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SDO AND LDO RELAXATION APPROACHES TO COMPLEX FRACTIONAL
QUADRATIC OPTIMIZATION

Ali Ashrafi∗ and Arezu Zare

Abstract. This paper examines a complex fractional quadratic optimization problem subject to two
quadratic constraints. The original problem is transformed into a parametric quadratic programming
problem by the well-known classical Dinkelbach method. Then a semidefinite and Lagrangian dual
optimization approaches are presented to solve the nonconvex parametric problem at each iteration
of the bisection and generalized Newton algorithms. Finally, the numerical results demonstrate the
effectiveness of the proposed approaches.
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1. Introduction

The following fractional optimization problem is considered in this paper:

min
x∈Cn

f1(x)
f2(x)

:=
xHA1x− 2Re(aH1 x) + β1

xHA2x− 2Re(aH2 x) + β2
(1.1)

s.t. gi(x) := xHBix− 2Re(bHi x) + γi ≤ 0, i = 1, 2,

where Ai, Bi ∈ Hn×n are complex Hermitian matrices, ai, bi ∈ Cn are vectors, βi, γi ∈ R are constants for
i = 1, 2. The superscript “H” denotes the conjugate transpose. Furthermore, we require the denominator of the
objective function to be positive in S := {x ∈ Cn| gi(x) ≤ 0, i = 1, 2}, in which S 6= ∅. In general, problem
(1.1) is nonconvex.

Quadratic fractional optimization problems have attracted the attention of many researchers over the last
decades, due to their application in many fields such as signal processing, economics, transportation science,
engineering, and finance [2, 9, 10, 18, 22, 23]. The first work on nonlinear programming in the complex space
appeared when Abrams et al. [1] studied duality for the complex nonlinear programming problem. Swarup et al.
[29] have investigated linear fractional programming in the complex space. Bector et al. [4] considered a complex
nonlinear fractional programming problem. They developed a Lagrangian dual optimization approach to duality
for the problem over cones. Liu et al. [19] investigated the complex nondifferentiable fractional programming
and established optimality conditions and a duality theorem for the complex nonlinear programming.
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Figure 1. Filter-and-forward relay network signal model [21].

Recently, there have been several results considering complex fractional quadratic optimization problems
where can be applied to signal processing applications such as robust adaptive beamforming, steering direction,
and filter design [7,11–13,16,25,33–35]. In what follows, we briefly describe an application where a problem of
the form (1.1) arises [21].

Consider a cognitive radio (CR) relay network in a frequency-selective wireless channel, as shown in Figure 1.
It consists of R single-antenna CR relay nodes, a secondary user (SU) source to relay channels (fore-channels),
relay to secondary destination channels (back-channels) and relay to primary user (PU) channels (interference
channels) corresponding to the ith relay which

fi = [fi(0), . . . , fi(Lf − 1)]T ,

gi = [gi(0), . . . , gi(Lg − 1)]T ,

g
(PU)
i =

[
g
(PU)
i (0), . . . , g(PU)

i (L(PU)
g − 1)

]T
,

for the ith relay node, with the superscript “T” denoting transpose, Lf , Lg and L
(PU)
g are the corresponding

finite impulse response (FIR) filter length. It is assumed that the direct link between source and destination
nodes does not exist and the transmission is divided into two phases. In the first phase, the SU source broadcasts
a signal to all CR relay nodes, and in the second phase, each CR relay node filters the received signal and then
re-transmit it to the secondary destination. Moreover, the instantaneous channel state information (CSI) of all
transmission channels is perfectly known by the system and the computation of all relay coefficients could be
performed at the secondary destination or some central node. The results can then be fed back to the relay
nodes. The primary destination does not need the channel state information.

Accordingly, the signal received at the relay nodes can be modeled as an R × 1 vector
r(n) = [r1(n), . . . , rR(n)]T , with ri(n) given by

ri(n) = s(n) ∗ fi(n) + ni(n), (1.2)

where s(n) is the information-bearing sequence of symbols transmitted by the SU source node with power of
Ps = E{| s(n) |2}, E{·} is the expectation operation, ∗ denotes the convolution sum, and ni(n) is the additive
white Gaussian noise (AWGN), with power of σ2

n = E{| ni(n) |2}. Then the received signal ri(n) passes through
the ith CR relay filter, with an impulse response hi = [hi(0), . . . , hi(Lh − 1)]T , where Lh represents the relay
filter length. Note that the channel impulse responses are assumed to be independent quasi-static, which means
that hi remains static over a frame period. The signal received by the secondary destination node is given by

y(n) =
R∑
i=1

ri(n) ∗ hi(n) ∗ gi(n) + v(n) = s(n) ∗ heqv(n) + npro(n) + v(n), (1.3)
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where heqv(n) =
∑R
i=1 fi(n) ∗ hi(n) ∗ gi(n) is the overall equivalent channel impulse response from the SU source

to the secondary destination node, npro(n) =
∑R
i=1 ni(n) ∗ hi(n) ∗ gi(n) is the propagation noise from the CR

relay nodes and v(n) is the AWGN with power σ2
v = E{| vi(n) |2}. The leakage signal introduced by CR relays

at the primary receiver can be expressed as

y(PU)(n) =
R∑
i=1

δ
(PU)
i (n)

=
R∑
i=1

si(n) ∗ fi(n) ∗ hi(n) ∗ g(PU)
i (n) + ni(n) ∗ g(PU)

i (n), (1.4)

where δ(PU)
i (n) denotes the part of leakage signal from the ith CR relay nodes. In the following, for better

illustration and to facilitate the subsequent problem formulation, the signal model (1.3) will be rewritten in
matrix form. To this end, the convolution sum of fore-channel and back-channel related to the ith CR relay
node can be expressed as follows

ci = fi ∗ gi = F̄i · gi = [ci,1, . . . , ci,Lc ] , (1.5)

where Lc = (Lf + Lg − 1), and F̄i is a column-circulant matrix of size Lc × Lg

F̄i = [Fi(0), . . . , Fi(Lg − 1)] (1.6)

Fi(l) =
[
l columns︷ ︸︸ ︷
0 . . . 0 fi

(Lg−l−1) columns︷ ︸︸ ︷
0 . . . 0

]T
, l = 0, . . . , Lg − 1.

