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TIGHTER BOUND FUNCTIONS FOR NONCONVEX FUNCTIONS OVER
SIMPLEXES

Ouanes Mohand∗

Abstract. In this paper, we propose new lower and upper bound functions which can be used in
computing a range of nonconvex functions over simplexes of Rn, or for solving global optimization
problems over simplexes. We show that the new bounding functions are tighter than the classical
bounding functions developed in the αBB method and the QBB method.
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1. Introduction

We consider the following problem

(P )
{

min f(x)
x ∈ ∆ ⊂ Rn

where f is a C2-nonconvex function and ∆ is an n-simplex of Rn, ∆ = {s0, s1, . . . , sn} is the convex hull of
(n+ 1) points si ∈ Rn that do not lie in a hyperplane of dimension less than n. (e.g., a 2-simplex is a triangle,
while a 3-simplex is a tetrahedron).

Several methods have been studied in the literature for global optimization problems over simplices. These
methods are useful for example if, (i) the feasible set is a simplex, (ii) the feasible set is defined by linear
constraints, (iii) the feasible set is a box which can be divided in simplexes. Let us mention some works, in [15]
a QBB method is presented which consists of constructing a convex quadratic underestimator over simplices and
used in branch and bound algorithm for solving global optimization problems. In [6], a range bound of functions
over simplexes is presented, and the interval analysis method [15] for the gradient of the objective function is used
to construct the bounds. In [10], the DISIMPL (DIviding SIMPLices)) is used for Lipschitz global optimization
which is an extented algorithm of DIRECT (DIviding RECTangles) algorithm. For the function evaluations,
it consists of two methods, the first method uses the vertices of the simplex, and the second method uses the
centroid of the simplex. If the feasible set is an hyperrectangle and the objective function is symmetric then
the feasible set is reduced to a simplex by adding some linear constraints (Avoidance of symmetries of objective
function). In [11], the DISIMPL algorithm with the simplicial partitionning is adapted for solving Lipschitz
global optimization problems with linear constraints. The method developed in [12] consists of reducing the
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initial hyperrectangle to the unit hypercube and subdivide the resulting hypercube into n! simplices by using
the face to face vertex triangulation. If the objective function is evaluated at the vertices simplex then the bis-
section method is used, if it is evaluated at the centoid of the simplex then the trisection method is used. In [4],
the so-called monotonicity test used in interval branch and bound algorithm over a box is applied to simplicial
branch and bound algorithm over a simplex. In [8], a refinement method which reduces the magnitude of α
values given by the scaled Gerschgorin method is presented and thus create a tighter convex underestimators
for the αBB algorithm. In [7], a transformation of the original function into a µ-subenergy function is used and
the αBB underestimators for the new function are applied. They propose a methodology to build αBB under-
estimators which may be arbitrarily tight (i.e. the maximum separation distance between the original function
and its underestimator is arbitrarily close to 0) in some domains that do not include the global solution. In [3],
a branch and bound algorithm is presented for Hölder functions. In [14], the improved linear bounding function
is used and discard regions which do not contain the global minimum by the pruning step(outer) as in [13]. In
[2], a review of recent advances in global optimization is presented.

The efficiency of a method for solving global optimization problems is in the construction of tight underes-
timator and to discard big regions which do not contain the global minimum as quickly as possible in branch
and bound algorithm.

The contribution of our paper is to propose a new lower function which is tighter than the quadratic lower
bound function developed in [15] and the lower bound function developed in the classical αBB method which
was already proposed in [1]. In the same way, we propose a tighter upper bound function. Our contribution is
an extension of the work developed in [9].

The structure of the paper is as follows. The two lower bound functions developed in [15] and in [1] with
their properties are presented in Section 2, those functions apply other than over simplexes. In Section 3, the
new lower and upper bound functions are stated with their properties. Computational results are reported in
Section 4.

2. Convex lower bound functions over simplexes

2.1. Quadratic convex lower bound function [15]

The quadratic lower function developed in [15] on an n-simplex ∆ is defined as follows:

LBq(x) =
Kq

2

n∑
i=1

x2
i +

n∑
i=1

αixi + α0, (2.1)

where Kq ≥ max{0, λmaxHf(x)} and λmaxHf(x) is the maximal eigenvalue of the Hessian matrix of f(x).
The properties of this lower bound function are:

(1) LBq(x) coincides with the function f(x) at the vertices of the simplex ∆.
(2) LBq(x) is convex.
(3) LBq(x) is a lower bound function of f(x) on ∆ which implies that

LBq(x) ≤ f(x),∀x ∈ ∆. (2.2)

For more details see [15].

