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SDO AND LDO RELAXATION APPROACHES TO COMPLEX FRACTIONAL
QUADRATIC OPTIMIZATION

ALI ASHRAFI* AND AREZU ZARE

Abstract. This paper examines a complex fractional quadratic optimization problem subject to two
quadratic constraints. The original problem is transformed into a parametric quadratic programming
problem by the well-known classical Dinkelbach method. Then a semidefinite and Lagrangian dual
optimization approaches are presented to solve the nonconvex parametric problem at each iteration
of the bisection and generalized Newton algorithms. Finally, the numerical results demonstrate the
effectiveness of the proposed approaches.
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1. INTRODUCTION

The following fractional optimization problem is considered in this paper:
HA —92 H
min fi() — JUH 1z Re(a}{x) + b5 (1.1)
zeCn  fo(x)  af Ayx — 2Re(all ) + (2
s.t. gi(z) == 2" Byx — 2Re(bF2) + 7, <0, i=1,2,

where A;, B; € H"*™ are complex Hermitian matrices, a;,b; € C™ are vectors, 3;,7; € R are constants for
i = 1,2. The superscript “H” denotes the conjugate transpose. Furthermore, we require the denominator of the
objective function to be positive in § := {& € C"| g;(z) < 0, i = 1,2}, in which S # . In general, problem
(1.1) is nonconvex.

Quadratic fractional optimization problems have attracted the attention of many researchers over the last
decades, due to their application in many fields such as signal processing, economics, transportation science,
engineering, and finance [2,9, 10, 18,22, 23]. The first work on nonlinear programming in the complex space
appeared when Abrams et al. [1] studied duality for the complex nonlinear programming problem. Swarup et al.
[29] have investigated linear fractional programming in the complex space. Bector et al. [4] considered a complex
nonlinear fractional programming problem. They developed a Lagrangian dual optimization approach to duality
for the problem over cones. Liu et al. [19] investigated the complex nondifferentiable fractional programming
and established optimality conditions and a duality theorem for the complex nonlinear programming.
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FIGURE 1. Filter-and-forward relay network signal model [21].

Recently, there have been several results considering complex fractional quadratic optimization problems
where can be applied to signal processing applications such as robust adaptive beamforming, steering direction,
and filter design [7,11-13,16,25,33-35]. In what follows, we briefly describe an application where a problem of
the form (1.1) arises [21].

Consider a cognitive radio (CR) relay network in a frequency-selective wireless channel, as shown in Figure 1.
It consists of R single-antenna CR relay nodes, a secondary user (SU) source to relay channels (fore-channels),
relay to secondary destination channels (back-channels) and relay to primary user (PU) channels (interference
channels) corresponding to the ith relay which

fi = 10), o £~ )T
gi =19i(0), ..., gi(Lg — 1],
o™ = [FV0). ..o LY - 1)

for the ith relay node, with the superscript “I” denoting transpose, Ly, L, and LéPU) are the corresponding

finite impulse response (FIR) filter length. It is assumed that the direct link between source and destination
nodes does not exist and the transmission is divided into two phases. In the first phase, the SU source broadcasts
a signal to all CR relay nodes, and in the second phase, each CR relay node filters the received signal and then
re-transmit it to the secondary destination. Moreover, the instantaneous channel state information (CSI) of all
transmission channels is perfectly known by the system and the computation of all relay coefficients could be
performed at the secondary destination or some central node. The results can then be fed back to the relay
nodes. The primary destination does not need the channel state information.

Accordingly, the signal received at the relay nodes can be modeled as an R x 1 vector
r(n) = [ri(n),...,rr(n)]", with r;(n) given by

ri(n) = s(n) * fi(n) + n;(n), (1.2)

where s(n) is the information-bearing sequence of symbols transmitted by the SU source node with power of
P, = E{| s(n) |*}, E{-} is the expectation operation, * denotes the convolution sum, and n;(n) is the additive
white Gaussian noise (AWGN), with power of 02 = E{| n;(n) |*}. Then the received signal r;(n) passes through
the ith CR relay filter, with an impulse response h; = [h;(0),..., h;(Ly — 1)]T, where L, represents the relay
filter length. Note that the channel impulse responses are assumed to be independent quasi-static, which means
that h; remains static over a frame period. The signal received by the secondary destination node is given by

y(n) = Z ri(n) * hi(n) * g;(n) + v(n) = s(n) * hego(n) + Npro(n) + v(n), (1.3)

=1
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where hegy(n) = Zf;l fi(n) x h;(n) * g;(n) is the overall equivalent channel impulse response from the SU source
to the secondary destination node, np.o(n) = Zf‘:l ni(n) x h;y(n) x g;(n) is the propagation noise from the CR
relay nodes and v(n) is the AWGN with power 02 = E{| v;(n) |*}. The leakage signal introduced by CR relays
at the primary receiver can be expressed as

R

yFOm) =36 ()
;1
=3 i) = Fin) ) g7 ) 4 i)+ P ), (1.4

i=1

where 5§PU)(n) denotes the part of leakage signal from the ith CR relay nodes. In the following, for better
illustration and to facilitate the subsequent problem formulation, the signal model (1.3) will be rewritten in
matrix form. To this end, the convolution sum of fore-channel and back-channel related to the ith CR relay
node can be expressed as follows

