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ON THE DOMINATOR CHROMATIC NUMBER OF THE GENERALIZED
CATERPILLARS FOREST

Soumia Aioula1, Mustapha Chellali2 and Noureddine Ikhlef-Eschouf3,∗

Abstract. A dominator coloring is a proper coloring of the vertices of a graph such that each vertex
of the graph dominates all vertices of at least one color class (possibly its own class). The dominator
chromatic number of a graph G is the minimum number of color classes in a dominator coloring of G.
In this paper, we determine the exact value of the dominator chromatic number of a subclass of forests
which we call, generalized caterpillars forest, where every vertex of degree at least three is a support
vertex.
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1. Introduction

Throughout the paper, we consider finite, simple and undirected graphs. Let G be a graph with vertex-set
V (G) and edge-set E(G). The open neighborhood of a vertex v ∈ V (G) is the set N(v) = {u|uv ∈ E}. The
degree of a vertex v is dG(v) = |N(v)|. A vertex of degree one is called a leaf, and its neighbor is called a support
vertex. Given a subset A ⊆ V (G), we denote by G[A] (or sometimes G�A) the subgraph of G induced by A.

Recall that a tree is a connected acyclic graph, and a forest is an acyclic graph. A caterpillar is a tree such
that the removal of all its leaves produces a path.

A coloring of the vertices of G is a mapping c : V (G)→ N, where for every vertex v the integer c(v) is called
the color of v. A coloring c is proper if for any two adjacent vertices u and v, c(v) 6= c(u). The chromatic number
χ(G) of graph G is the smallest integer k such that G admits a proper coloring with k colors. Let X be a color
class of a proper coloring of G. Then we say that a vertex x of G sees X if x is adjacent to all vertices in X,
and x misses X otherwise. In particular, if X = {x}, then we say that x sees its own class.

A dominator coloring of G is a proper coloring of the vertices of G such that each vertex in G sees at least one
color class (possibly its own class). The dominator chromatic number χd (G) is the minimum number of color
classes in a dominator coloring of G. A dominator coloring of G with χd (G) colors will be called a χd-coloring
of G. The concept of dominator coloring was introduced by Gera et al. [6] and studied further by Gera [4, 5],
Chellali and Maffray [3] and Boumediene and Chellali [1, 2]. In particular, in [2] the authors gave a polynomial
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time algorithm computing the dominator chromatic number for every nontrivial tree. It is worth noting that the
decision problem corresponding to the dominator coloring is NP-complete for arbitrary graphs [6]. Therefore, it
is natural to look for graph classes where the value of the dominator chromatic number is given either exactly
or can be computed in polynomial time.

Given a χd-coloring c of G, we denote by Ωc the set of color classes of c containing a single vertex, and let
Πc be the set of the remaining color classes of c. Let us also define the following sets.

– Let Π1
c be the subset of color classes that are missed, that is Π1

c = {X ∈ Πc| no vertex of G sees X}, and
let Π2

c = Πc�Π1
c .

– For i ∈ {1, 2}, let Bic be the set of all vertices belonging to color classes in Πi
c, and let Ac = V (G)�(B1

c ∪B2
c ).

Clearly Ac, B1
c , B

2
c are disjoint sets and V (G) = Ac ∪B1

c ∪B2
c . Also, |Ac| = |Ωc| and

∣∣B1
c ∪B2

c

∣∣ ≥ 2 |Πc|.
It has been shown in [1] that for every χd-coloring c of a nontrivial tree either each support vertex belongs

to Ac or its unique leaf neighbor belongs to Ac. Moreover, they proved the following.

Proposition 1.1 ([1]). Every tree of order at least three admits a χd-coloring c such that each support vertex
belongs to Ac and all leaves of G have the same color.

In this paper, we are interested in determining the exact value of the dominator chromatic number for a
more general class of caterpillars which we call generalized caterpillars. A generalized caterpillar is a tree such
that each vertex of degree at least three is a support vertex. A generalized caterpillars forest is a forest such
that each component is a generalized caterpillar. A stalk in a generalized caterpillar forest G is a path whose
endvertices are support vertices in G and whose inner vertices are not. Clearly, each stalk (if any) has order at
least two. Also, if G is a generalized caterpillar forest without stalks, then each component of G is a star or a
single vertex.