We propose to write this quadratic lower bound function as a difference of a linear function and a quadratic
concave function as follows:

LBq(x) = Lhf(x)− Kq

2
Qh(x), (2.3)

where

Lhf(x) =
n∑
i=1

βixi + β0, (2.4)
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is a linear interpolant of f(x) on the simplex ∆ which coincides with f(x) at the vertices of ∆, and

Qh(x) = −
n∑
i=1

x2
i +

n∑
i=1

γixi + γ0, (2.5)

is a quadratic concave function which vanishes at the vertices of ∆.
We will denote by V (∆) the set of vertices of ∆.
The parameters βi; i = 0, .., n are obtained by solving the following linear system:

Lhf(sj) =
n∑
i=1

βix
j
i + β0 = f(sj), j = 0, 1, .., n, sj = (xj1, .., x

j
n) ∈ V (∆). (2.6)

and the parameters γi; i = 0, ..., n are obtained by solving the following linear system:

Qh(sj) = −
n∑
i=1

(xji )
2 +

n∑
i=1

γix
j
i + γ0 = 0, j = 0, 1, .., n, sj = (xj1, .., x

j
n) ∈ V (∆). (2.7)

2.2. Convex lower bound function

We present another lower bound function on ∆ as follows:

LBα(x) = f(x)− Kα

2
Qh(x), (2.8)

where Kα ≥ max{0,−λminHf(x)} and λminHf(x) is the smallest eigenvalue of the Hessian matrix of f(x).
In the case of a right simplex, LBα(x) is exactly the underestimator of the αBB method [1].
The properties of this lower bound function are:

(1) LBα(x) coincides with f(x) at the vertices of ∆ (i.e. by construction of LBα(x)).
(2) LBα(x) is convex.

Indeed, the Hessian matrix of LBα(x) is

HLBα(x) = Hf(x) +KαI, (2.9)

which is positive semidefinite because Kα ≥ −λminHf(x) where I is the identity matrix, so LBα(x) is
convex.

(3) It is a lower bound function of f .
Indeed, the Hessian matrix of (LBα(x)− f(x)) is

H(LBα(x)− f(x)) = KαI, (2.10)

which is positive semidefinite because Kα ≥ 0, so (LBα(x)− f(x)) is convex on ∆, moreover it vanishes at
the vertices of ∆ which implies that

LBα(x)− f(x) ≤ 0,∀x ∈ ∆, (2.11)

hence LBα(x) is a lower bound function of f(x) on ∆.

Remark 2.1. Kq and Kα can be computed by the method developed in [5] using the smallest hyperrectangle
containing the simplex ∆.
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2.3. New convex lower bound function

Now, we present our new convex lower bound function on the simplex ∆ which is given by

LB(x) =
Kqf(x) +KαLBq(x)

Kα +Kq
=
KαLhf(x) +KqLBα(x)

Kα +Kq
· (2.12)

Proposition 2.2.

(i) LB(x) coincides with f(x) at the vertices of ∆.
(ii) LB(x) is a convex function on ∆.

Proof.

(i) It’s obvious (i.e. by construction of LB(x)).
(ii) One has

LB(x) =
KαLhf(x) +KqLBα(x)

Kα +Kq
, (2.13)

which is the sum of a linear function Kα
Kα+Kq

Lhf(x) and a convex function Kq
Kα+Kq

LBα(x), so it is a convex
function.

�

Theorem 2.3. LB(x) ≤ f(x),∀x ∈ ∆.

Proof. By using (2), one has ∀x ∈ ∆

LB(x)− f(x) =
Kqf(x) +KαLBq(x)

Kα +Kq
− f(x) =

Kα

Kq +Kα
(LBq(x)− f(x)) ≤ 0, (2.14)

so
LB(x) ≤ f(x),∀x ∈ ∆, (2.15)

which means that LB(x) is a lower bound function of f(x) on ∆. �

In the following two theorems we will show that LB(x) is tighter than LBq(x) and LBα(x) on ∆.

Theorem 2.4. LB(x) is tighter than LBq(x) on ∆.

Proof. By using (2), one has ∀x ∈ ∆

LB(x)− LBq(x) =
Kqf(x) +KαLBq(x)

Kα +Kq
− LBq(x) =

Kq(f(x)− LBq(x)
Kq +Kα

≥ 0, (2.16)

so
LB(x) ≥ LBq(x),∀x ∈ ∆, (2.17)

which implies that LB(x) is tighter than LBq(x). �

Theorem 2.5. LB(x) is tighter than LBα(x) on ∆.