Ci:fi*gi:Fi'gi:[Ci,lv-uyci,Lc]» (1~5)

where L. = (Ly + Ly — 1), and F; is a column-circulant matrix of size L. x L,

F;, = [F;(0),...,Fi(Ly —1)] (1.6)
I columns (Lg—1—1) columns T
Fl(l): — — s ZZO,..,Lgfl.
0 ...0f O ... 0
Then the equivalent channel h.q,(n) can be rewritten in matrix form as
R R
hequz:ci*hi:ZCi-hi:\I/w (17)
i=1 i=1
where ¥ = [C4,...,Cg|, w = [A],..., hg]T, and C; is a column-circulant matrix, with the size of
(Ly+Lg+ Ly —2) X Ly, defined by
C; =[Ci(0),...,Ci(Ly)] (1.8)
Il columns (Lj—1—1) columns
C’i(l): — — , 1=0,...,L,—1.
0 ... 0¢g 0 ... O
The propagation noise np.,(n) can also be expressed in a matrix form
R —
Npro(n) = Y hf G ni(n) (1.9)
i=1
where G is a column-circulant matrix with a similar form as Fj, given by
Gi = [G5(0),...,G;i (L —1)] (1.10)
I columns (Lp—1—1) columns
Gl(l): — —— , 1=0,....,L,—1
0 ... Og; 0 ... 0

and n; (n) in (1.9) is the relay noise vector with

ni(n):[ni(n),ni(n—1),...,ni(n—Lg—Lh+2)]T.
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Now from (1.7) and (1.9), we can rewrite the overall signal model (1.3) in matrix form as
R
y(n) =w s (n) —I—th(}’?ni (n) +v(n) (1.11)
i=1

where s (n) = [s(n),s(n —1)),...,s(n — (Ly + Ly + Ly) — 1)]".
Let 1/7 and U denote the first row and remaining part of U, respectively and define
5(n) = [s(n—1),s(n —2),s(n — Ly — Ly +2)]. Then,

Propagation noise and receiver noise

Desired signal  Inter—symbol interference
—_—— R _
y(n) = wlPTs(n) + w75 (n) + ) hIGTni (n) + o(n). (1.12)
i=1
Equation (1.4) can be rewritten in a matrix form as
R R B o

g () =376 () Z HEPO o ) + RGP 1, (n) (1.13)

i=1 i=1

where C’EPU) and G’EPU) are two column-circulant matrices with a similar structure as C; and G;, respectively.
Accordingly, the power of the desired signal, inter-symbol interference and propagation noise at the secondary
destination from (1.12) as follows.

E{ly(n) I’} = w" Qew + w” Qiw + w” Quuw + o7, (1.14)
where
Qs = Py -T9*, Qi =P, 910, Q, =02 blkdiag {GTG},...,GLGE}

“blkdiag” is an operation to build a block diagonal matrix from the input argument inside the bracket. The
leakage signal power at the primary user can be derived from (1.13),

Heak =F {| y(PU) (’I’L) |2} = wHQleakw7 (115)
where Qleax 1S given by

Qleak = Qleak,s + Qleak,n

~(PU)T =(PU)* —PU)T ~(PU
e T e
~(PU)T ~(PU)* ~(PU)T ~(PU
Qlk:(,’é)c{) L g Eeur
C(PU)T@(PU)* L C,(PU)TC,I(%PU)
Qreak,n = 02 blkdlag{G(PU) GO GO G (PU)*

Now, the received signal to interference plus noise ratio (SINR) can be written as

wH Qg w

SINR = .
wHQw + wHQ,w + o2

(1.16)
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Moreover, the transmitted signal vector from each relay node to destination node is given by
t;(n) =ri(n) * hy(n) = s(n) * fi(n) x hj(n) + n;(n) * h;y(n). (1.17)
It can be further expressed in matrix form as:
. T
ti(n) = (Fh) 3(n) + hTii(n) (1.18)
where

5(n) =[s(n),s(n—1),...,s(n— Ly — Ly + ",
ii(n) = [ni(n),ni(n —1),....ni(n — Ly + 1)]"

are the received signal vector at relay node and the relay noise vector, respectively. F, is a column-circulant
matrix with a similar form as F;

£ = [Fi(()), o B(Ly — 1)]

~ I columns (Lp—1-1) columns
Fi(l) = | m— — ., 1=0,...,L,—1.
0 ... 0f 0 .0

Therefore, the output power at relay node is

R R
PO:Z{E“i(”) |2}:Zh? (Ps'ﬁgﬁi*+02~ILh)h;:wTDw

i=1 i=1

where
D = P, -blkdiag{ FTFy,... , FEF;} 4+ 0% - Irp, .

Accordingly, the problem formulation is given by

max SINR (1.19)
s.t. wHQleakw S PNa
w Dw < Py,

where Py = wfQ,w.

Moreover, Cai et al. [6] have studied a nonconvex quadratically constrained quadratic fractional optimization
problem in the complex space. They transformed the fractional problem into a nonfractional one by using a
parametric approach. They have applied an algorithm for the problem and showed that an optimal solution to
the nonfractional problem can be found by solving a single semidefinite optimization problem. Chen et al. [8]
dealt with a nonconvex fractional optimization problem for solving a large-scale multiple-input-multiple-output
(MIMO) system. They transformed the problem into a nonfractional one based on the Dinkelbach method. Then,
they presented a Lagrangian dual approach to solve it. In a most recent work, Zare et al. [31] have proposed a
method to solve a quadratic fractional optimization problem with two quadratic constraints in complex space.
The method is based on S-procedure, parametric approach of Dinkelbach and the rank-one decomposition.