It is worth mentioning that every tree T of order at least three is a subtree of a generalized caterpillar. Indeed,
it is enough to add for any vertex of degree at least 3 that is not a support vertex a new vertex attached to
it. Clearly, in this way the supertree obtained, which will denoted by GT , is a generalized caterpillar. In this
context, if T is a tree of order n ≥ 3, then IT will denote the set of vertices of degree at least three that are not
support vertices. Obviously, if T is a tree with IT = ∅, then GT = T . Our next observation gives a relationship
between χd (T ) and χd (GT ) for every nontrivial tree T .

Observation 1.2. If T is a nontrivial tree, then χd (GT )− |IT | ≤ χd (T ) ≤ χd (GT ).

Proof. Clearly, if T has order two or IT is empty, then GT = T and the result is valid. Hence we can assume
that T has order at least three and IT 6= ∅. The upper bound follows from the fact that the restriction of any
χd-coloring of GT to T is a dominator coloring of T . Now to prove the lower bound, consider a χd-coloring c
of T satisfying Proposition 1.1. Let M = IT�Ac and π be a coloring of GT obtained from c as follows. Color
each vertex of M with a new, different color; and color the new vertices in GT with the color used by the leaves
in T . The remaining vertices of GT keep their colors already given by coloring c. It is easy to see that π is a
dominator coloring of GT with χd (T ) + |M | colors, and thus χd (GT ) ≤ χd (T ) + |M | ≤ χd (T ) + |IT |. �

The sharpness of the bounds in Observation 1.2 is given by the following result.

Observation 1.3. For every integer j ≥ 0, there exists a tree Tj such that
∣∣ITj

∣∣ = j andχd(GTj
) = χd(Tj)+

∣∣ITj

∣∣.
Proof. Clearly, if j = 0, then for any caterpillar T we have GT = T and thus χd(GT ) = χd(T ). Hence let j ≥ 1
be an integer. Let Hi be a tree obtained from a star K1,3 centered at ui by subdividing each edge exactly once,
and let vi be a support vertex of Hi. Let Tj be a tree obtained from H1, H2, . . . ,Hj by adding j − 1 edges
connecting vi’s so that they induce a path Pj . For example, the tree T3 is illustrated in Figure 1. A tree T3 and
its corresponding generalized caterpillar GT3. Note that Tj has 3j support vertices, and since the remaining
vertices of Tj that are independent, we deduce from Proposition 1.1 that χd (Tj) = 3j + 1. Moreover, the
generalized caterpillar GTj

constructed from Tj by adding for each ui a new vertex attached to it by an edge
contains 4j support vertices. One can easily see that χd(GTj ) = 4j + 1 = χd(Tj) + j. �
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Figure 1. A tree T3 and its corresponding generalized caterpillar GT3

By using a similar proof to that presented in [1], we can see that a generalized caterpillar forest G admits a
χd-coloring c such that each support vertex belongs to Ac and all leaves of G have the same color. Hence we
have the following.

Corollary 1.4. Proposition 1.1 is still valid for generalized caterpillar forest.

Observation 1.5. Let G be a generalized caterpillar forest with p ≥ 0 single vertices and q ≥ 0 nontrivial
stars, and let H be the subgraph of G containing all components that are neither single vertices nor stars. Then
χd(G) = p+ q + χd(H) + i, where i = 1 if q ≥ 1 and V (H) is empty, and i = 0 otherwise.

Proof. If G contains no edge, then clearly χd(G) = p. Hence assume that G contains at least one edge. If V (H)
is empty, then it is easy to show that χd(G) = p+ q + 1.

From now on, we can assume that V (H) is non-empty. Let G1, G2, . . . , Gr be the components of G − H
(if any). Clearly χd(H) ≥ 2, and χd(Gi) ≤ 2 since Gi is a single vertex or a nontrivial star. This means that
χd(H) ≥ χd(Gi) for every i. Moreover, each component in G −H needs at least one new color, since a vertex
in such component must see an entire color class. Hence χd(G) ≥ p+ q + χd(H).