Then the equivalent channel heqv(n) can be rewritten in matrix form as

heqv =
R∑
i=1

ci ∗ hi =
R∑
i=1

C̄i · hi = Ψw (1.7)

where Ψ =
[
C̄1, . . . , C̄R

]
, w =

[
hT1 , . . . , h

T
R

]T , and C̄i is a column-circulant matrix, with the size of
(Lf + Lg + Lh − 2)× Lh, defined by

C̄i = [Ci(0), . . . , Ci(Lh)] (1.8)

Ci(l) =
[
l columns︷ ︸︸ ︷
0 . . . 0 ci

(Lh−l−1) columns︷ ︸︸ ︷
0 . . . 0

]T
, l = 0, . . . , Lh − 1.

The propagation noise npro(n) can also be expressed in a matrix form

npro(n) =
R∑
i=1

hHi Ḡ
T
i ni(n) (1.9)

where Ḡi is a column-circulant matrix with a similar form as F̄i, given by

Ḡi = [Gi(0), . . . , Gi (Lh − 1)] (1.10)

Gi(l) =
[
l columns︷ ︸︸ ︷
0 . . . 0 gi

(Lh−l−1) columns︷ ︸︸ ︷
0 . . . 0

]T
, l = 0, . . . , Lh − 1

and ni (n) in (1.9) is the relay noise vector with

ni (n) = [ni (n) , ni (n− 1) , . . . , ni (n− Lg − Lh + 2)]T .
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Now from (1.7) and (1.9), we can rewrite the overall signal model (1.3) in matrix form as

y (n) = wHΨs (n) +
R∑
i=1

hHi Ḡ
T
i ni (n) + v (n) (1.11)

where s (n) = [s(n), s(n− 1)), . . . , s(n− (Lf + Lg + Lh)− 1)]T .
Let ~ψ and Ψ̄ denote the first row and remaining part of Ψ, respectively and define

s̄(n) = [s(n− 1), s(n− 2), s(n− Lg − Lh + 2)]. Then,

y (n) =

Desired signal︷ ︸︸ ︷
wH ~ψT s(n) +

Inter−symbol interference︷ ︸︸ ︷
wHΨ̄T s̄ (n) +

Propagation noise and receiver noise︷ ︸︸ ︷
R∑
i=1

hHi Ḡ
T
i ni (n) + v(n). (1.12)

Equation (1.4) can be rewritten in a matrix form as

y(PU)(n) =
R∑
i=1

δ
(PU)
i (n) =

R∑
i=1

hHi C̄
(PU)T

i si(n) + hHi Ḡ
(PU)T

i ni(n) (1.13)

where C̄(PU)
i and Ḡ

(PU)
i are two column-circulant matrices with a similar structure as C̄i and Ḡi, respectively.

Accordingly, the power of the desired signal, inter-symbol interference and propagation noise at the secondary
destination from (1.12) as follows.

E{| y(n) |2} = wHQsw + wHQiw + wHQnw + σ2
v , (1.14)

where

Qs = Ps · ~ψT ~ψ∗, Qi = Ps · Ψ̄T Ψ̄∗, Qn = σ2
n · blkdiag

{
ḠT1 Ḡ

∗
1, . . . , Ḡ

T
RḠ
∗
R

}
“blkdiag” is an operation to build a block diagonal matrix from the input argument inside the bracket. The
leakage signal power at the primary user can be derived from (1.13),

Pleak = E
{
| y(PU)(n) |2

}
= wHQleakw, (1.15)

where Qleak is given by

Qleak = Qleak,s +Qleak,n

Qleak,s =


C̄

(PU)T

1 C̄
(PU)∗

1 · · · C̄
(PU)T

1 C̄
(PU)∗

R

C̄
(PU)T

2 C̄
(PU)∗

1 · · · C̄
(PU)T

2 C̄
(PU)∗

R
...

. . .
...

C̄
(PU)T

R C̄
(PU)∗

1 · · · C̄
(PU)T

R C̄
(PU)∗

R


Qleak,n = σ2

n · blkdiag
{
Ḡ

(PU)T

1 Ḡ
(PU)∗

1 , . . . , Ḡ
(PU)T

R Ḡ
(PU)∗

R

}
.

Now, the received signal to interference plus noise ratio (SINR) can be written as

SINR =
wHQsw

wHQiw + wHQnw + σ2
v

· (1.16)
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Moreover, the transmitted signal vector from each relay node to destination node is given by

ti(n) = ri(n) ∗ hi(n) = s(n) ∗ fi(n) ∗ hi(n) + ni(n) ∗ hi(n). (1.17)

It can be further expressed in matrix form as:

ti(n) =
(
F̂ihi

)T
ŝ(n) + hTi n̂i(n) (1.18)

where

ŝ(n) = [s(n), s(n− 1), . . . , s(n− Lf − Lh + 2)]T ,

n̂i(n) = [ni(n), ni(n− 1), . . . , ni(n− Lh + 1)]T

are the received signal vector at relay node and the relay noise vector, respectively. F̂i is a column-circulant
matrix with a similar form as F̄i

F̂i =
[
F̃i(0), . . . , F̃i(Lh − 1)

]
F̃i(l) =

[
l columns︷ ︸︸ ︷

0 . . . 0, fi,

(Lh−l−1) columns︷ ︸︸ ︷
0 . . . 0

]
, l = 0, . . . , Lh − 1.

Therefore, the output power at relay node is

P0 =
R∑
i=1

{E | ti(n) |2} =
R∑
i=1

hTi

(
Ps · F̂Ti F̂ ∗i + σ2 · ILh

)
h∗i = wTDw

where

D = Ps · blkdiag{FT1 F ∗1 , . . . , FTRF ∗R}+ σ2
n · IRLh

.

Accordingly, the problem formulation is given by

max
w

SINR (1.19)

s.t. wHQleakw ≤ PN ,
wHDw ≤ P0,

where PN = wHQnw.
Moreover, Cai et al. [6] have studied a nonconvex quadratically constrained quadratic fractional optimization

problem in the complex space. They transformed the fractional problem into a nonfractional one by using a
parametric approach. They have applied an algorithm for the problem and showed that an optimal solution to
the nonfractional problem can be found by solving a single semidefinite optimization problem. Chen et al. [8]
dealt with a nonconvex fractional optimization problem for solving a large-scale multiple-input-multiple-output
(MIMO) system. They transformed the problem into a nonfractional one based on the Dinkelbach method. Then,
they presented a Lagrangian dual approach to solve it. In a most recent work, Zare et al. [31] have proposed a
method to solve a quadratic fractional optimization problem with two quadratic constraints in complex space.
The method is based on S-procedure, parametric approach of Dinkelbach and the rank-one decomposition.