The purpose of this paper is to reduce (1.1) to a parametric problem, which itself involves a nonconvex
quadratically constraint quadratic subproblem. We have utilized a semidefinite optimization and Lagrangian
dual optimization relaxations into the step of bisection and generalized Newton algorithms to solve the para-
metric problem. The remainder of the paper is organized as follows: In Section 2, we use the classical Dinkelbach
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method and transform the original problem into a nonfractional one. The resulting nonfractional problem is
solved by a bisection and generalized Newton algorithms. In Section 3, a semidefinite optimization relaxation
(SDO) is proposed to solve the nonfractional problem at each iteration within both algorithms. In Section 4,
a relaxation approach is introduced, which transforms the nonfractional problem into a Lagrangian dual opti-
mization relaxation (LDO) problem. Some numerical results are given for two sets of examples in Section 5.
Finally, the conclusions are presented in Section 6.

2. PARAMETRIC PROGRAMMING APPROACH
The following proposition gives the relationship between fractional and parametric problems by Dinkelbach [14].

Proposition 2.1. The following two statements are equivalent:

M ;nelg fola) ¢
(2) Flo®) i=min{fi(2) - " ()} = 0. (2.1)

Utilizing this proposition, the root of F is the optimal value of (1.1) and then an optimal solution of (2.1) is
also an optimal solution of (1.1). Therefore, we focus on the parametric optimization problem (2.1) instead of
the original problem (1.1). Now, we give some properties of the univariate function F.

Theorem 2.2 ([32]). The following statements hold.

(a) F is concave over R.

(b) F is continuous at any o € R.
(¢c) F is strictly decreasing.

(d) F(a) =0 has a unique solution.

The function F is not differentiable. However, there exists an explicit expression of its subgradient.
Theorem 2.3 ([32]). For any o € R, let x, € arg max{—f1(x) + afz(x)}. Then, a subgradient of —F at « is
given by fa(xs), i.e., X<

fa(xs) € 0E(a), (2.2)
where OE denotes the clarke subdifferential of —F.

Now, we propose the following algorithms [32] to solve the nonconvex quadratically constrained quadratic
minimization problem (2.1).

Algorithm 2.4. Bisection method.

Step 1. Choose [y and ug such that [y < mig % < ug holds. Set k :=1.
paS

Step 2. Let oy, := w% Then, calculate F(ay) by solving problem (2.1).
Step 3. If | F(ax) |< ¢, then terminate. Otherwise, update I;, and wuy, as follows:

lk = lk—l lk = QL
if .7:(Oék) <0, if f(ak) > 0.
Ug ‘= O U = Ug—1

Step 4. Let k :=k + 1 and return to Step 1.
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Algorithm 2.5. Generalized Newton method.

Step 1. Choose starting point a; € R. Set k := 1.
Step 2. Calculate F(ay) by solving the problem (2.1).
Step 3. If | F(ag) |< ¢, then terminate. Otherwise, let:

Flow)  filze)

A —fa(zr) f2($k)'

Step 4. Let k :=k + 1 and return to Step 1.

Note that we need to solve the following problem in both Algorithms 2.4 and 2.5

: Hp,. H
min Az — 2Re (a"z) + 3, (2.3)

where A = Ay — ads, a = a1 — aas and 8 = 61 — afs.
Furthermore, the following assumption is made throughout the paper.

Assumption 2.6. There exists £1,&5 > 0 such that A + 25:1 &B; >~ 0.

3. SDO RELAXATION APPROACH

In this section, we use an SDO relaxation approach to solve (2.3) globally. To this end, we consider the
following problem which is equivalent to (2.3)

nin Mye X (3.1)
s.t. M; e X <0, 1 =1,2,
M3 e X = 1,
where p . . -
—a 7 —by Y2 —by
0 [—a A :|’ ! |:—b1 B]_ :|7 2 |:—b2 32 :|’
1 Oixn 1zl
Ms = X =
3 |:On><1 Oan:| ’ |:.’170 560306{ ’

and A e B = Re(tr(A” B)), where tr(-) denotes the trace of matrix.
Now, the semidefinite relaxation of (3.1) is given by [5]

wrgénn Mye X (3.2)
st. M;eX<0, i=12,

M;e X =1,

X =0

For an n x n matrix @ we let @ = 0 (> 0) denote that @ is positive semidefinite (definite).
The dual of (3.2) is

max  ys (3.3)
s.t. Z = My +y1 My +yo My — ys M3 = Opy1xn+1,
y1,y2 = 0.

Next theorem shows that both problems (3.2) and (3.3) are solvable with zero duality gap.
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Theorem 3.1. Suppose that problem (1.1) has a strictly feasible solution xy and Assumption 2.6 holds. Then
both problems (3.2) and (3.3) also satisfy the strict feasibility condition. Hence, both problems attain their optimal
values and the duality gap is zero.

Proof. Let Xy be as follows:
1 xl
X 0
0o — |: H :| )
xo xoxy +Q

where @ = diag(q,. .., qn) with all ¢; > 0 and sufficiently small. Obviously by the Schur complement theorem,
Xy is positive definite. Moreover,

. _H H
Mi.X0:|:,Y7, bz:|.|:1 xO }

—bi Bi o l‘ol’é{ + Q

=Y — 2R€(b?$0) + xé{Bmo + Z (Bi)jq]‘ <0, 1=1,2.
j=1

Furthermore

Meo X [1 O} [ 1 xéq } )
[ ) = [ ] = 1.
3 0 0 0 o xoxé{ +Q

Then, X is a strictly feasible solution for problem (3.2). For the dual problem we have

Z = My + y1 M1 + y2 Ma — y3 M3
—al —blt —bll
_ B o et 1 o Y2 >
—a A —bl Bl _b2 B2
1 01><n
ys 0n><1 0n><n )

