SDO and LDO relaxation approaches to complex fractional quadratic optimization
RAIRO. Operations Research, Tome 55 (2021), pp. S2241-S2258

This paper examines a complex fractional quadratic optimization problem subject to two quadratic constraints. The original problem is transformed into a parametric quadratic programming problem by the well-known classical Dinkelbach method. Then a semidefinite and Lagrangian dual optimization approaches are presented to solve the nonconvex parametric problem at each iteration of the bisection and generalized Newton algorithms. Finally, the numerical results demonstrate the effectiveness of the proposed approaches.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020090
Classification : 90C32, 90C26, 90C22
Keywords: Fractional quadratic optimization, nonconvex problem, semidefinite programming, Lagrangian dual optimization
@article{RO_2021__55_S1_S2241_0,
     author = {Ashrafi, Ali and Zare, Arezu},
     title = {SDO and {LDO} relaxation approaches to complex fractional quadratic optimization},
     journal = {RAIRO. Operations Research},
     pages = {S2241--S2258},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020090},
     mrnumber = {4223187},
     zbl = {1472.90135},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020090/}
}
TY  - JOUR
AU  - Ashrafi, Ali
AU  - Zare, Arezu
TI  - SDO and LDO relaxation approaches to complex fractional quadratic optimization
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2241
EP  - S2258
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020090/
DO  - 10.1051/ro/2020090
LA  - en
ID  - RO_2021__55_S1_S2241_0
ER  - 
%0 Journal Article
%A Ashrafi, Ali
%A Zare, Arezu
%T SDO and LDO relaxation approaches to complex fractional quadratic optimization
%J RAIRO. Operations Research
%D 2021
%P S2241-S2258
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020090/
%R 10.1051/ro/2020090
%G en
%F RO_2021__55_S1_S2241_0
Ashrafi, Ali; Zare, Arezu. SDO and LDO relaxation approaches to complex fractional quadratic optimization. RAIRO. Operations Research, Tome 55 (2021), pp. S2241-S2258. doi: 10.1051/ro/2020090

[1] R. A. Abrams and A. Ben-Israel, A duality theorem for complex quadratic programming. J. Optim. Theory App. 4 (1969) 244–252. | MR | Zbl | DOI

[2] Y. Almogy and O. Levin, A class of fractional programming problems. Oper. Res. 19 (1971) 57–67. | MR | Zbl | DOI

[3] L. Bai, J. E. Mitchell and J.-S. Pang, Using quadratic convex reformulation to tighten the convex relaxation of a quadratic program with complementarity constraints. Optim. Lett. 8 (2014) 811–822. | MR | Zbl | DOI

[4] C. Bector, S. Chandra and T. Gulati, A lagrangian approach to duality for complex nonlinear fractional programming over cones. Optimization 8 (1977) 17–25. | MR

[5] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization. SIAM, Philadelphia, PA (2001). | MR | Zbl | DOI

[6] H. Cai, Y. Wang and T. Yi, An approach for minimizing a quadratically constrained fractional quadratic problem with application to the communications over wireless channels. Optim. Methods Softw. 29 (2014) 310–320. | Zbl | DOI

[7] H. Chen, A. B. Gershman and S. Shahbazpanahi, Filter-and-forward distributed beamforming in relay networks with frequency selective fading. IEEE Trans. Signal Process. 58 (2009) 1251–1262. | MR | Zbl | DOI

[8] X. Chen, X. Wang and X. Chen, Energy-efficient optimization for wireless information and power transfer in large-scale mimo systems employing energy beamforming. IEEE Wireless Commun. Lett. 2 (2013) 667–670. | DOI

[9] C. S. Colantoni, R. P. Manes and A. Whinston, Programming, profit rates and pricing decisions. Acc. Rev. 44 (1969) 467–481.

[10] B. D. Craven, Fractional Programming. Heldermann Verlag, Weinheim 4 (1988). | MR | Zbl

[11] A. De Maio, S. De Nicola, Y. Huang, S. Zhang and A. Farina, Adaptive detection and estimation in the presence of useful signal and interference mismatches. IEEE Trans. Signal Process. 57 (2008) 436–450. | MR | Zbl | DOI

[12] A. De Maio and Y. Huang, New results on fractional QCQP with applications to radar steering direction estimation. IEEE Signal Process. Lett. 21 (2014) 895–898. | DOI

[13] A. De Maio, Y. Huang, D. P. Palomar, S. Zhang and A. Farina, Fractional QCQP with applications in ml steering direction estimation for radar detection. IEEE Trans. Signal Process. 59 (2010) 172–185. | MR | Zbl | DOI

[14] W. Dinkelbach, On nonlinear fractional programming. Manage. Sci. 13 (1967) 492–498. | MR | Zbl | DOI

[15] M. Grant and S. Boyd, Cvx: Matlab software for disciplined convex programming, version 2.1 (2014).