The equality follows by exhibiting a dominator coloring of G with p + q + χd(H) colors. According to
Corollary 1.4, H admits a χd-coloring c such that all leaves have the same color, say 1. Let π be a coloring of
G defined as follows. For every x ∈ V (H), let π(x) = c(x), and for each leaf v in G −H, let π(v) = 1, unless
v belongs to a component of order 2, in which case v is one of the two leaves. Color the remaining vertices of
G differently using (p+ q) new colors. Clearly, π is a dominator coloring using p+ q + χd(H) colors, and thus
χd(G) ≤ p+ q + χd(H). �

According to Observation 1.5, we can assume in the remainder of this paper that each component of a
generalized caterpillar forest is nontrivial and different from a star. Our aim is to prove the following result.

Theorem 1.6. Let G be a generalized caterpillar forest with s support vertices and p connected components,
each is nontrivial and different from a star. Let ni ≥ 2 be the order of the ith stalk of G. Then

χd(G) = α+ s+
s−p∑
i=1

⌊
ni − 2

3

⌋
,

where α =
{

1 if each ni ∈ {2, 3, 5},
2 otherwise.
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2. Proof of Theorem 1.6

The proof of Theorem 1.6 is based on the following preliminary results.

Observation 2.1. Let G be a generalized caterpillar forest such that each component is nontrivial and different
from a star. Then G admits a χd-coloring c such that the following properties hold.

(i) All leaves of G are in B1
c and hence every vertex in Ac ∪B2

c has degree at least two.
(ii) Every vertex in B1

c has degree at most two.
(iii) Every vertex in B2

c has degree exactly two.

Proof. Let c be a χd-coloring satisfying Corollary 1.4.

(i) Let X be the color class containing all leaves of G. Since G has at least one stalk, each vertex in G misses
X, and the first part of item (i) follows. The second part of item (i) is obvious.

(ii) If B1
c has a vertex of degree at least three, then such a vertex would be a support vertex, contradicting the

choice of c.
(iii) Using the fact that every vertex of degree at least three is a support vertex, the desired result follows from

item (i).

�

Lemma 2.2. Let c be a χd-coloring of a graph G and let µc =
∣∣Π1

c

∣∣. Then

(i) µc ≤ χ(G). In particular, if G is bipartite, then µc ∈ {0, 1, 2}.
(ii) Moreover, if G is a generalized caterpillar forest such that each component is nontrivial and different from

a star, then µc ∈ {1, 2}.

Proof. (i) Suppose to the contrary that µc ≥ χ(G) + 1, that is, at least χ(G) + 1 colors appear in B1
c . Without

loss of generality, we may assume that vertices in B1
c use colors 1, 2, . . . , µc. Since no color can appear in both

B1
c and V (G)�B1

c , vertices in V (G)�B1
c must use the remaining colors, that is, colors µc + 1, . . . , χd (G).

Define a new coloring π of G as follows. Recolor properly all vertices of B1
c with χ(G[B1

c ]) colors among
{1, 2, . . . , µc} (this is possible since χ(G[B1

c ]) ≤ χ(G) ≤ µc−1), while vertices of V (G)�B1
c keep their colors

already given by c. Clearly π is a dominator coloring of G with χd (G)− µc + χ(G[B1
c ]) < χd (G) colors, a

contradiction. The second part of item (i) follows from the fact that χ(G) ≤ 2 for bipartite graphs.
(ii) Note first that µc 6= 0, since B1

c is nonempty (by Observation 2.1(i)). This together with Lemma 2.2(i) yield
the desired result.

�

Lemma 2.3. Let G be a generalized caterpillar forest such that each component is nontrivial and different from
a star. Then G admits a χd-coloring π such that Π2

π is empty and Corollary 1.4 is fulfilled for π.

Proof. Among all χd-colorings of G fulfilling Corollary 1.4, let c be chosen so that

(C1) |Ωc| is maximized.
(C2) Subject to (C1),

∣∣Π1
c

∣∣ is maximized.

