In this paper, we propose new lower and upper bound functions which can be used in computing a range of nonconvex functions over simplexes of $$, or for solving global optimization problems over simplexes. We show that the new bounding functions are tighter than the classical bounding functions developed in the αBB method and the QBB method.
Keywords: Global optimization, range of functions, convex lower bound function, concave upper bound function
@article{RO_2021__55_S1_S2373_0,
author = {Mohand, Ouanes},
title = {Tighter bound functions for nonconvex functions over simplexes},
journal = {RAIRO. Operations Research},
pages = {S2373--S2381},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
doi = {10.1051/ro/2020088},
mrnumber = {4223185},
zbl = {07375350},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2020088/}
}
TY - JOUR AU - Mohand, Ouanes TI - Tighter bound functions for nonconvex functions over simplexes JO - RAIRO. Operations Research PY - 2021 SP - S2373 EP - S2381 VL - 55 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2020088/ DO - 10.1051/ro/2020088 LA - en ID - RO_2021__55_S1_S2373_0 ER -
Mohand, Ouanes. Tighter bound functions for nonconvex functions over simplexes. RAIRO. Operations Research, Tome 55 (2021), pp. S2373-S2381. doi: 10.1051/ro/2020088
[1] , and , BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7 (1995) 337–363. | MR | Zbl | DOI
[2] and , A review of recent advances in global optimization. J. Glob. Optim. 45 (3) (2009) DOI: . | DOI | MR | Zbl
[3] , and , Global optimization of Hölder functions. J. Glob. Optim. 8 (1996) 323–348. | MR | Zbl | DOI
[4] , and , On function monotonicity in simplicial branch and bound. AIP Conf. Proc. 2070 (2019) 020007. | DOI
[5] and , Computing the range of real eigenvalues of an interval matrix. SWIM 08, Montpellier, France, June 19-20, (2008).
[6] and , Range bounds of functions over simplices, for branch and bound algorithms. Reliable Comput. 25, (2017) 53–73. | MR
[7] and , Arbitrarily tight BB underestimators of general non-linear functions over sub-optimal domains. J. Glob. Optim. 71 (2018) 815–844. | MR | Zbl | DOI
[8] and , Tighter BB relaxations through a refinement scheme for the scaled Gerschgorin theorem. J. Glob. Optim. 73 (2019) 467–483. | MR | Zbl | DOI
[9] , and , Combination of two underestimators for univariate global optimization. RAIRO:OR 52 (2018) 177–186. | MR | Zbl | Numdam | DOI
[10] and , Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59 (2014) 23–40. | MR | Zbl | DOI
[11] and , Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10 (2014) 1–10. | MR | Zbl
[12] , , and , Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59 (2014) 545–567. | MR | Zbl | DOI
[13] and , Optimal centers in branch-and-prune algorithms for univariate global optimization. Appl. Math. Comput. 169 (2005) 247–277. | MR | Zbl
[14] and , An improved univariate global optimization algorithm with improved linear lower bounding functions. J. Glob. Optim. 8 (1996) 393–411. | MR | Zbl | DOI
[15] and , A global optimization method, QBB, for twice-differentiable nonconvex optimization problem. J. Glob. Optim. 33 (2005) 435–464. | MR | Zbl | DOI
Cité par Sources :