[16] A. Hassanien and S. A. Vorobyov, A robust adaptive dimension reduction technique with application to array processing. IEEE Signal Process. Lett. 16 (2008) 22–25. | DOI

[17] Y. Huang and S. Zhang, Complex matrix decomposition and quadratic programming. Math. Oper. Res. 32 (2007) 758–768. | MR | Zbl | DOI

[18] H.-C. Lai and J. Liu, Complex fractional programming involving generalized quasi/pseudo convex functions. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 82 (2002) 159–166. | MR | Zbl | DOI

[19] J.-C. Liu, C.-C. Lin and R.-L. Sheu, Optimality and duality for complex nondifferentiable fractional programming. J. Math. Anal. App. 210 (1997) 804–824. | MR | Zbl | DOI

[20] C. Lu, S.-C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems. SIAM J. Optim. 21 (2011) 1475–1490. | MR | Zbl | DOI

[21] J. Ma, W. Liu and R. Langley, Filter-and-forward distributed relay beamforming for cognitive radio systems. In: 2015 IEEE International Conference on Communication Workshop (ICCW). IEEE (2015) 895–900.

[22] J. Ohlson and W. Ziemba, Optimal portfolio policies for an investor with a power utility function facing a log normal securities market. J. Financ. Quant. Anal 11 (1976) 1.

[23] N. T. H. Phuong and H. Tuy, A unified monotonic approach to generalized linear fractional programming. J. Global Optim. 26 (2003) 229–259. | MR | Zbl | DOI

[24] B. T. Polyak, A general method for solving extremal problems. In: Vol. 174 of Doklady Akademii Nauk. Russian Academy of Sciences, Doklady (1967) 33–36. | MR | Zbl

[25] S. Ramprashad, T. W. Parks and R. Shenoy, Signal modeling and detection using cone classes. IEEE Trans. Signal Process. 44 (1996) 329–338. | DOI

[26] N. Z. Shor, Dual quadratic estimates in polynomial and boolean programming. Ann. Oper. Res. 25 (1990) 163–168. | MR | Zbl | DOI

[27] R. J. Stern and H. Wolkowicz, Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5 (1995) 286–313. | MR | Zbl | DOI

[28] J. F. Sturm and S. Zhang, On cones of nonnegative quadratic functions. Math. Oper. Res. 28 (2003) 246–267. | MR | Zbl | DOI

[29] K. Swarup and J. Sharma, Programming with linear fractional functionals in complex spaces. Cahiers du centre d’Etudes et de Recherche Operationelle 12 (1970) 103–109. | MR | Zbl

[30] S. Yamada and A. Takeda, Successive lagrangian relaxation algorithm for nonconvex quadratic optimization. J. Global Optim. 71 (2018) 313–339. | MR | Zbl | DOI

[31] A. Zare, M. Keyanpour and M. Salahi, On fractional quadratic optimization problem with two quadratic constraints. Numer. Algebra Control Optim. 10 (2020) 301. | MR | Zbl | DOI

[32] A. Zhang and S. Hayashi, Celis-dennis-tapia based approach to quadratic fractional programming problems with two quadratic constraints. Numer. Algebra Control Optim. 1 (2011) 83–98. | MR | Zbl | DOI

[33] J. Zhang and M. C. Gursoy, Relay beamforming strategies for physical-layer security. In: 2010 44th Annual Conference on Information Sciences and Systems (CISS). IEEE (2010) 1–6.

[34] J. Zhang, L. Guo, T. Kang and P. Zhang, Cooperative beamforming in cognitive radio network with two-way relay. In: 2014 IEEE 79th Vehicular Technology Conference (VTC Spring). IEEE (2014) 1–5.

[35] G. Zheng, K.-K. Wong, A. Paulraj and B. Ottersten, Collaborative-relay beamforming with perfect CSI: Optimum and distributed implementation. IEEE Signal Process. Lett. 16 (2009) 257–260. | DOI

Cité par Sources :