Thus
2 2
ﬁ + Eizl YiYi — Y3 _aH - Zizl yzbf[
Z =

—a— Z?:l Yib; A+ Z?:1 Y B;

Now by Schur complement theorem

2
1
Z-0s (A—kaiBi)

=1 B+ Zf:l Vil — Y3

2 2 H
X <a+2yibi> <a+2yibi> = 0.
i=1 i=1

Since
2 2 H
(a + ZZ/JH) (a + ZZMH) =0
i=1 i=1

and A + Z?zl & B; > 0 then by choosing ys sufficiently large and y; = &1, y2 = &2, Z is positive definite which
implies the strict feasibility condition of (3.2). O
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According to Theorem 3.1, X* with rank r and (yi,y3,vs, Z*) are optimal solutions for problems (3.2) and
(3.3), respectively if and only if the following conditions are satisfied

IV] y; (M; e X*)=0,i=1,2,
V] 7+ e X+ 20,

VI Z* =0,

VII] yi >0, 1 =12,

0 M,eX*<0, i=1,2, |
M0 MseX* =1, [
1] X* = 0, {

The following theorem shows that there exists a rank-one decomposition of the optimal solution (3.2).

Theorem 3.2 ([17]). Suppose that X € H" is a complex Hermitian positive semidefinite matriz of rank r, and
My, My € H" are two given Hermitian matrices. Then, there is a rank-one decomposition of X,

k=1
such that Moo X Moo X
[ ) [ )
kaMlxk: ! , kangk: 2 , k=1,...,r
r r

Theorem 3.3. Suppose strict feasibility and Assumption 2.6 hold. If X* is the optimal solution of (3.2), then
there exists Tj, from the rank-one decomposition of X*, such that Z} is the optimal solution of (2.3).

Proof. From Theorem 3.2, there is a rank-one decomposition of X*

E xkxk

such that M y
H H i ® T .
zy Mixy, = Mz " xy, = Zr ko i=1,2, k=1,...,r

where 7 is rank of X*. Because

Ms e X* :ZM;g.(E;;{EZH =1,

¥
Tk

H
there must exist a k such that M3 e z7x; > 0. Let T, = ——~—— then, we have
Tk %*HMM

M; ezl <0, i=1,2.

According to [IV], we have
yi(M; e Zpz) =0, i=1,2.

Also, from [V], we have Z* ¢ X* = Z xZHZ*xZ =0, then
k=1
«H s % * — * = =H
Vk, x; Z'x; =Z"exix;, =0=Z2Z" ez, =0.
Hence, Z,z# is the optimal solution of (3.2). So, let Z;, = L}l* ], then for i = 1,2,
k

. _pH ~H
ikBiiz — 2Re(b]'T},) + i = v b g1 Tk
b B s

—Moxj <0.

Furthermore, 7} is the optimal solution of (2.3). O
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Since (3.2) is a relaxation of (3.1), hence Z; is optimal for (3.1) as well. Theorem 3.3 also implies that & is
optimal for (2.3). Indeed, in each iteration of Algorithms 2.4 and 2.5, we can obtain an optimal solution (X*)
of (3.2) by using the convex optimization toolbox CVX [15], and then we will find the optimal solution (Z}) of
(2.3) based on Algorithm 3.4 where is a rank-one decomposition [17]. Due to Proposition 2.1, solving problem
(1.1) is equivalent to determining the root of the equation F(«a*) = 0, namely, the optimal of (2.3) is optimal
for problem (1.1).

Algorithm 3.4. Rank-one decomposition.
Input. X, A, B € H” and X is a complex Hermitian positive semidefinite matrix with r = rank(X).

T
Output. X = > x;‘x;‘H, a rank-one decomposition of X such that
j=1

T

Step 1. Apply Corollary 4 of [28] to obtain X = > xjxf such that foxj =AX i1 ..

Jj=1
Step 2. If xfoj = B;X, J =1,...,r, then 7 = z; break and terminate. Otherwise, let j and k be two
indices such that
BeX BeX
xfoj > =2 , oi Bay, < °=.
Step 3. Let
ay = Arg(zj Azy), =] af Ay |,
Qg 1= Arg(szxk), Y2 = QTfoﬂk B

where “Arg” denotes the principal argument of a complex number (which means that
foa:k = et xfok = v9¢@2), then calculate the roots of the following equation

BeX . BeX
(szxj - r) Y% + 272 (sin(ag — 1))y + (kasz - ) =0. (3.4)

Step 4. Let v be the positive root of (3.4), & := ay + § and w := ve'®, then

- wxj + Tk . —Tj + T
=, Ry ————
J /1+72 /1+72

Step 5. Set z; := z; and x, := z;, and return to Step 2.

4. LDO RELAXATION APPROACH

The LDO relaxation of (2.3) is given by

max () (4.1)

where

2 2 " 2
Y(v) = mgn ot (A + Z z/iBi> r —2Re (a + Z Vib,) x + (ﬁ + Z Vi%‘)
i=1 i=1

i=1
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By [27], this is equivalent to

max T (4.2)
2 2 H 2
st. o <A+Zl/iBi> r — 2Re (aJrZVibi) T+ <5+Zyﬂi> > T,
i=1 i=1 i=1
Also, problem (4.2) can be rewritten as the semidefinite programming [3, 20]
max T (4.3)
B+ vyi—7 —al =37 vl
s.t. t 07
—a—Yi b A+YL B
whose dual is equivalent to the Schur relaxation [26]
min  AeX —2Re (a"z) + (4.4)

‘,'E7

st.  B;eX —2Re(bf'z) +7 <0, i=12,
X = zx®.