Proof. One has

LB(x)− LBα(x) =
KαLhf(x) +KqLBα(x)

Kq +Kα
− LBα(x) = Kα

(Lhf(x)− LBα(x))
Kα +Kq

, (2.18)
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which is the difference of a linear function and a convex function, then it is a concave function, moreover it
vanishes at the vertices of ∆, so

LB(x)− LBα(x) ≥ 0, (2.19)

which implies that
LB(x) ≥ LBα(x),∀x ∈ ∆. (2.20)

Hence LB(x) is tighter than LBα(x) on ∆. �

Remark 2.6. This new tighter lower bound function can be used in a branch and bound algorithm for solving
problem (P ).

In the same way as above, we will present in the next section the different upper bound functions.

3. Concave upper bound functions

3.1. Quadratic concave upper bound function

We present the following quadratic concave upper bound function:

UBq(x) = Lhf(x) +
Kα

2
Qh(x). (3.1)

Theorem 3.1. UBq(x) is a quadratic concave upper bound function of f on ∆.

Proof.

(i) UBq(x) coincides with f(x) at the vertices of ∆ (i.e. by construction of UBq(x)).
(ii) By computing its Hessian, we find that

HUBq(x) = −KαI. (3.2)

where I is the identity matrix and Kα is a real nonnegative number, so HUBq(x) is negative semi-definite
which implies that UBq(x) is a quadratic concave function.

(iii) The Hessian matrix of (UBq(x)−f(x)) is equal to (−KαI−Hf(x)) which is negative semi-definite because

Kα ≥ −λminHf(x), (3.3)

so (UBq(x)− f(x)) is a concave function, it also vanishes at the vertices of ∆ which implies that

UBq(x) ≥ f(x),∀x ∈ ∆. (3.4)

�

3.2. Concave upper bound function

We present the following concave upper bound function:

UBα(x) = f(x) +
Kq

2
Qh(x). (3.5)

Theorem 3.2. UBα(x) is a concave upper bound function of f on ∆.

Proof.

(i) UBα(x) coincides with f(x) at the vertices of ∆ (i.e. by construction of UBα(x)).
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(ii) The Hessian matrix of UBα(x) is
HUBα(x) = Hf(x)−KqI, (3.6)

where I is the identity matrix, it is negative semi-definite because Kq ≥ λmaxHf(x), so UBα(x) is a concave
function.

(iii) The Hessian matrix of (UBα(x)− f(x)) is equal to −KqI which is negative semi-definite because Kq ≥ 0,
then (UBα(x)− f(x)) is a concave function which vanishes at the vertices of ∆, so

UBα(x) ≥ f(x),∀x ∈ ∆. (3.7)

�

3.3. New concave upper bound function

Now, we present our new concave upper bound function which is given by

UB(x) =
Kαf(x) +KqUBq(x)

Kq +Kα
=
KqLhf(x) +KαUBα(x)

Kq +Kα
· (3.8)

Theorem 3.3. UB(x) is a concave upper bound function of f on ∆.

Proof.

(i) UB(x) coincides with f(x) at the vertices of ∆ (i.e. by construction of UB(x)).
(ii) UB(x) is a concave function because

UB(x) =
KqLhf(x) +KαUBα(x)

Kq +Kα
, (3.9)

is the sum of a linear function and a concave function.
(iii) UB(x) is an upper bound function of f(x) on ∆ because by using (24) and ∀x ∈ ∆, we have

UB(x)− f(x) =
Kαf(x) +KqUBq(x)

Kq +Kα
− f(x) =

Kq(UBq(x)− f(x))
Kq +Kα

≥ 0, (3.10)

wich implies that
UB(x) ≥ f(x),∀x ∈ ∆. (3.11)

�

In the following two theorems, we will show that UB(x) is tighter than UBq(x) and UBα(x).

Theorem 3.4. UB(x) is tighter than UBq(x) on ∆.

Proof. By using (24), one has ∀x ∈ ∆,

UB(x)−UBq(x) =
Kαf(x) +KqUBq(x)

Kq +Kα
−UBq(x) =

Kα(f(x)−UBq(x))
Kq +Kα

≤ 0, (3.12)

wich implies that
UB(x) ≤ UBq(x),∀x ∈ ∆. (3.13)

So UB(x) is tighter than UBq(x) on ∆. �

Theorem 3.5. UB(x) is tighter than UBα(x) on ∆.
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Proof. One has

UB(x)−UBα(x) =
KqLhf(x) +KαUBα(x)

Kq +Kα
−UBα(x) =

Kq(Lhf(x)−UBα(x))
Kq +Kα

, (3.14)

then (UB(x) − UBα(x)) is a convex function because it is the difference of a linear function and a concave
function, which vanishes at the vertices of ∆, so

UB(x) ≤ UBα(x),∀x ∈ ∆. (3.15)

Hence UB(x) is tighter than UBα(x) on ∆. �

Remark 3.6. By using the new lower and upper bound functions, we can compute a tighter range of nonconvex
functions over simplexes.