Put k = χd(G) and µc =
∣∣Π1

c

∣∣. Let X1, X2, . . . , Xk be the color classes of c in which vertices in Xi get color i
for i ∈ {1, . . . , k}. Assume to the contrary that Π2

c is nonempty. Pick t from {1, . . . , k} such that Xt ∈ Π2
c and

let Xt = {x1, x2, . . . , xp}. By definition, p ≥ 2 and each xi ∈ B2
c . Also, by Observation 2.1(iii), we have

dG(xi) = 2 for every i ∈ {1, . . . , p}. (2.1)

Let us denote by W (Xt) the set of vertices of G that see Xt. Then, since G is acyclic, we have

|W (Xt)| = 1. (2.2)
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Thus, let W (Xt) = {wt}. Clearly,
dG(wt) ≥ p ≥ 2. (2.3)

In view of (2.1), let NG(xi) = {wt, yi} for i ∈ {1, . . . , p} and put Yt = {y1, y2, . . . , yp}. Obviously
NG(Xt) = Yt ∪ {wt}. Observe that, since G is acyclic, NG[Xt] induces a subdivided star of order 2p + 1
centered at wt.

Recall that Lemma 2.2(ii) shows that µc ∈ {1, 2}. Without loss of generality, we can assume that Π1
c = {X1}

when µc = 1 and Π1
c = {X1, X2} when µc = 2. In this case, we have t ≥ µc + 1 (since Xt ∈ Π2

c). Let π be a
χd-coloring of G obtained from c and defined according to the following cases.
Case 1. wt ∈ B1

c ∪B2
c .

Items (ii) and (iii) of Observation 2.1 together with (2.3) yield dG(wt) = 2. Then p = 2 and
NG(Xt) = {wt, y1, y2}. Thus NG(Xt) induces a path P5 : y1−x1−wt−x2−y2. Next, we will show that y1
and y2 either are both in Ac or one of them is in Ac and the other one is in B2

c having a neighbor in Ac. In
each case, we will recolor some vertices of G and increase the number of color classes of Ωc or Π1

c . To this end,
consider the following situations whether wt is in B1

c or B2
c .

Subcase 1. wt ∈ B1
c . Note that since dG(x1) = dG(x2) = 2, neither x1 nor x2 can see a color class of Π2

c , for
otherwise, one of them will be of degree at least 3, which contradicts (2.1). Therefore, both y1 and y2 must be
in Ac, for otherwise, one of x1 and x2 misses all color classes of c, which contradicts the definition of c. Define
π as follows: assign color 1 to x1 and x2, and assign color t to wt. The remaining vertices of G keep their colors
(given by c). It is easy to see that π is a χd-coloring of G fulfilling Corollary 1.4 such Ωπ = Ωc ∪ {wt} (that is,
Ωπ contains more color classes than Ωc), which contradicts the choice of c.
Subcase 2. wt ∈ B2

c . Let Xs = {x′1, x′2, . . . , x′q} be the color class containing wt = x′1. Clearly t 6= s ≥ µc + 1.
Since Xs ∈ Π2

c , (2.2) says that W (Xs) = {ws}. If ws /∈ {x1, x2}, then dG(wt) ≥ 3, contradicting the fact
that dG(wt) = 2. Hence, ws ∈ {x1, x2}, say ws = x1. Since ws and Xs play the same role as wt and Xt,
respectively, we conclude that q = 2, and each vertex in Xt ∪Xs has degree 2. Thus x′2 = y1 and Xs = {wt, y1}.
Also, since dG(y1) = 2, there is a vertex z1 6= x1 such that y1z1 ∈ E(G). Hence NG(Xt ∪Xs) induces a path
P6 : z1-y1-x1-wt-x2-y2. Using the same argument as in Subcase 1, we can see that y2, z1 ∈ Ac. Now assigning
color 1 to x2 and y1 and keep the colors already given to the remaining vertices (under c) provides a χd-coloring
π of G fulfilling Corollary 1.4 such that Ωπ = Ωc ∪ {{x1}, {wt}}, which contradicts again the choice of c.
Case 2. wt ∈ Ac.

Then c(wt) 6= 1. We claim that Y0 = Yt ∩ B1
c is nonempty. Suppose to the contrary that Y0 = ∅. Then

each vertex in Yt has color different from 1. By recoloring all vertices of Xt with color 1 (this is possible since
t ≥ µc + 1), we would obtain a dominator coloring of G with χd(G) − 1, a contradiction, which proved the
claim. Now, let yi0 be any vertex in Y0. By Observation 2.1(ii), yi0 has degree at most two. If dG(yi0) = 1,
then yi0 misses all color classes of c, which is impossible. So dG(yi0) = 2 and let NG(yi0) = {xi0 , zi0}. A similar
argument as to the previous cases shows that vertex zi0 is in Ac. In this case, we define π by interchanging
colors of xi0 and yi0 and keeping the same colors for the remaining vertices of G. Clearly, π is a χd-coloring of G
fulfilling Corollary 1.4. In addition, Ωπ = Ωc, but Π1