We will consider the LDO relaxation approach for problem (2.3) and solve it in each iteration of Algorithms
2.4 and 2.5. First, we divide the maximization of the objective function of problem (4.1) into two levels, [30],

45
max max ¥(pn), (4.5)

where G ={p >0 eTp=1, e=11, 1]T} is the standard simplex. Since we use a subgradient-based approach,
we need the projection of a vector onto G C R? [24]. Now by taking a u € G, consider the inner problem of

(4.5) as follows:

¢ (p) = max 1) (pm) - (4.6)

In fact, the problem (4.6) is the Lagrangian dual for the following problem

¢(p) =min 2" Az —2Re (a”z) + 3 (4.7)
2 2 2
st. 2 <Z uiBi> r — 2Re (Z uﬂ)fﬂﬁ) + Z wiyi < 0.
i=1 i=1 i=1
By Theorem 3.1, there is no duality gap between problems (4.6) and (4.7). Now we can consider (4.1)
. 4.8
max ¢ (u) (4.8)
Now, we transform (4.7) into the form
min t (4.9)
zeCn teR
s.t. 2 Az — 2Re (aHa:) + B <t,

2 2 2
! (Z m&) x —2Re (Z mbfz) +) i <0.
=1

=1 i=1
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Moreover, problem (4.9) satisfies Assumption 2.6 when either A or 21‘2:1 i B; is positive definite. So, we need
to define a convex set as follows:

2
W:_{520| A+5ZMB¢§O}. (4.10)
i=1

Set W is an interval by Assumption 2.6. Thus, we have

0, = mind, " = 0. 4.11
s 5 <>

Using 0, and §*, we can consider the following relaxation of problem (4.9)

min t (4.12)
zeC™ teR
s.t. z? B,z — 2Re (e*Hx) + B +e. <t

2P E*x — 2Re (e*Hx> + B +e* <t,
where

2 2 2
E, =A+5*Z/MB:‘7 [h =a+5*ZMbi, Ex 25*2:%%‘7
i=1 i=1

i=1
2 2 2
E* :A+5*ZMZB¢, 6*:a+5*ZHibi; e* =5*Zum.
i=1 i=1 i=1

Theorem 4.1. Suppose the strict feasibility condition for (4.7) and Assumption 2.6 hold. Then problem (4.7)
is equivalent to (4.12).

Proof. Let O denote the feasible set of (4.7), which is equivalent to (4.9). We also denote by Oy and Os the
feasible sets of problems (4.9) and (4.12), respectively. Namely

0, = {(l‘l,tl) e C" x R+ ‘ xr1 € O, 7“1(131) < tl},
Oy = {(l‘g,tg) e C" x R+ ‘ x9 € O, fl(l‘g) < tq, ’Fg(l‘g) < tz},

where R denote the set of positive real numbers,
ri(z) = 2% Az — 2Re (aHx) + 8,
#1(x) = 2" E.x — 2Re (efx) + 6+ &,
Fo(z) = 2 E*z — 2Re (e*Hx) + 08+

From (4.10), (4.11) and conditions theorem, it is obvious that O; C Os holds. Hence, we must show that all
elements in (O3 \ Oy) are suboptimal for (4.12). So for any (zq,t2) € Oz we have

F1(z2) = V1, T2(x2) = V2,
where J1, 92 € (0,1) by choosing the suitable J, and §*. Therefore, we can consider the following element of O

X2 ¢ _tz
19*7 1_19*3

r1 =
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where 9* = max {1,92}. Thus for any (z3,t2) € O there exists (z1,t;) € O; and ¢*, such that if
(x2,t2) € O3\ Oy then (z2,t2) = (¥*x1,9*t;). Now, by objective functions of the problems (4.9) and (4.12)
we find

ty = 0%t < t. (4.13)

In addition, if (x2,t2) € Oy \ Op then the inequality (4.13) is strict. Therefore, all elements in Oy \ Oy are
suboptimal for (4.12). O

According to Assumption 2.6, we need either A or Z?Zl ;i B;, which is a positive semidefinite, to solve
problem (4.10). Therefore, the following cases from (4.10) are considered.

(A) When d, =0 then A > 0. Thus problem (4.12) is equivalent to the following relaxed problem

min t (4.14)
zeCm teR
s.t. o Az — 2Re (aHx) + 3 <t,

T E**z — 2Re <e**H:c> + ™ < 0",
where E** e** and ** are calculated similar to E*, e* and €*, respectively, and

)

5 = ‘min {)\min (A*%Blfr%) Amin (A’%BQA’%> ,o}

where Apin(Q) denotes the minimum eigenvalue of Q.
(B) When ¢* = 400 then 2?21 i B; = 0. Thus by dividing the second constraint of (4.12) by §* and §* — o0,
it is equivalent to

Lnin ot (4.15)
s.t. e B,z —2Re (el x) + 2, <,
2 2 2
zH <Z ,uz-Bi> r — 2Re (Z ,uibin> + Z,u,% <0,
i=1 i=1 i=1

where, E,., €.+ and ¢,, are calculated similar to F, e, and &, respectively. In addition, §, can be obtained
in a similar manner to that §**.

