Tighter bound functions for nonconvex functions over simplexes
RAIRO. Operations Research, Tome 55 (2021), pp. S2373-S2381

In this paper, we propose new lower and upper bound functions which can be used in computing a range of nonconvex functions over simplexes of $$, or for solving global optimization problems over simplexes. We show that the new bounding functions are tighter than the classical bounding functions developed in the αBB method and the QBB method.

DOI : 10.1051/ro/2020088
Classification : 65K05, 90C30, 90C34
Keywords: Global optimization, range of functions, convex lower bound function, concave upper bound function
@article{RO_2021__55_S1_S2373_0,
     author = {Mohand, Ouanes},
     title = {Tighter bound functions for nonconvex functions over simplexes},
     journal = {RAIRO. Operations Research},
     pages = {S2373--S2381},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020088},
     mrnumber = {4223185},
     zbl = {07375350},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020088/}
}
TY  - JOUR
AU  - Mohand, Ouanes
TI  - Tighter bound functions for nonconvex functions over simplexes
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2373
EP  - S2381
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020088/
DO  - 10.1051/ro/2020088
LA  - en
ID  - RO_2021__55_S1_S2373_0
ER  - 
%0 Journal Article
%A Mohand, Ouanes
%T Tighter bound functions for nonconvex functions over simplexes
%J RAIRO. Operations Research
%D 2021
%P S2373-S2381
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020088/
%R 10.1051/ro/2020088
%G en
%F RO_2021__55_S1_S2373_0
Mohand, Ouanes. Tighter bound functions for nonconvex functions over simplexes. RAIRO. Operations Research, Tome 55 (2021), pp. S2373-S2381. doi: 10.1051/ro/2020088

[1] I. P. Androulakis, C. D. Marinas and C. A. Floudas, α BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7 (1995) 337–363. | MR | Zbl | DOI

[2] C. A. Floudas and C. E. Gounaris, A review of recent advances in global optimization. J. Glob. Optim. 45 (3) (2009) DOI: . | DOI | MR | Zbl

[3] E. Gourdin, B. Jaumard and R. Ellaia, Global optimization of Hölder functions. J. Glob. Optim. 8 (1996) 323–348. | MR | Zbl | DOI

[4] E. M. T. Hendrix, J. M. G. Salmerón and L. G. Casado, On function monotonicity in simplicial branch and bound. AIP Conf. Proc. 2070 (2019) 020007. | DOI

[5] M. Hladík and D. Daney, Computing the range of real eigenvalues of an interval matrix. SWIM 08, Montpellier, France, June 19-20, (2008).

[6] S. Karhbet and R. B. Kearfott, Range bounds of functions over simplices, for branch and bound algorithms. Reliable Comput. 25, (2017) 53–73. | MR

[7] N. Kazazakis and C. S. Adjiman, Arbitrarily tight α BB underestimators of general non-linear functions over sub-optimal domains. J. Glob. Optim. 71 (2018) 815–844. | MR | Zbl | DOI

[8] D. Nerantzis and C. S. Adjiman, Tighter α BB relaxations through a refinement scheme for the scaled Gerschgorin theorem. J. Glob. Optim. 73 (2019) 467–483. | MR | Zbl | DOI

[9] M. Ouanes, M. Chebbah and A. Zidna, Combination of two underestimators for univariate global optimization. RAIRO:OR 52 (2018) 177–186. | MR | Zbl | Numdam | DOI

[10] R. Paulavičius and J. Žilinskas, Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59 (2014) 23–40. | MR | Zbl | DOI

[11] R. Paulavičius and J. Žilinskas, Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10 (2014) 1–10. | MR | Zbl

[12] R. Paulavičius, Y. D. Sergeyev, D.E. Kvasov and J. Žilinskas, Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59 (2014) 545–567. | MR | Zbl | DOI

[13] D. G. Sotiropoulos and T. N. Grapsa, Optimal centers in branch-and-prune algorithms for univariate global optimization. Appl. Math. Comput. 169 (2005) 247–277. | MR | Zbl

[14] X. Wang and T. S. Chang, An improved univariate global optimization algorithm with improved linear lower bounding functions. J. Glob. Optim. 8 (1996) 393–411. | MR | Zbl | DOI

[15] Y. Zhu and T. Kuno, A global optimization method, QBB, for twice-differentiable nonconvex optimization problem. J. Glob. Optim. 33 (2005) 435–464. | MR | Zbl | DOI

Cité par Sources :