The purpose of this paper is to reduce (1.1) to a parametric problem, which itself involves a nonconvex
quadratically constraint quadratic subproblem. We have utilized a semidefinite optimization and Lagrangian
dual optimization relaxations into the step of bisection and generalized Newton algorithms to solve the para-
metric problem. The remainder of the paper is organized as follows: In Section 2, we use the classical Dinkelbach
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method and transform the original problem into a nonfractional one. The resulting nonfractional problem is
solved by a bisection and generalized Newton algorithms. In Section 3, a semidefinite optimization relaxation
(SDO) is proposed to solve the nonfractional problem at each iteration within both algorithms. In Section 4,
a relaxation approach is introduced, which transforms the nonfractional problem into a Lagrangian dual opti-
mization relaxation (LDO) problem. Some numerical results are given for two sets of examples in Section 5.
Finally, the conclusions are presented in Section 6.

2. Parametric programming approach

The following proposition gives the relationship between fractional and parametric problems by Dinkelbach [14].

Proposition 2.1. The following two statements are equivalent:

(1) min
x∈S

f1(x)
f2(x)

= α∗

(2) F(α∗) := min
x∈S
{f1(x)− α∗f2(x)} = 0. (2.1)

Utilizing this proposition, the root of F is the optimal value of (1.1) and then an optimal solution of (2.1) is
also an optimal solution of (1.1). Therefore, we focus on the parametric optimization problem (2.1) instead of
the original problem (1.1). Now, we give some properties of the univariate function F .

Theorem 2.2 ([32]). The following statements hold.

(a) F is concave over R.
(b) F is continuous at any α ∈ R.
(c) F is strictly decreasing.
(d) F(α) = 0 has a unique solution.

The function F is not differentiable. However, there exists an explicit expression of its subgradient.

Theorem 2.3 ([32]). For any α ∈ R, let xα ∈ arg max
x∈S

{−f1(x) + αf2(x)}. Then, a subgradient of −F at α is

given by f2(xα), i.e.,

f2(xα) ∈ ∂E(α), (2.2)

where ∂E denotes the clarke subdifferential of −F .

Now, we propose the following algorithms [32] to solve the nonconvex quadratically constrained quadratic
minimization problem (2.1).

Algorithm 2.4. Bisection method.

Step 1. Choose l0 and u0 such that l0 ≤ min
x∈S

f1(x)
f2(x)

≤ u0 holds. Set k := 1.

Step 2. Let αk := lk−1+uk−1
2 . Then, calculate F(αk) by solving problem (2.1).

Step 3. If | F(αk) |≤ ε, then terminate. Otherwise, update lk and uk as follows: lk := lk−1

if F(αk) ≤ 0,
uk := αk

 lk := αk
if F(αk) > 0.

uk := uk−1

Step 4. Let k := k + 1 and return to Step 1.
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Algorithm 2.5. Generalized Newton method.

Step 1. Choose starting point α1 ∈ R. Set k := 1.
Step 2. Calculate F(αk) by solving the problem (2.1).
Step 3. If | F(αk) |≤ ε, then terminate. Otherwise, let:

αk+1 := αk −
F(αk)
−f2(xk)

=
f1(xk)
f2(xk)

·

Step 4. Let k := k + 1 and return to Step 1.

Note that we need to solve the following problem in both Algorithms 2.4 and 2.5

min
x∈S

xHAx− 2Re
(
aHx

)
+ β, (2.3)

where A = A1 − αA2, a = a1 − αa2 and β = β1 − αβ2.
Furthermore, the following assumption is made throughout the paper.

Assumption 2.6. There exists ξ1, ξ2 ≥ 0 such that A+
∑2
i=1 ξiBi � 0.

3. SDO relaxation approach

In this section, we use an SDO relaxation approach to solve (2.3) globally. To this end, we consider the
following problem which is equivalent to (2.3)

min
x∈Cn

M0 •X (3.1)

s.t. Mi •X ≤ 0, i = 1, 2,
M3 •X = 1,

where

M0 =
[
β −aH
−a A

]
, M1 =

[
γ1 −bH1
−b1 B1

]
, M2 =

[
γ2 −bH2
−b2 B2

]
,

M3 =
[

1 01×n
0n×1 0n×n

]
, X =

[
1 xH0
x0 x0x

H
0

]
,

and A •B = Re(tr(AHB)), where tr(·) denotes the trace of matrix.
Now, the semidefinite relaxation of (3.1) is given by [5]

min
x∈Cn

M0 •X (3.2)

s.t. Mi •X ≤ 0, i = 1, 2,
M3 •X = 1,
X � 0.

For an n× n matrix Q we let Q � 0 (� 0) denote that Q is positive semidefinite (definite).
The dual of (3.2) is

max y3 (3.3)
s.t. Z = M0 + y1M1 + y2M2 − y3M3 � 0n+1×n+1,

y1, y2 ≥ 0.

Next theorem shows that both problems (3.2) and (3.3) are solvable with zero duality gap.
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Theorem 3.1. Suppose that problem (1.1) has a strictly feasible solution x0 and Assumption 2.6 holds. Then
both problems (3.2) and (3.3) also satisfy the strict feasibility condition. Hence, both problems attain their optimal
values and the duality gap is zero.

Proof. Let X0 be as follows:

X0 =
[

1 xH0
x0 x0x

H
0 +Q

]
,

where Q = diag(q1, . . . , qn) with all qj > 0 and sufficiently small. Obviously by the Schur complement theorem,
X0 is positive definite. Moreover,

Mi •X0 =
[
γi −bHi
−bi Bi

]
•
[

1 xH0
x0 x0x

H
0 +Q

]
= γi − 2Re(bHi x0) + xH0 Bix0 +

n∑
j=1

(Bi)jqj < 0, i = 1, 2.

Furthermore

M3 •X0 =
[

1 0
0 0

]
•
[

1 xH0
x0 x0x

H
0 +Q

]
= 1.

Then, X0 is a strictly feasible solution for problem (3.2). For the dual problem we have

Z = M0 + y1M1 + y2M2 − y3M3

=
[
β −aH

−a A

]
+ y1

[
γ1 −bH1
−b1 B1

]
+ y2

[
γ2 −bH2
−b2 B2

]
− y3

[
1 01×n

0n×1 0n×n

]
.