π = Π1
c ∪{(Xt�{xi0})∪{yi0}}, which contradicts the choice

of c. �

In the rest of this paper, we denote by Ti the ith stalk of order ni ≥ 2 in the generalized caterpillar forest G,
where V (Ti) = {xi1, xi2, . . . , xini−1, x

i
ni
} and xijx

i
j+1 ∈ E(G) for every j ∈ {1, 2, . . . , ni − 1}. We also denote by

Ii = {xi2, xi3, . . . , xini−1} (possibly empty) the set of inner vertices in Ti.

Lemma 2.4. Let G be a generalized caterpillar forest such that each component is nontrivial and different from
a star. If c is a χd-coloring fulfilling the statement of Lemma 2.3, with µc =

∣∣Π1
c

∣∣, then

(i) If |Ii| ≥ 3, then for every three consecutive vertices of Ii, one of them belongs to B1
c and another to Ac.

(ii) If µc = 1 and |Ii| ≥ 2, then one of any two consecutive vertices of Ii belongs to Ac.
(iii) xi1, x

i
ni
∈ Ac.
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Proof. We first observe that by Lemma 2.3, each vertex of G is in B1
c ∪Ac.

(i) Let |Ii| ≥ 3, and suppose to the contrary, that for some j0 ∈ {2, . . . , ni − 3} all of xij0 , x
i
j0+1, x

i
j0+2

belong to Ac. Then, recoloring xij0+1 with a color used by the leaves provides a dominator coloring of G with
χd(G)− 1 colors, a contradiction. Therefore, for every j ∈ {2, . . . , ni− 3}, one of xij , x

i
j+1, x

i
j+2 belongs toB1

c .
Moreover, one of xij0 , x

i
j0+1, x

i
j0+2 must be in Ac, for otherwise, these three vertices will be all in B1

c and
thus xij0+1 misses all color classes of c, which is impossible.

(ii) Follows from the fact that each vertex of G is in B1
c ∪Ac.

(iii) Follows from the definition of the stalk Ti and Corollary 1.4.

�

Lemma 2.5. Let G be a generalized caterpillar forest with r ≥ 1 stalks T1, . . . , Tr, s support vertices and p
components each is nontrivial and different from a star. Consider a χd-coloring c of G satisfying Lemma 2.3
and µc be the number of colors of c appearing in G[B1

c ]. Then

(i) χd(G) = s+ µc +
∑r
i=1

⌊
|V (Ti)|−2

3

⌋
with r = s− p.

(ii) If |V (Ti)| ∈ {2, 3, 5} for each i ∈ {1, . . . , r}, then µc = 1. Otherwise, G admits a χd-coloring ϕ such that
µϕ = 2.

Proof. According to Lemma 2.3, Π2
c is empty and Corollary 1.4 is fulfilled for c. Hence χd(G) =

∣∣Π1
c

∣∣ + |Ωc|.
Also, since

∣∣Π1
c

∣∣ = µc and |Ωc| = |Ac|, we get

χd(G) = µc + |Ac| . (2.4)

Let ni = |V (Ti)| and recall that V (Ti) = {xi1, xi2, . . . , xini
} and Ii = V (Ti)�{xi1, xini

}. Let SG be the set of
support vertices of G and |SG| = s. Clearly,

Ac = SG ∪ (∪ri=1Ii ∩Ac) (2.5)

and
ni = 2 +

∣∣Ii ∩B1
c

∣∣+ |Ii ∩Ac| . (2.6)

(i) It is easy to cheek that r = s− p. Hence, combining this together with (2.4) and (2.5), we obtain

χd(G) = µc + s+
s−p∑
i=1

|Ii ∩Ac| . (2.7)

In the sequel, we shall show that
|Ii ∩Ac| =

⌊
ni−2

3

⌋
for all i. (2.8)

To do this, we need to prove the following three claims. Let λic denote the number of colors of c appearing
in G[Ii ∩B1

c ].