It should be noted that the well-known optimality conditions hold for problems (4.14) and (4.15). Indeed, z*
and T* are optimal solutions of problems (4.14) and (4.15), respectively, if and only if there exists v§,v5 > 0
and 7,75 > 0 such that

(a) v (Az} — 2a) +vs (E**x} — 2e**) =0,

(b) vy (x’{HAa:’{ — 2Re (aHmT) + 3 - t) =0,
) Vs (xTHE**zT —2Re (6**Hz1) + et — 5**t) =0,
)

(&) f (Buvi™ = 200) + 05 (X0 maBi) o =2 (X0 iti) ) = 0,
(f) (EHEJE —2Re (e2*) + 40 — t) —0,
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(8) 3 (f*H (Z?=1 Mz‘Bi) " —2Re (Z?:l #ibz'Hf*) +30 Mi’)’z‘) =0,
(h) 75 Be + 75 (S0, i) = 0.

Furthermore, if (d) and (h) are replaced with

VIA+ VSEY = 0, (4.16)
2
=1

respectively. Then the optimal solutions of (4.14) and (4.15) are unique. In what follows, we find an optimal
solution of the LDO problem (4.12) based on Algorithm 4.2. As shown in Theorem 4.1, (4.12) is equivalent to
(4.7), which is equivalent to (2.3). Thus, an optimal solution for (4.12) is optimal for (2.3) as well. Accordingly,
from proposition 2.1, an optimal solution of (1.1) can be achieved by finding an optimal solution for (4.12).

Algorithm 4.2. LDO relaxation algorithm

Step 1. Choose an initial x(?). Set h := 0.

Step 2. Find an optimal solution and the optimal value (4.7) by solving problem (4.14) or (4.15).
Step 3. If | ¢ (u(h)) |< €, then stop the algorithm. Otherwise, update p(™ by Algorithm 2 of [30].
Step 4. Let h:= h+ 1 and return to Step 2.

It is seen that the main computational costs of Algorithm 4.2 happen in Steps 2 and 3. In Step 2, solving
problem (4.14) or (4.15) needs O(n?) times. Algorithm 2 of [30] also is done in O(m) times in Step 3. Hence,
we have the following result.

Proposition 4.3. Algorithm 4.2 correctly solves problems (4.14) or (4.15) in O(n*m) time.

Remark 4.4. In fact, Algorithm 4.2 can be used for problems with more two quadratic constraints.

5. NUMERICAL RESULTS

In this section, two sets of examples for dimensions 100-4000 of different densities are used to test the
performance of the SDO and LDO methods. For each dimension, we generate five test problems and report the
average CPU time and roots. € = 1076 is chosen as the tolerance of the optimality. In addition, “—” means
the algorithm cannot solve the problem, because of the shortage of memory. The numerical tests are coded in
MATLAB 9.2 and run on a personal computer with Intel(R) Core Duo CPU 2.40 GHz and 8.00 GB of RAM.

Example 5.1. Consider the following problem

. v Ajx — 2Re(allz) + By
min
zeCn || X ||2 +1
s.t. xHBj:c — QRe(bfx) +7; <0, j=1,2,

where Ay, By, Bo € H" ™ by, by,a1,a2 € C™ and 71,72, 1 € R. Matrices and vectors are generated using the
following MATLAB code:

1. fprintf(‘Enter the size of the problem’);

n = input(‘ ’);

fprintf(‘Enter the density of the matrix ’);

density = input(‘ ’);

H, = sprand (n,n, density) + i x sprand (n, n, density) ;

Ui N
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6. Ay = (HlJQFHl ;

7. Ay =10 eye(n,n);
8. Hy = sprand (

9. B, = (H2;H2

(H”H ) + 10 x eye (n,n) ;

,n, density) + i * sprand (n, n, density) ;
*

,n, density) + i * sprand (n, n, density) ;

*

H3+H

11. By = <H3;H3

)—l—lO*eye(n n);

12. ay = complez (rand (n,1) ,rand (n,1));

n

10. Hsz = sprand (n
r

1);

!/
!/
13. ag = zeros(n, 1);

1
,1),rand (n,1));
1

14. by = complex (rand (n

15. be = complex (rand (n,1) ,rand (n,1));
16. 0y = rand;

18. v1 = rand;

19. vo = rand;
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The numerical results of Example 5.1 are provided in Table 1. As we see, the LDO relaxation approach is
able to solve all the problems for both algorithms, while the SDO relaxation approach fails for problems with
dimensions of 500-4000. Among the problems which can be solved by both algorithms, the LDO relaxation-
based algorithm is faster on most problems. Moreover, the results in Table 1 suggest that the generalized Newton
method combined with the LDO relaxation approach is more efficient than other optimization techniques.

Example 5.2. Consider the following problem

min o Ajx — 2Re(allx) + By
zeCn gH Ayw — 2Re(all ) + B2

st. 2" Bz —2Re(b2) +; <0,

J

where Aj, Ay, B1, By € H"™ "™ by,by,a1,a2 € C™ and 71,72, 01,02 € R. Moreover, the test problems are

generated using the following MATLAB code:

fprintf(‘Enter the size of the problem’);

n =input(‘ ’);

fprintf(‘Enter the density of the matrix’);

density = input(‘ ’);

Hy = sprandn (n, n, density) + i * sprandn (n,n, density) ;

H, = sprandn (n,n, density) + i * sprandn (n, n, density) ;
Ho+H,

Ay = | =52

)

© ® N WD

Hs = sprandn ( n,n, density) + i x sprandn (n, n, density) ;
3

10. By = (HﬁH

11. Hy = sprandn

H3,+H

+ 10 x eye (n,n);
( n,mn, denszty) + i % sprandn (n,n, density) ;
12. By = (H4+H4> (H4+H4) + 10 * eye (n,n);

13. a1 = complez (randn (n,1) ,randn (n,1));
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14.
15.
16.
17.
18.
19.
20.
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TABLE 1. Numerical results for Example 5.1.