Thus

Z =

β +
∑2
i=1 γiyi − y3 −aH −

∑2
i=1 yib

H
i

−a−
∑2
i=1 yibi A+

∑2
i=1 yiBi

 .
Now by Schur complement theorem

Z � 0⇔

(
A+

2∑
i=1

yiBi

)
− 1
β +

∑2
i=1 γiyi − y3

×

(
a+

2∑
i=1

yibi

)(
a+

2∑
i=1

yibi

)H
� 0.

Since (
a+

2∑
i=1

yibi

)(
a+

2∑
i=1

yibi

)H
� 0

and A+
∑2
i=1 ξiBi � 0 then by choosing y3 sufficiently large and y1 = ξ1, y2 = ξ2, Z is positive definite which

implies the strict feasibility condition of (3.2). �
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According to Theorem 3.1, X∗ with rank r and (y∗1 , y
∗
2 , y
∗
3 , Z

∗) are optimal solutions for problems (3.2) and
(3.3), respectively if and only if the following conditions are satisfied

[I] Mi •X∗ ≤ 0, i = 1, 2,
[II] M3 •X∗ = 1,
[III] X∗ � 0,

[IV] yi (Mi •X∗) = 0, i = 1, 2,
[V] Z∗ •X∗ = 0,
[VI] Z∗ � 0,
[VII] yi ≥ 0, i = 1, 2.

The following theorem shows that there exists a rank-one decomposition of the optimal solution (3.2).

Theorem 3.2 ([17]). Suppose that X ∈ Hn is a complex Hermitian positive semidefinite matrix of rank r, and
M1,M2 ∈ Hn are two given Hermitian matrices. Then, there is a rank-one decomposition of X,

X =
r∑

k=1

xkx
H
k ,

such that
xHk M1xk =

M1 •X
r

, xHk M2xk =
M2 •X

r
, k = 1, . . . , r.

Theorem 3.3. Suppose strict feasibility and Assumption 2.6 hold. If X∗ is the optimal solution of (3.2), then
there exists x̃∗k from the rank-one decomposition of X∗, such that x̃∗k is the optimal solution of (2.3).

Proof. From Theorem 3.2, there is a rank-one decomposition of X∗

X∗ =
r∑

k=1

x∗kx
∗H

k

such that
x∗k

HMix
∗
k = Mix

∗
k
Hx∗k =

Mi • x∗k
r

, i = 1, 2, k = 1, . . . , r,

where r is rank of X∗. Because

M3 •X∗ =
r∑

k=1

M3 • x∗kx∗
H

k = 1,

there must exist a k such that M3 • x∗kx∗
H

k > 0. Let x̄k = x∗k√
x∗

H

k M3x∗k

, then, we have

Mi • x̄kx̄Hk ≤ 0, i = 1, 2.

According to [IV], we have
y∗i (Mi • x̄kx̄Hk ) = 0, i = 1, 2.

Also, from [V], we have Z∗ •X∗ =
r∑

k=1

x∗
H

k Z∗x∗k = 0, then

∀k, x∗
H

k Z∗x∗k = Z∗ • x∗kx∗
H

k = 0⇒ Z∗ • x̄kx̄Hk = 0.

Hence, x̄kx̄Hk is the optimal solution of (3.2). So, let x̄k =
[

1
x̃∗k

]
, then for i = 1, 2,

x̃∗kBix̃
∗H

k − 2Re(bHi x̃
∗
k) + γi =

[
γi −bHi
−bi Bi

]
•

[
1 x̃∗

H

k

x̃∗k x̃∗kx̃
∗H

k

]
= Mi • x̄j x̄Hj ≤ 0.

Furthermore, x̃∗k is the optimal solution of (2.3). �
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Since (3.2) is a relaxation of (3.1), hence x̃∗k is optimal for (3.1) as well. Theorem 3.3 also implies that x̃∗k is
optimal for (2.3). Indeed, in each iteration of Algorithms 2.4 and 2.5, we can obtain an optimal solution (X∗)
of (3.2) by using the convex optimization toolbox CVX [15], and then we will find the optimal solution (x̃∗k) of
(2.3) based on Algorithm 3.4 where is a rank-one decomposition [17]. Due to Proposition 2.1, solving problem
(1.1) is equivalent to determining the root of the equation F(α∗) = 0, namely, the optimal of (2.3) is optimal
for problem (1.1).

Algorithm 3.4. Rank-one decomposition.
Input. X,A,B ∈ Hn and X is a complex Hermitian positive semidefinite matrix with r = rank(X).

Output. X =
r∑
j=1

x∗jx
∗H

j , a rank-one decomposition of X such that

x∗
H

j Ax∗j =
A •X
r

, x∗
H

j Bx∗j =
B •X
r

, j = 1, . . . , r.

Step 1. Apply Corollary 4 of [28] to obtain X =
r∑
j=1

xjx
H
j such that xHj Axj = A•X

r , j = 1, . . . , r.

Step 2. If xHj Bxj = B•X
r , j = 1, . . . , r, then x∗j = xj break and terminate. Otherwise, let j and k be two

indices such that

xHj Bxj >
B •X
r

, xHk Bxk <
B •X
r
·

Step 3. Let

α1 := Arg(xHj Axk), γ1 :=| xHj Axk |,
α2 := Arg(xHj Bxk), γ2 :=| xHj Bxk |,

where “Arg” denotes the principal argument of a complex number (which means that
xHj Axk = γ1e

iα1 , xHj Bxk = γ2e
iα2), then calculate the roots of the following equation(

xHj Bxj −
B •X
r

)
y2 + 2γ2 (sin(α2 − α1)) y +

(
xHk Bxk −

B •X
r

)
= 0. (3.4)

Step 4. Let γ be the positive root of (3.4), α := α1 + π
2 and ω := γeiα, then

zj :=
ωxj + xk√

1 + γ2
, zk :=

−xj + ω̄xk√
1 + γ2

·

Step 5. Set xj := zj and xk := zk and return to Step 2.

4. LDO relaxation approach

The LDO relaxation of (2.3) is given by
max
ν≥0

ψ(ν) (4.1)

where

ψ (ν) := min
x

xH (A+
2∑
i=1

νiBi

)
x− 2Re

(
a+

2∑
i=1

νibi

)H
x+

(
β +

2∑
i=1

νiγi

) .
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By [27], this is equivalent to

max
ν≥0,τ

τ (4.2)

s.t. xH

(
A+

2∑
i=1

νiBi

)
x− 2Re

(
a+

2∑
i=1

νibi

)H
x+

(
β +

2∑
i=1

νiγi

)
≥ τ.