Claim 2.6. If ni = 2, then λic = 0, while if ni ≥ 3, then 1 ≤ λic ≤ µc ≤ 2.

Proof. Clearly, by (2.6), ni ≥ 2. If ni = 2, then Ii = ∅ and thus λic= 0. Hence, assume that ni ≥ 3. Then
Ii 6= ∅. If λic = 0, then all vertices of Ii are in Ac. In this case, recoloring one of these vertices with a color used
by the leaves provides a dominator coloring of G with χd(G)− 1 colors, a contradiction. Therefore λic ≥ 1.
Now, using the fact that µc ∈ {1, 2} (by Lem. 2.2(ii)), and the definition of λic we obtain λic ≤ µc ≤ 2. This
achieves the proof of Claim 2.6. �

In what follows, we can assume, without loss of generality, that vertices in B1
c use either colors 1 and 2 when

µc = 2 or only color 1 when µc = 1. We will additionally assume that all leaves are colored with color 1.
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Claim 2.7. If µc = 2, then for all i ∈ {1, 2, . . . , r} either ni ∈ {2, 3, 5} or λic = 2.

Proof. Suppose, to the contrary, that there is an integer i0 ∈ {1, 2, . . . , r} such that ni0 /∈ {2, 3, 5} and
λi0c 6= 2. By Claim 2.6, λi0c = 1. Let Ii0 = {xi02 , x

i0
3 , . . . , x

i0
ni0−1}, and observe that every vertex of Ii0 not

colored with 1 uses a color belonging to Ac (because of λi0c = 1), and thus

|Ii0 ∩Ac| =
⌊
ni0 − 2

2

⌋
· (2.9)

Since µc = 2, we can define a dominator coloring ϕ of G obtained from c as follows. For each x /∈ Ii0 ,
ϕ(x) = c(x); for each i ≡ 2(mod3), let ϕ(xi0i ) = 1; for each i ≡ 0(mod3), let ϕ(xi0i ) = 2; for the remaining
vertices of Ii0 , we color them differently among colors used by Ii0 ∩Ac. Clearly now under ϕ, each vertex of
Ii0 not colored with 1 or 2 uses a color belonging to Aϕ, and thus

|Ii0 ∩Aϕ| =
⌊
ni0 − 2

3

⌋
· (2.10)

Now, since |Ii0 ∩Aϕ| < |Ii0 ∩Ac|, ϕ is a dominator coloring of G using less colors than c, which leads to a
contradiction. This achieves the proof of Claim 2.7. �

Claim 2.8. If ni0 /∈ {2, 3, 5} for some i0 ∈ {1, 2, . . . , r}, then G admits a χd-coloring with µ = 2.

Proof. If µc = 2, we are done. Hence assume that µc = 1 and thus, by Claim 2.6, λi0c = 1. First, assume
that ni = 4 for each i. Define a new dominator coloring π as follows: color each support vertex with a new
color starting from 3, and color all its neighbors by colors 1 or 2 so that both colors appear in each stalk.
Clearly, |π| = |c| and µπ = 2. For the next, we can assume that ni ≥ 6 for at least some i. Without loss of
generality, we can assume that color 2 appears in Ii0 ∩Ac. Let ϕ be the dominator coloring of G defined as
in Claim 2.7 with |ϕ| colors. A similar argument as in Claim 2.6 shows that (2.9) and (2.10) remain valid.
In addition, we have

µϕ = µc + 1 and |Ii ∩Aϕ| = |Ii ∩Ac| for all i 6= i0 (2.11)

and

|ϕ| = µϕ + s+ |Ii0 ∩Aϕ|+
s−p∑

i=1(i 6=i0)

|Ii ∩Aϕ| . (2.12)

By replacing the expressions of (2.11) together with (2.10) and (2.9) in (2.12), we obtain

|ϕ| = µc + s+ 1 +
⌊
ni0 − 2

3

⌋
−
⌊
ni0 − 2

2

⌋
+
s−p∑
i=1

|Ii ∩Ac| .

Using (2.7), we get

|ϕ| = 1 +
⌊
ni0 − 2

3

⌋
−
⌊
ni0 − 2

2

⌋
+ χd(G).

Now, since
⌊
ni0−2

3

⌋
≤
⌊
ni0−2

2

⌋
− 1, it follows that |ϕ| ≤ χd(G). That is ϕ is χd-coloring of G with µϕ = 2.

