction). Thus $|I_{i_0} \cap A_c| \leq 1$. This together with Lemma 2.4(i) yield $|I_{i_0} \cap A_c| = 1$ and thus (2.8) holds for $n_{i_0} = 5$.

Case 2. $n_{i_0} \notin \{2, 3, 5\}$.

By Claim 2.8, we may assume that $\mu_c = 2$ and thus by Claim 2.7, we have $\lambda_c^{i_0} = 2$. Moreover, we have $|I_{i_0} \cap B_c^1| \geq 2$. This together with (2.6) imply that $n_{i_0} \geq 4$. Consider the dominator coloring φ of G as defined in the proof of Claim 2.7. Note that (2.10) and (2.12) remain valid. In addition, we have

$$\mu_\varphi = \mu_c \text{ and } |I_i \cap A_\varphi| = |I_i \cap A_c| \text{ for all } i \neq i_0. \quad (2.13)$$

Now, by substituting the expressions of (2.10) and (2.13) in formula (2.12), we obtain

$$|\varphi| = \mu_c + s + \left\lfloor \frac{n_{i_0} - 2}{3} \right\rfloor + \sum_{i=1(i \neq i_0)}^{s-p} |I_i \cap A_c|. \quad (2.14)$$

Now, since $|\varphi| \geq \chi_d(G)$, (2.14) and (2.7) together yield $|I_{i_0} \cap A_c| \leq \left\lfloor \frac{n_{i_0} - 2}{3} \right\rfloor$.

On the other hand, Lemma 2.4(i) yields $|I_{i_0} \cap A_c| \geq \left\lfloor \frac{n_{i_0} - 2}{3} \right\rfloor$, and thus equality (2.8) follows. This achieves the proof of Item (i).

(ii) Assume that $n_i \in \{2, 3, 5\}$ for all $i \in \{1, 2, \dots, r\}$ and let l be the number of stalks of order 5. In this case, we have $\sum_{i=1}^{s-p} \left\lfloor \frac{n_i - 2}{3} \right\rfloor = l$. By replacing this in the expression of item (i), we get

$$\chi_d(G) = \mu_c + s + l. \quad (2.15)$$

Now, let ψ be a coloring of G obtained from c as follows. For each I_i , let $\psi(x_j^i) = 1$ if j is even, and color the vertices x_j^i with j odd differently among colors used by $I_i \cap A_c$. The remaining vertices of G keep their colors given by coloring c . It is easy to show that ψ is dominator coloring using at least $\chi_d(G)$ colors such that $\mu_\psi = 1$ and $|I_i \cap A_\psi| = \left\lfloor \frac{n_i - 2}{2} \right\rfloor$ for each i , where

$$|\psi| = 1 + s + \sum_{i=1}^{s-p} \left\lfloor \frac{n_i - 2}{2} \right\rfloor. \quad (2.16)$$

Using the fact that $n_i \in \{2, 3, 5\}$, (2.16) becomes

$$|\psi| = 1 + s + l. \quad (2.17)$$

Since $|\psi| \geq \chi_d(G)$ and $\mu_c \in \{1, 2\}$, (2.15) and (2.17) together yield $\mu_c = 1$.

The second part follows by Claim 2.8. This completes the proof of Lemma 2.5.

□

Now, we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. If $n_i \in \{2, 3, 5\}$ for all i , then by items (i) and (ii) of Lemma 2.5, we have $\mu_c = 1$ and thus $\chi_d(G) = s + 1 + \sum_{i=1}^{s-p} \left\lfloor \frac{n_i - 2}{3} \right\rfloor$. Now if $n_i \notin \{2, 3, 5\}$ for some i , then by the second part of Lemma 2.5(ii), we can take $\mu_c = 2$. Using Lemma 2.5(i), we obtain $\chi_d(G) = s + 2 + \sum_{i=1}^{s-p} \left\lfloor \frac{n_i - 2}{3} \right\rfloor$. □

REFERENCES

- [1] H. Boumediene Merouane and M. Chellali, On the dominator colorings in trees. *Discuss Math. Graph Theory* **32** (2012) 677–683.
- [2] H. Boumediene Merouane and M. Chellali, An algorithm for the dominator chromatic number of a tree. *J. Combin. Optim.* **30** (2015) 27–33.
- [3] M. Chellali and F. Maffray, Dominator colorings in some classes of graphs. *Graphs Combin.* **28** (2012) 97–107.
- [4] R. Gera, On dominator colorings in graphs. *Graph Theory Notes New York* **52** (2007) 25–30.
- [5] R. Gera, On the dominator colorings in bipartite graphs. In: Proceedings of the 4th International Conference on Information Technology: New Generations (ITNG) (2007) 947–952.
- [6] R. Gera, S. Horton and C. Rasmussen, Dominator colorings and safe clique partitions. *Congr. Numer.* **181** (2006) 19–32.