Also, problem (4.2) can be rewritten as the semidefinite programming [3, 20]

max
ν≥0,τ

τ (4.3)

s.t.

β +
∑2
i=1 νiγi − τ −aH −

∑2
i=1 νib

H
i

−a−
∑2
i=1 νibi A+

∑2
i=1 νiBi

 � 0,

whose dual is equivalent to the Schur relaxation [26]

min
x,X

A •X − 2Re
(
aHx

)
+ β (4.4)

s.t. Bi •X − 2Re
(
bHi x

)
+ γi ≤ 0, i = 1, 2,

X � xxH .

We will consider the LDO relaxation approach for problem (2.3) and solve it in each iteration of Algorithms
2.4 and 2.5. First, we divide the maximization of the objective function of problem (4.1) into two levels, [30],

max
µ∈G

max
η≥0

ψ(µη), (4.5)

where G = {µ ≥ 0 | eTµ = 1, e = [1, 1]T } is the standard simplex. Since we use a subgradient-based approach,
we need the projection of a vector onto G ⊂ R2 [24]. Now by taking a µ ∈ G, consider the inner problem of
(4.5) as follows:

ϕ (µ) := max
η≥0

ψ (µη) . (4.6)

In fact, the problem (4.6) is the Lagrangian dual for the following problem

ϕ (µ) = min
x

xHAx− 2Re
(
aHx

)
+ β (4.7)

s.t. xH

(
2∑
i=1

µiBi

)
x− 2Re

(
2∑
i=1

µib
H
i x

)
+

2∑
i=1

µiγi ≤ 0.

By Theorem 3.1, there is no duality gap between problems (4.6) and (4.7). Now we can consider (4.1)

max
µ∈G

ϕ (µ) . (4.8)

Now, we transform (4.7) into the form

min
x∈Cn,t∈R

t (4.9)

s.t. xHAx− 2Re
(
aHx

)
+ β ≤ t,

xH

(
2∑
i=1

µiBi

)
x− 2Re

(
2∑
i=1

µib
H
i x

)
+

2∑
i=1

µiγi ≤ 0.
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Moreover, problem (4.9) satisfies Assumption 2.6 when either A or
∑2
i=1 µiBi is positive definite. So, we need

to define a convex set as follows:

W :=

{
δ ≥ 0 | A+ δ

2∑
i=1

µiBi � 0

}
. (4.10)

Set W is an interval by Assumption 2.6. Thus, we have

δ∗ = min
δ∈W

δ, δ∗ = sup
δ∈W

δ. (4.11)

Using δ∗ and δ∗, we can consider the following relaxation of problem (4.9)

min
x∈Cn,t∈R

t (4.12)

s.t. xHE∗x− 2Re
(
eH∗ x

)
+ β + ε∗ ≤ t,

xHE∗x− 2Re
(
e∗Hx

)
+ β + ε∗ ≤ t,

where

E∗ = A+ δ∗

2∑
i=1

µiBi, e∗ = a+ δ∗

2∑
i=1

µibi, ε∗ = δ∗

2∑
i=1

µiγi,

E∗ = A+ δ∗
2∑
i=1

µiBi, e∗ = a+ δ∗
2∑
i=1

µibi, ε∗ = δ∗
2∑
i=1

µiγi.

Theorem 4.1. Suppose the strict feasibility condition for (4.7) and Assumption 2.6 hold. Then problem (4.7)
is equivalent to (4.12).

Proof. Let O denote the feasible set of (4.7), which is equivalent to (4.9). We also denote by O1 and O2 the
feasible sets of problems (4.9) and (4.12), respectively. Namely

O1 = {(x1, t1) ∈ Cn ×R+ | x1 ∈ O, r1(x1) ≤ t1},
O2 = {(x2, t2) ∈ Cn ×R+ | x2 ∈ O, r̂1(x2) ≤ t2, r̂2(x2) ≤ t2},

where R+ denote the set of positive real numbers,

r1(x) = xHAx− 2Re
(
aHx

)
+ β,

r̂1(x) = xHE∗x− 2Re
(
eH∗ x

)
+ β + ε∗,

r̂2(x) = xHE∗x− 2Re
(
e∗Hx

)
+ β + ε∗.

From (4.10), (4.11) and conditions theorem, it is obvious that O1 ⊆ O2 holds. Hence, we must show that all
elements in (O2 \ O1) are suboptimal for (4.12). So for any (x2, t2) ∈ O2 we have

r̂1(x2) = ϑ1, r̂2(x2) = ϑ2,

where ϑ1, ϑ2 ∈ (0, 1) by choosing the suitable δ∗ and δ∗. Therefore, we can consider the following element of O1

x1 =
x2

ϑ∗
, t1 =

t2
ϑ∗
,
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where ϑ∗ = max {ϑ1, ϑ2}. Thus for any (x2, t2) ∈ O2 there exists (x1, t1) ∈ O1 and ϑ∗, such that if
(x2, t2) ∈ O2 \ O1 then (x2, t2) = (ϑ∗x1, ϑ

∗t1). Now, by objective functions of the problems (4.9) and (4.12)
we find

t2 = ϑ∗t1 ≤ t1. (4.13)

In addition, if (x2, t2) ∈ O2 \ O1 then the inequality (4.13) is strict. Therefore, all elements in O2 \ O1 are
suboptimal for (4.12). �

According to Assumption 2.6, we need either A or
∑2
i=1 µiBi, which is a positive semidefinite, to solve

problem (4.10). Therefore, the following cases from (4.10) are considered.