This achieves the proof of Claim 2.8. �

Now we turn our attention to prove equality (2.8). Pick i0 from {1, 2, . . . , r} and consider the following
cases.
Case 1. ni0 ∈ {2, 3, 5}.
If ni0 = 2, then Ii0 = ∅ and thus (2.8) holds since |Ii0 ∩Ac| = 0. If ni0 = 3, then clearly |Ii0 | = 1. In this
case, again |Ii0 ∩Ac| = 0, for otherwise recoloring the vertex of Ii0 with a color used by the leaves provides
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a dominator coloring of G with χd(G)− 1 colors, a contradiction. Thus (2.8) holds for ni0 = 3. Finally, let
ni0 = 5. Then |Ii0 | = 3, where two vertices of Ii0 do not belong to Ac (for otherwise recoloring the two
non-adjacent vertices of Ii0 with the color used by the leaves and the other vertex with a color already used
by Ii0 ∩Ac provides a dominator coloring of G with χd(G)− 1 colors, a contradiction). Thus |Ii0 ∩Ac| ≤ 1.
This together with Lemma 2.4(i) yield |Ii0 ∩Ac| = 1 and thus (2.8) holds for ni0 = 5.

Case 2. ni0 /∈ {2, 3, 5}.
By Claim 2.8, we may assume that µc = 2 and thus by Claim 2.7, we have λi0c = 2. Moreover, we have∣∣Ii0 ∩B1

c

∣∣ ≥ 2. This together with (2.6) imply that ni0 ≥ 4. Consider the dominator coloring ϕ of G as
defined in the proof of Claim 2.7. Note that (2.10) and (2.12) remain valid. In addition, we have

µϕ = µc and |Ii ∩Aϕ| = |Ii ∩Ac| for all i 6= i0. (2.13)

Now, by substituting the expressions of (2.10) and (2.13) in formula (2.12), we obtain

|ϕ| = µc + s+
⌊
ni0 − 2

3

⌋
+

s−p∑
i=1(i 6=i0)

|Ii ∩Ac| . (2.14)

Now, since |ϕ|≥ χd(G), (2.14) and (2.7) together yield |Ii0 ∩Ac| ≤
⌊
ni0−2

3

⌋
.

On the other hand, Lemma 2.4(i) yields |Ii0 ∩Ac| ≥
⌊
ni0−2

3

⌋
, and thus equality (2.8) follows. This achieves

the proof of Item (i).

(ii) Assume that ni ∈ {2, 3, 5} for all i ∈ {1, 2, . . . , r} and let l be the number of stalks of order 5. In this case,
we have

∑s−p
i=1

⌊
ni−2

3

⌋
= l. By replacing this in the expression of item (i), we get

χd(G) = µc + s+ l. (2.15)

Now, let ψ be a coloring of G obtained from c as follows. For each Ii, let ψ(xij) = 1 if j is even, and color
the vertices xij with j odd differently among colors used by Ii ∩Ac. The remaining vertices of G keep their
colors given by coloring c. It is easy to show that ψ is dominator coloring using at least χd(G) colors such
that µψ = 1 and |Ii ∩Aψ| =

⌊
ni−2

2

⌋
for each i, where

|ψ| = 1 + s+
s−p∑
i=1

⌊
ni−2

2

⌋
. (2.16)

Using the fact that ni ∈ {2, 3, 5}, (2.16) becomes

|ψ| = 1 + s+ l. (2.17)

Since |ψ| ≥ χd(G) and µc ∈ {1, 2}, (2.15) and (2.17) together yield µc = 1.
The second part follows by Claim 2.8. This completes the proof of Lemma 2.5.

�

Now, we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. If ni ∈ {2, 3, 5} for all i, then by items (i) and (ii) of Lemma 2.5, we have µc = 1 and
thus χd(G) = s+ 1 +

∑s−p
i=1

⌊
ni−2

3

⌋
. Now if ni /∈ {2, 3, 5} for some i, then by the second part of Lemma 2.5(ii),

we can take µc = 2. Using Lemma 2.5(i), we obtain χd(G) = s+ 2 +
∑s−p
i=1

⌊
ni−2

3

⌋
. �
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