LDO-Newton method  SDO-Newton method

LDO - bisection method

SDO-bisection method

n Density  fvalue Time(s) fvalue Time(s) fvalue Time(s) fvalue Time(s)
100 1 1.3887e-01  0.0979 1.3887e-01  0.9363 1.3887e-01  1.6928 1.3887e-01  16.3509
200 1 8.6614e-02  0.1215 8.6614e-02  4.9893 8.6614e-02  3.3776 8.6614e-02  99.2316
300 1 9.6206e-02  0.1857 9.6206e-02  15.2659  9.6206e-02  3.4078 9.6206e-02  115.4498
400 1 5.7425e-02  0.2512 5.7425e-02  72.0461 5.7425e-02  5.5552 5.7425e-02  238.9328
500 1 2.3291e-02  0.3487 - - 2.3291e-02  8.4306 - -

1000 1 1.1684e-01  1.6550 - - 1.1684e-01  41.3568 - -

2000 1 2.0114e-01  8.7360 - - 2.0114e-01  93.5866 - -

4000 1 7.6783e-02 76.1519 - - 7.6783e-02  154.0249 - -

100 0.5 1.6353e-01  0.0965 1.6353e-01  0.9305 1.6353e-01  1.4830 1.6353e-01  16.1519
200 0.5 1.2680e-01  0.1205 1.2680e-01  4.8691 1.2680e-01  3.3976 1.2680e-01  97.8057
300 0.5 7.5750e-02  0.1765 7.5750e-02  14.9651  7.5750e-02  3.2473 7.5750e-02  113.6291
400 0.5 4.3021e-02  0.3201 4.3021e-02  70.4382 4.3021e-02  5.3166 4.3021e-02  235.1078
500 0.5 2.0632e-02  0.4188 - - 2.0632e-02  8.1944 - -

1000 0.5 1.8694e-01  1.6629 - - 1.8694e-01  36.2839 - -

2000 0.5 1.1775e-01  8.1773 - - 1.1775e-01  91.1818 - -

4000 0.5 1.0931e-01  75.2445  — - 1.0931e-01  149.7948 - -

100 0.25 1.7817e-01  0.0952 1.7817e-01  0.9055 1.7817e-01  1.3386 1.7817e-01  12.9427
200 0.25 5.4638e-02  0.1192 5.4638e-02  4.8156 5.4638e-02  3.2749 5.4638e-02  94.5781
300 0.25 1.3814e-01  0.1742 1.3814e-01  14.2365 1.3814e-01  3.0561 1.3814e-01  109.7708
400 0.25 4.4435e-02  0.2957 4.4435e-02  69.3668  4.4435e-02  5.2091 4.4435e-02  234.5194
500 0.25 1.8493e-01  0.4102 - - 1.8493e-01  8.1122 - -

1000 0.25 8.4374e-02  1.6231 - - 8.4374e-02  35.3248 - -

2000 0.25 1.6446e-01  8.5305 - - 1.6446e-01  88.5417 - -

4000 0.25 1.2025e-01  74.7569  — - 1.2025e-01  147.9403 - -

100 0.1 1.5113e-01  0.0947 1.5113e-01  0.8954 1.5113e-01  1.1963 1.5113e-01  10.8885
200 0.1 1.7542e-01  0.1104 1.7542e-01  4.4880 1.7542e-01  3.1958 1.7542e-01  93.8011
300 0.1 2.4415e-01  0.1627 2.4415e-01  13.8721 2.4415e-01  2.9054 2.4415e-01  105.3246
400 0.1 1.3595e-01  0.2741 1.3595e-01  68.3084  1.3595e-01  5.0446 1.3595e-01  232.2136
500 0.1 3.2957e-02  0.4009 - - 3.2957e-02  6.1595 - -

1000 0.1 1.6079e-01  1.5630 - - 1.6079e-01  34.1997 - -

2000 0.1 7.4992e-02  8.0114 - - 7.4992e-02  86.9996 - -

4000 0.1 1.7430e-01  74.1659  — - 1.7430e-01  143.5753 - -

100 0.01 6.1254e-02  0.0916 6.1254e-02  0.8527 6.1254e-02  0.9878 6.1254e-02  9.2283
200 0.01 5.9301e-02  0.0935 5.9301e-02  4.1764 5.9301e-02  2.9807 5.9301e-02  91.5755
300 0.01 1.2588e-01  0.1311 1.2588e-01  13.1455 1.2588e-01  2.8371 1.2588e-01  104.2394
400 0.01 1.3655e-01  0.2543 1.3655e-01  65.0409  1.3655e-01  4.8319 1.3655e-01  228.7518
500 0.01 1.7155e-01  3.9996 - - 1.7155e-01  5.9433 - -

1000 0.01 1.3161e-01  1.4806 - - 1.3161e-01  30.7722 - -

2000 0.01 1.3374e-01  7.9278 - - 1.3374e-01  83.5018 - -

4000 0.01 2.6504e-01  72.6922  — - 2.6504e-01  139.7429 - -

as = complex (randn (n,1) ,randn (n, 1))
b1 = complex (randn (n,1) ,randn (n, 1))
by = complex (randn (n, 1), randn (n,1))
B1 = randn;
B2 = randn;
Y1 = randn;
Yo = randn;

b
i
b

In Table 2, we have reported the results for Example 5.2, which can be interpreted similarly to Table 1.
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TABLE 2. Numerical results for Example 5.2.