(A) When δ∗ = 0 then A � 0. Thus problem (4.12) is equivalent to the following relaxed problem

min
x∈Cn,t∈R

t (4.14)

s.t. xHAx− 2Re
(
aHx

)
+ β ≤ t,

xHE∗∗x− 2Re
(
e∗∗Hx

)
+ ε∗∗ ≤ δ∗∗t,

where E∗∗, e∗∗ and ε∗∗ are calculated similar to E∗, e∗ and ε∗, respectively, and

δ∗∗ =
∣∣∣min

{
λmin

(
A−

1
2B1A

− 1
2

)
, λmin

(
A−

1
2B2A

− 1
2

)
, 0
}∣∣∣ ,

where λmin(Q) denotes the minimum eigenvalue of Q.
(B) When δ∗ = +∞ then

∑2
i=1 µiBi � 0. Thus by dividing the second constraint of (4.12) by δ∗ and δ∗ → +∞,

it is equivalent to

min
x∈Cn,t∈R

t (4.15)

s.t. xHE∗∗x− 2Re
(
eH∗∗x

)
+ ε∗∗ ≤ t,

xH

(
2∑
i=1

µiBi

)
x− 2Re

(
2∑
i=1

µibi
Hx

)
+

2∑
i=1

µiγi ≤ 0,

where, E∗∗, e∗∗ and ε∗∗ are calculated similar to E∗, e∗ and ε∗, respectively. In addition, δ∗ can be obtained
in a similar manner to that δ∗∗.

It should be noted that the well-known optimality conditions hold for problems (4.14) and (4.15). Indeed, x∗

and x̄∗ are optimal solutions of problems (4.14) and (4.15), respectively, if and only if there exists ν∗1 , ν
∗
2 ≥ 0

and ν̄∗1 , ν̄
∗
2 ≥ 0 such that

(a) ν∗1 (Ax∗1 − 2a) + ν∗2 (E∗∗x∗1 − 2e∗∗) = 0,
(b) ν∗1

(
x∗1
HAx∗1 − 2Re

(
aHx∗1

)
+ β − t

)
= 0,

(c) ν∗2

(
x∗1
HE∗∗x∗1 − 2Re

(
e∗∗Hx1

)
+ ε∗∗ − δ∗∗t

)
= 0,

(d) ν∗1A+ ν∗2E
∗∗ � 0,

and

(e) ν̄∗1 (E∗∗x̄∗ − 2e∗∗) + ν̄∗2

((∑2
i=1 µiBi

)
x̄∗ − 2

(∑2
i=1 µibi

))
= 0,

(f) ν̄∗1

(
x̄∗

H

E∗∗x̄
∗ − 2Re

(
eH∗∗x̄

∗)+ ε∗∗ − t
)

= 0,
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(g) ν̄∗2

(
x̄∗

H
(∑2

i=1 µiBi

)
x̄∗ − 2Re

(∑2
i=1 µibi

H x̄∗
)

+
∑2
i=1 µiγi

)
= 0,

(h) ν̄∗1E∗∗ + ν̄∗2

(∑2
i=1 µiBi

)
� 0.

Furthermore, if (d) and (h) are replaced with

ν∗1A+ ν∗2E
∗∗ � 0, (4.16)

ν̄∗1E∗∗ + ν̄∗2

(
2∑
i=1

µiBi

)
� 0, (4.17)

respectively. Then the optimal solutions of (4.14) and (4.15) are unique. In what follows, we find an optimal
solution of the LDO problem (4.12) based on Algorithm 4.2. As shown in Theorem 4.1, (4.12) is equivalent to
(4.7), which is equivalent to (2.3). Thus, an optimal solution for (4.12) is optimal for (2.3) as well. Accordingly,
from proposition 2.1, an optimal solution of (1.1) can be achieved by finding an optimal solution for (4.12).

Algorithm 4.2. LDO relaxation algorithm

Step 1. Choose an initial µ(0). Set h := 0.
Step 2. Find an optimal solution and the optimal value (4.7) by solving problem (4.14) or (4.15).
Step 3. If | ϕ

(
µ(h)

)
|≤ ε, then stop the algorithm. Otherwise, update µ(h) by Algorithm 2 of [30].

Step 4. Let h := h+ 1 and return to Step 2.

It is seen that the main computational costs of Algorithm 4.2 happen in Steps 2 and 3. In Step 2, solving
problem (4.14) or (4.15) needs O(n2) times. Algorithm 2 of [30] also is done in O(m) times in Step 3. Hence,
we have the following result.

Proposition 4.3. Algorithm 4.2 correctly solves problems (4.14) or (4.15) in O(n2m) time.

Remark 4.4. In fact, Algorithm 4.2 can be used for problems with more two quadratic constraints.

5. Numerical results

In this section, two sets of examples for dimensions 100–4000 of different densities are used to test the
performance of the SDO and LDO methods. For each dimension, we generate five test problems and report the
average CPU time and roots. ε = 10−6 is chosen as the tolerance of the optimality. In addition, “−” means
the algorithm cannot solve the problem, because of the shortage of memory. The numerical tests are coded in
MATLAB 9.2 and run on a personal computer with Intel(R) Core Duo CPU 2.40 GHz and 8.00 GB of RAM.

Example 5.1. Consider the following problem

min
x∈Cn

xHA1x− 2Re(aH1 x) + β1

‖ x ‖2 +1

s.t. xHBjx− 2Re(bHj x) + γj ≤ 0, j = 1, 2,

where A1, B1, B2 ∈ Hn×n, b1, b2, a1, a2 ∈ Cn and γ1, γ2, β1 ∈ R. Matrices and vectors are generated using the
following MATLAB code:

1. fprintf(‘Enter the size of the problem’);
2. n = input(‘ ’);
3. fprintf(‘Enter the density of the matrix ’);
4. density = input(‘ ’);
5. H1 = sprand (n, n, density) + i ∗ sprand (n, n, density) ;
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6. A1 =
(
H1+H

′
1

2

)
;

7. A2 = 10 ∗ eye (n, n) ;
8. H2 = sprand (n, n, density) + i ∗ sprand (n, n, density) ;

9. B1 =
(
H2+H

′
2

2

)′
∗
(
H2+H

′
2

2

)
+ 10 ∗ eye (n, n) ;

10. H3 = sprand (n, n, density) + i ∗ sprand (n, n, density) ;

11. B2 =
(
H3+H

′
3

2

)′
∗
(
H3+H

′
3

2

)
+ 10 ∗ eye (n, n) ;

12. a1 = complex (rand (n, 1) , rand (n, 1)) ;
13. a2 = zeros(n, 1);
14. b1 = complex (rand (n, 1) , rand (n, 1)) ;
15. b2 = complex (rand (n, 1) , rand (n, 1)) ;
16. β1 = rand;
17. β2 = 1;
18. γ1 = rand;
19. γ2 = rand;

The numerical results of Example 5.1 are provided in Table 1. As we see, the LDO relaxation approach is
able to solve all the problems for both algorithms, while the SDO relaxation approach fails for problems with
dimensions of 500–4000. Among the problems which can be solved by both algorithms, the LDO relaxation-
based algorithm is faster on most problems. Moreover, the results in Table 1 suggest that the generalized Newton
method combined with the LDO relaxation approach is more efficient than other optimization techniques.

