Distance spectral radius of series-reduced trees with parameters
RAIRO. Operations Research, Tome 55 (2021), pp. S2561-S2574

For a connected graph G, the distance matrix is a real-symmetric matrix where the (uv)-entry is the distance between vertex u and vertex v in G. The distance spectral radius of G is the largest eigenvalue of the distance matrix of G. A series-reduced tree is a tree with at least one internal vertex and all internal vertices having degree at least three. Those series-reduced trees that maximize the distance spectral radius are determined over all series-reduced trees with fixed order and maximum degree and over all series-reduced trees with fixed order and number of leaves, respectively.

DOI : 10.1051/ro/2020093
Classification : 05C50, 05C35, 15A48
Keywords: Distance spectral radius, distance matrix, maximum degree, number of leaves, series-reduced tree
@article{RO_2021__55_S1_S2561_0,
     author = {Deng, Yuyuan and Li, Dangui and Lin, Hongying and Zhou, Bo},
     title = {Distance spectral radius of series-reduced trees with parameters},
     journal = {RAIRO. Operations Research},
     pages = {S2561--S2574},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020093},
     mrnumber = {4223190},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020093/}
}
TY  - JOUR
AU  - Deng, Yuyuan
AU  - Li, Dangui
AU  - Lin, Hongying
AU  - Zhou, Bo
TI  - Distance spectral radius of series-reduced trees with parameters
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2561
EP  - S2574
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020093/
DO  - 10.1051/ro/2020093
LA  - en
ID  - RO_2021__55_S1_S2561_0
ER  - 
%0 Journal Article
%A Deng, Yuyuan
%A Li, Dangui
%A Lin, Hongying
%A Zhou, Bo
%T Distance spectral radius of series-reduced trees with parameters
%J RAIRO. Operations Research
%D 2021
%P S2561-S2574
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020093/
%R 10.1051/ro/2020093
%G en
%F RO_2021__55_S1_S2561_0
Deng, Yuyuan; Li, Dangui; Lin, Hongying; Zhou, Bo. Distance spectral radius of series-reduced trees with parameters. RAIRO. Operations Research, Tome 55 (2021), pp. S2561-S2574. doi: 10.1051/ro/2020093

[1] M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey. Linear Algebra Appl. 458 (2014) 301–386. | MR | Zbl | DOI

[2] A. T. Balaban, D. Ciubotariu and M. Medeleanu, Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors. J. Chem. Inf. Comput. Sci. 31 (1991) 517–523. | DOI

[3] F. Bergeron, P. Leroux and G. Labelle, Combinatorial Species and Tree-like Structures. Cambridge University Press, Cambridge (1998). | MR | Zbl

[4] S. S. Bose, M. Nath and S. Paul, Distance spectral radius of graphs with r pendent vertices. Linear Algebra Appl. 435 (2011) 2828–2836. | MR | Zbl | DOI

[5] K. Dadedzi, V. Razanajatovo Misanantenaina and S. Wagner, On the distance spectral radius of trees with given degree sequence. Discuss. Math. Graph Theory 40 (2020) 495–524. | MR | DOI

[6] Z. Du, A. Ilić and L. Feng, Further results on the distance spectral radius of graphs. Linear Multilinear Algebra 61 (2013) 1287–1301. | MR | Zbl | DOI

[7] T. H. Foregger, Identities related to permanents of doubly stochastic matrices and series reduces trees. Linear Multilinear Algebra 7 (1979) 37–41. | MR | Zbl | DOI

[8] R. L. Graham and H. O. Pollak, On the addressing problem for loop switching. Bell Syst. Tech. J. 50 (1971) 2495–2519. | MR | Zbl | DOI

[9] I. Gutman and M. Medeleanu, On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane. Indian J. Chem. A 37 (1998) 569–573.

[10] J. Haslegrave, Extremal results on average subtree density of series-reduced trees. J. Combin. Theory Ser. B. 107 (2014) 26–41. | MR | Zbl | DOI

[11] F. Harary and G. Prins, The number of homeomorphically irreducible trees, and other species. Acta Math. 101 (1959) 141–162. | MR | Zbl | DOI

[12] A. Ilić, Distance spectral radius of trees with given matching number. Discrete Appl. Math. 158 (2010) 1799–1806. | MR | Zbl | DOI

[13] Y. Liang and B. Zhou, On the distance spread of cacti and bicyclic graphs. Discrete Appl. Math. 206 (2016) 195–202. | MR | DOI

[14] H. Lin and B. Zhou, The distance spectral radius of graphs with given number of odd vertices. Electron. J. Linear Algebra 31 (2016) 286–305. | MR | DOI

[15] H. Lin and B. Zhou, The distance spectral radius of trees. Linear Multilinear Algebra 67 (2019) 370–390. | MR | DOI

[16] H. Lin and B. Zhou, Distance spectral radius of trees with given number of segments. Linear Algebra Appl. 600 (2020) 40–59. | MR | DOI

[17] W. Lin, Y. Zhang, Q. Chen, J. Chen, C. Ma and J. Chen, Ordering trees by their distance spectral radii. Discrete Appl. Math. 203 (2016) 106–110. | MR | DOI

[18] Z. Luo and B. Zhou, On distance spectral radius of trees and fixed maximum degree. Filomat 29 (2015) 2021–2026. | MR | DOI

[19] H. Minc, Nonnegative Martices. John Wiley & Sons, New York (1988). | Zbl

[20] M. Nath and S. Paul, On the distance spectral radius of trees. Linear Multilinear Algebra 61 (2013) 847–855. | MR | Zbl | DOI

[21] W. Ning, L. Ouyang and M. Lu, Distance spectral radius of trees with fixed number of pendent vertices. Linear Algebra Appl. 439 (2013) 2240–2249. | MR | Zbl | DOI

[22] Z. Peng and B. Zhou, Minimum status of trees with given parameters, RAIRO-Oper. Res. (2020). DOI: . | DOI | MR | Numdam

[23] S. N. Ruzieh and D. L. Powers, The distance spectrum of the path P n and the first distance eigenvector of connected graphs. Linear Multilinear Algebra 28 (1990) 75–81. | MR | Zbl | DOI

[24] D. Stevanović and A. Ilić, Distance spectral radius of trees with fixed maximum degree. Electron. J. Linear Algebra 20 (2010) 168–179. | MR | Zbl | DOI

[25] Y. Wang and B. Zhou, On distance spectral radius of graphs. Linear Algebra Appl. 438 (2013) 3490–3503. | MR | Zbl | DOI

[26] Y. Wang, R. Xing, B. Zhou and F. Dong, A note on distance spectral radius of trees. Spec. Matrices 5 (2017) 296–300. | MR | DOI

[27] R. Xing, B. Zhou and F. Dong, The effect of a graft transformation on distance spectral radius. Linear Algebra Appl. 457 (2014) 261–275. | MR | Zbl | DOI

[28] G. Yu, S. Guo and M. Zhai, Distance spectral radius of a tree with given diameter. Ars Combin. 134 (2017) 351–362. | MR

[29] B. Zhou and N. Trinajstić, On the largest eigenvalue of the distance matrix of a connected graph. Chem. Phys. Lett. 447 (2007) 384–387. | DOI

Cité par Sources :