LDO-Newton method SDO-Newton method LDO-bisection method SDO-bisection method

n Density  fvalue Time(s) fvalue Time(s) fvalue Time(s)  fvalue Time(s)
100 1 —1.8416e-01  0.0956 —1.8416e-01  0.9417 —1.8416e-01  1.7471 —1.8416e-01  16.4409
200 1 —3.6909e-01  0.1657 —3.6909e-01  4.7835 —3.6909e-01  2.4577 —3.6909e-01  103.8579
300 1 —2.5645e-01  0.2063 —2.5645e-01  16.8312  —2.5645e-01  4.0095 —2.5645e-01  199.1776
400 1 —3.7253e-02  0.3349 —3.7253e-02  68.9528  —3.7253e-02  6.2086 —3.7253e-02  239.7016
500 1 —6.5344e-01  0.4987 - - —6.5344e-01  9.1417 - -

1000 1 —1.2212e-01  2.2984 - - —1.2212e-01  44.4041 - -

2000 1 —5.2547e-02  12.9513 - - —5.2547e-02  136.9980 - -

4000 1 —2.5679e-01  95.247 - - —2.5679e-01  198.2473 - -

100 0.5 —4.5056e-02  0.0873 —4.5056e-02  0.8713 —4.5056e-02  1.6750 —4.5056e-02  15.2248
200 0.5 —1.6779e-01  0.1735 —1.6779e-01  5.0963 —1.6779e-01  2.3897 —1.6779¢-01  100.1329
300 0.5 —1.3056e-01  0.1971 —1.3056e-01  16.3578  —1.3056e-01  3.7324 —1.3056e-01  183.5519
400 0.5 —1.2786e-01  0.3248 —1.2786e-01  68.2113  —1.2786e-01  5.0087 —1.2786e-01  237.5629
500 0.5 —9.6638e-02  0.4923 - - —9.6638e-02  8.7206 - -

1000 0.5 —9.6798e-01  2.0099 - - —9.6798e-01  41.6869 - -

2000 0.5 —6.5820e-02  11.9515 - - —6.5820e-02  132.1846 - -

4000 0.5 —3.6375e-02  93.0018  — - —3.6375e-02  195.0349 - -

100 0.25 —1.2645e-01  0.0812 —1.2645e-01  0.8526 —1.2645e-01  1.6125 —1.2645e-01  15.1064
200 0.25 —2.7449e-01  0.1632 —2.7449e-01  4.8847 —2.7449e-01  2.1693 —2.7449e-01  99.2217
300 0.25 —8.0128e-02  0.1928 —8.0128e-02  16.1504  —8.0128e-02  3.5986 —8.0128e-02  180.6669
400 0.25 —5.7902e-02  0.3117 —5.7902e-02  66.9423  —5.7902e-02  4.8311 —5.7902e-02  235.0087
500 0.25 —1.0169e-01  0.4445 - - —1.0169e-01  8.5235 - -

1000 0.25 —1.5580e-01  1.8493 - - —1.5580e-01  40.0677 - -

2000 0.25 —1.4799e-01  11.4262 - - —1.4799e-01  131.5967 — -

4000 0.25 —2.0684e-01  92.7349 - - —2.0684e-01  192.9447 - -

100 0.1 —1.8559¢e-01  0.0798 —1.8559¢e-01  0.8029 —1.8559e-01  1.4687 —1.8559¢e-01  13.6998
200 0.1 —4.7505e-01  0.1457 —4.7505e-01  4.7754 —4.7505e-01  1.9356 —4.7505e-01  97.5454
300 0.1 —6.1356e-02  0.1056 —6.1356e-02  14.9793 —6.1356e-02  3.3209 —6.1356e-02  179.2517
400 0.1 —2.8399-01  0.2674 —2.8399e-01  63.8407  —2.8399e-01  4.7654 —2.8399e-01  234.1926
500 0.1 —4.5896e-02  0.4216 - - —4.5896e-02  8.5128 - -

1000 0.1 —2.7744e-01  1.8228 - - —2.7744e-01  37.5518 - -

2000 0.1 —1.4825e-01  10.4458  — - —1.4825e-01  130.2155 - -

4000 0.1 —1.3308e-01  91.5199  — - —1.3308e-01  189.9861 — -

100 0.01 —2.2614e-01  0.0734 —2.2614e-01  0.7903 —2.2614e-01  1.1956 —2.2614e-01  12.7485
200 0.01 —8.9024e-02  0.0986 —8.9024e-02  4.3208 —8.9024e-02  1.8849 —8.9024e-02  96.0037
300 0.01 —1.4961e-01  0.1184 —1.4961e-01  12.8060  —1.4961e-01  3.2157 —1.4961e-01  176.9925
400 0.01 —2.5668e-01  0.2584 —2.5668e-01  61.7438  —2.5668e-01  4.6150 —2.5668e-01  232.1345
500 0.01 —1.6662e-01  0.3896 - - —1.6662e-01  8.3967 - -

1000 0.01 —2.0162e-01  1.3752 - - —2.0162e-01  35.2463 - -

2000 0.01 —4.1786e-02  9.9815 - - —4.1786e-02  127.6128 - -

4000 0.01 —7.3453e-01  88.1094  — - —7.3453e-01  186.1117 — -

6. CONCLUSIONS

In this paper, we considered the quadratic fractional programming problems with two quadratic constraints
in the complex space. We have presented two algorithms from literature and used an SDO and LDO relaxation
approaches to solve the inner subproblems within both algorithms. Our computational results on randomly gen-
erated test problems with various dimensions and densities show that the Lagrangian dual relaxation approach
within the generalized Newton method algorithm is much more efficient compared with other optimization
techniques.
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