Example 5.2. Consider the following problem

min
x∈Cn

xHA1x− 2Re(aH1 x) + β1

xHA2x− 2Re(aH2 x) + β2

s.t. xHBjx− 2Re(bHj x) + γj ≤ 0, j = 1, 2,

where A1, A2, B1, B2 ∈ Hn×n, b1, b2, a1, a2 ∈ Cn and γ1, γ2, β1, β2 ∈ R. Moreover, the test problems are
generated using the following MATLAB code:

1. fprintf(‘Enter the size of the problem’);
2. n =input(‘ ’);
3. fprintf(‘Enter the density of the matrix’);
4. density = input(‘ ’);
5. H1 = sprandn (n, n, density) + i ∗ sprandn (n, n, density) ;

6. A1 =
(
H1+H

′
1

2

)
;

7. H2 = sprandn (n, n, density) + i ∗ sprandn (n, n, density) ;

8. A2 =
(
H2+H

′
2

2

)
;

9. H3 = sprandn (n, n, density) + i ∗ sprandn (n, n, density) ;

10. B1 =
(
H3+H

′
3

2

)′
∗
(
H3+H

′
3

2

)
+ 10 ∗ eye (n, n) ;

11. H4 = sprandn (n, n, density) + i ∗ sprandn (n, n, density) ;

12. B2 =
(
H4+H

′
4

2

)′
∗
(
H4+H

′
4

2

)
+ 10 ∗ eye (n, n) ;

13. a1 = complex (randn (n, 1) , randn (n, 1)) ;
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Table 1. Numerical results for Example 5.1.

LDO-Newton method SDO-Newton method LDO – bisection method SDO-bisection method
n Density fvalue Time(s) fvalue Time(s) fvalue Time(s) fvalue Time(s)

100 1 1.3887e-01 0.0979 1.3887e-01 0.9363 1.3887e-01 1.6928 1.3887e-01 16.3509

200 1 8.6614e-02 0.1215 8.6614e-02 4.9893 8.6614e-02 3.3776 8.6614e-02 99.2316
300 1 9.6206e-02 0.1857 9.6206e-02 15.2659 9.6206e-02 3.4078 9.6206e-02 115.4498

400 1 5.7425e-02 0.2512 5.7425e-02 72.0461 5.7425e-02 5.5552 5.7425e-02 238.9328

500 1 2.3291e-02 0.3487 – – 2.3291e-02 8.4306 – –
1000 1 1.1684e-01 1.6550 – – 1.1684e-01 41.3568 – –

2000 1 2.0114e-01 8.7360 – – 2.0114e-01 93.5866 – –

4000 1 7.6783e-02 76.1519 – – 7.6783e-02 154.0249 – –

100 0.5 1.6353e-01 0.0965 1.6353e-01 0.9305 1.6353e-01 1.4830 1.6353e-01 16.1519
200 0.5 1.2680e-01 0.1205 1.2680e-01 4.8691 1.2680e-01 3.3976 1.2680e-01 97.8057

300 0.5 7.5750e-02 0.1765 7.5750e-02 14.9651 7.5750e-02 3.2473 7.5750e-02 113.6291

400 0.5 4.3021e-02 0.3201 4.3021e-02 70.4382 4.3021e-02 5.3166 4.3021e-02 235.1078
500 0.5 2.0632e-02 0.4188 – – 2.0632e-02 8.1944 – –

1000 0.5 1.8694e-01 1.6629 – – 1.8694e-01 36.2839 – –

2000 0.5 1.1775e-01 8.1773 – – 1.1775e-01 91.1818 – –
4000 0.5 1.0931e-01 75.2445 – – 1.0931e-01 149.7948 – –

100 0.25 1.7817e-01 0.0952 1.7817e-01 0.9055 1.7817e-01 1.3386 1.7817e-01 12.9427

200 0.25 5.4638e-02 0.1192 5.4638e-02 4.8156 5.4638e-02 3.2749 5.4638e-02 94.5781

300 0.25 1.3814e-01 0.1742 1.3814e-01 14.2365 1.3814e-01 3.0561 1.3814e-01 109.7708
400 0.25 4.4435e-02 0.2957 4.4435e-02 69.3668 4.4435e-02 5.2091 4.4435e-02 234.5194

500 0.25 1.8493e-01 0.4102 – – 1.8493e-01 8.1122 – –

1000 0.25 8.4374e-02 1.6231 – – 8.4374e-02 35.3248 – –
2000 0.25 1.6446e-01 8.5305 – – 1.6446e-01 88.5417 – –

4000 0.25 1.2025e-01 74.7569 – – 1.2025e-01 147.9403 – –

100 0.1 1.5113e-01 0.0947 1.5113e-01 0.8954 1.5113e-01 1.1963 1.5113e-01 10.8885

200 0.1 1.7542e-01 0.1104 1.7542e-01 4.4880 1.7542e-01 3.1958 1.7542e-01 93.8011
300 0.1 2.4415e-01 0.1627 2.4415e-01 13.8721 2.4415e-01 2.9054 2.4415e-01 105.3246

400 0.1 1.3595e-01 0.2741 1.3595e-01 68.3084 1.3595e-01 5.0446 1.3595e-01 232.2136

500 0.1 3.2957e-02 0.4009 – – 3.2957e-02 6.1595 – –
1000 0.1 1.6079e-01 1.5630 – – 1.6079e-01 34.1997 – –

2000 0.1 7.4992e-02 8.0114 – – 7.4992e-02 86.9996 – –

4000 0.1 1.7430e-01 74.1659 – – 1.7430e-01 143.5753 – –

100 0.01 6.1254e-02 0.0916 6.1254e-02 0.8527 6.1254e-02 0.9878 6.1254e-02 9.2283
200 0.01 5.9301e-02 0.0935 5.9301e-02 4.1764 5.9301e-02 2.9807 5.9301e-02 91.5755

300 0.01 1.2588e-01 0.1311 1.2588e-01 13.1455 1.2588e-01 2.8371 1.2588e-01 104.2394

400 0.01 1.3655e-01 0.2543 1.3655e-01 65.0409 1.3655e-01 4.8319 1.3655e-01 228.7518
500 0.01 1.7155e-01 3.9996 – – 1.7155e-01 5.9433 – –

1000 0.01 1.3161e-01 1.4806 – – 1.3161e-01 30.7722 – –
2000 0.01 1.3374e-01 7.9278 – – 1.3374e-01 83.5018 – –
4000 0.01 2.6504e-01 72.6922 – – 2.6504e-01 139.7429 – –

14. a2 = complex (randn (n, 1) , randn (n, 1)) ;
15. b1 = complex (randn (n, 1) , randn (n, 1)) ;
16. b2 = complex (randn (n, 1) , randn (n, 1)) ;
17. β1 = randn;
18. β2 = randn;
19. γ1 = randn;
20. γ2 = randn;

In Table 2, we have reported the results for Example 5.2, which can be interpreted similarly to Table 1.
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Table 2. Numerical results for Example 5.2.

LDO-Newton method SDO-Newton method LDO-bisection method SDO-bisection method
n Density fvalue Time(s) fvalue Time(s) fvalue Time(s) fvalue Time(s)

100 1 −1.8416e-01 0.0956 −1.8416e-01 0.9417 −1.8416e-01 1.7471 −1.8416e-01 16.4409

200 1 −3.6909e-01 0.1657 −3.6909e-01 4.7835 −3.6909e-01 2.4577 −3.6909e-01 103.8579
300 1 −2.5645e-01 0.2063 −2.5645e-01 16.8312 −2.5645e-01 4.0095 −2.5645e-01 199.1776

400 1 −3.7253e-02 0.3349 −3.7253e-02 68.9528 −3.7253e-02 6.2086 −3.7253e-02 239.7016

500 1 −6.5344e-01 0.4987 – – −6.5344e-01 9.1417 – –
1000 1 −1.2212e-01 2.2984 – – −1.2212e-01 44.4041 – –

2000 1 −5.2547e-02 12.9513 – – −5.2547e-02 136.9980 – –

4000 1 −2.5679e-01 95.247 – – −2.5679e-01 198.2473 – –

100 0.5 −4.5056e-02 0.0873 −4.5056e-02 0.8713 −4.5056e-02 1.6750 −4.5056e-02 15.2248
200 0.5 −1.6779e-01 0.1735 −1.6779e-01 5.0963 −1.6779e-01 2.3897 −1.6779e-01 100.1329

300 0.5 −1.3056e-01 0.1971 −1.3056e-01 16.3578 −1.3056e-01 3.7324 −1.3056e-01 183.5519

400 0.5 −1.2786e-01 0.3248 −1.2786e-01 68.2113 −1.2786e-01 5.0087 −1.2786e-01 237.5629
500 0.5 −9.6638e-02 0.4923 – – −9.6638e-02 8.7206 – –

1000 0.5 −9.6798e-01 2.0099 – – −9.6798e-01 41.6869 – –

2000 0.5 −6.5820e-02 11.9515 – – −6.5820e-02 132.1846 – –
4000 0.5 −3.6375e-02 93.0018 – – −3.6375e-02 195.0349 – –

100 0.25 −1.2645e-01 0.0812 −1.2645e-01 0.8526 −1.2645e-01 1.6125 −1.2645e-01 15.1064

200 0.25 −2.7449e-01 0.1632 −2.7449e-01 4.8847 −2.7449e-01 2.1693 −2.7449e-01 99.2217

300 0.25 −8.0128e-02 0.1928 −8.0128e-02 16.1504 −8.0128e-02 3.5986 −8.0128e-02 180.6669
400 0.25 −5.7902e-02 0.3117 −5.7902e-02 66.9423 −5.7902e-02 4.8311 −5.7902e-02 235.0087

500 0.25 −1.0169e-01 0.4445 – – −1.0169e-01 8.5235 – –

1000 0.25 −1.5580e-01 1.8493 – – −1.5580e-01 40.0677 – –
2000 0.25 −1.4799e-01 11.4262 – – −1.4799e-01 131.5967 – –

4000 0.25 −2.0684e-01 92.7349 – – −2.0684e-01 192.9447 – –

100 0.1 −1.8559e-01 0.0798 −1.8559e-01 0.8029 −1.8559e-01 1.4687 −1.8559e-01 13.6998

200 0.1 −4.7505e-01 0.1457 −4.7505e-01 4.7754 −4.7505e-01 1.9356 −4.7505e-01 97.5454
300 0.1 −6.1356e-02 0.1056 −6.1356e-02 14.9793 −6.1356e-02 3.3209 −6.1356e-02 179.2517

400 0.1 −2.8399e-01 0.2674 −2.8399e-01 63.8407 −2.8399e-01 4.7654 −2.8399e-01 234.1926

500 0.1 −4.5896e-02 0.4216 – – −4.5896e-02 8.5128 – –
1000 0.1 −2.7744e-01 1.8228 – – −2.7744e-01 37.5518 – –

2000 0.1 −1.4825e-01 10.4458 – – −1.4825e-01 130.2155 – –

4000 0.1 −1.3308e-01 91.5199 – – −1.3308e-01 189.9861 – –

100 0.01 −2.2614e-01 0.0734 −2.2614e-01 0.7903 −2.2614e-01 1.1956 −2.2614e-01 12.7485
200 0.01 −8.9024e-02 0.0986 −8.9024e-02 4.3208 −8.9024e-02 1.8849 −8.9024e-02 96.0037

300 0.01 −1.4961e-01 0.1184 −1.4961e-01 12.8060 −1.4961e-01 3.2157 −1.4961e-01 176.9925

400 0.01 −2.5668e-01 0.2584 −2.5668e-01 61.7438 −2.5668e-01 4.6150 −2.5668e-01 232.1345
500 0.01 −1.6662e-01 0.3896 – – −1.6662e-01 8.3967 – –

1000 0.01 −2.0162e-01 1.3752 – – −2.0162e-01 35.2463 – –
2000 0.01 −4.1786e-02 9.9815 – – −4.1786e-02 127.6128 – –
4000 0.01 −7.3453e-01 88.1094 – – −7.3453e-01 186.1117 – –

6. Conclusions

In this paper, we considered the quadratic fractional programming problems with two quadratic constraints
in the complex space. We have presented two algorithms from literature and used an SDO and LDO relaxation
approaches to solve the inner subproblems within both algorithms. Our computational results on randomly gen-
erated test problems with various dimensions and densities show that the Lagrangian dual relaxation approach
within the generalized Newton method algorithm is much more efficient compared with other optimization
techniques.
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