4. Computational results

We begin with the following illustrative example:

Example 4.1 ([6]). f(x1, x2) = x2
1 + x3

2, T
0 has the vertices (−1, 0); (1

2 ,−1) and ( 1
2 , 1).

We compute Lhf(x), Qh(x),Kq and Kα, we find Lhf(x) = − 1
2x1 + x2 + 1

2 , which coincides with f(x) at the
vertices of T 0. Qh(x) = −x2

1 − x2
2 + 1

6x1 + 7
6 , which is a quaradic concave function and vanishes at the vertices

of ∆.
Kq = Kα = 6.

We have
LBq(x) = Lhf(x)− Kq

2
Qh(x) = 3x2

1 + 3x2
2 − x1 + x2 − 3.

Its minimum on T is
(

1
6 ,−

1
6

)
and LBq

(
1
6 ,−

1
6

)
= −3.166.

LBα(x) = f(x)− Kα

2
Qh(x) = 4x2

1 + 3x2
2 + x3

2 −
1
2
x1 −

7
2
·

Its minimum on T is
(

1
16 , 0

)
and LBα

(
1
16 , 0

)
= −3.515.

LB(x) =
1
2

(4x2
1 + 3x2

2 + x3
2 − x1 + x2 − 3).

Its minimum on T is
(

1
8 ,−0.18

)
and LB

(
1
8 ,−0.18

)
= −1.570.

UBq(x) = Lhf(x) +
Kα

2
Qh(x) = −3x2

1 − 3x2
2 + x2 + 4.

Its maximum on T is (0, 1
6 ) and UBq(0, 1

6 ) = 4.083.

UBα(x) = f(x) +
Kq

2
Qh(x) = −2x2

1 − 3x2
2 + x3

2 +
1
2
x1 +

7
2
·

Its maximum on T is
(

1
8 , 0
)

and UBα
(

1
8 , 0
)

= 3.531.

UB(x) =
1
2

(−2x2
1 − 3x2

2 + x3
2 + x2 + 4).

Its maximum on T is (0, 0.18) and UB(0, 0.18) = 2.044.
We obtain the following ranges of f(x):
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Table 1. Comparison results of the proposed bounding functions with quadratic bounding
functions, the α bounding functions, and the best range given in [6] for computing a range of
a set of test functions found in [6].

Examples [LBq,UBq] [LBα,UBα] [LBK ,UBK ] [LB,UB] [LBE ,UBE ]

1 [−3.166, 4.083] [−3.515, 3.531] [−4, 3.5] [−1.570, 2.044] [−0.75, 1.25]
2 [−1.726, 2.842] [−1.773, 2.714] [−1.75, 2.625] [−1.215, 2.468] [−0.812, 1.937]
3 [−0.271, 0.449] [−0.265, 0.437] [−0.282, 0.411] [−0.252, 0.402] [−0.235, 0.391]
4 [−23.635, 25.042] [−22.173, 24.849] [−26.25; 24.75]] [−12.521, 16.567] [−8.25, 9.75]
5 [−0.279, 0.445] [−0.268,0.431] [−0.274, 0.438] [−0.254, 0.406] [−0.235, 0.389]
6 [−0.323, 0.442] [−0.229,0.465] [−0.297, 0.516] [−0.235, 0.446] [−0.235, 0.446]
7 [9.138, 12.281] [9.503, 12.557] [9.22, 12.49] [9.500, 12.280] [9.50, 12.28]

(1) [−3.166, 4.083] (with quadratic bounding functions).
(2) [−3.515, 3.531] (with α bounding functions).
(3) [−1.570, 2.044] (with our new bounding functions).

In the following table, we report the performance comparison results of the proposed bounding functions
with quadratic bounding functions, the α bounding functions, and the best range given in [6] for computing a
range of a set of test functions found in [6].

– [LBq,UBq] is the range obtained by LBq(x) and UBq(x)
– [LBα,UBα] is the range obtained by LBα(x) and UBα(x)
– [LBK ,UBK ] is the best range obtained in [6] with different methods
– [LB,UB] is the range obtained by our new bounding functions LB(x) and UB(x)
– [LBE ,UBE ] is the exact range given in [6].

The results summarized in Table 1 show that our new bounding functions allow us to find a tighter range
for all examples taken from [6]. For the examples 6 and 7, we find the exact ranges (i.e. Kα = 0, LB(x) = f(x)
and UB(x) = Lhf(x)).

5. Conclusion

We have proposed in this paper new lower and upper bound functions for nonconvex function over an n-
simplex ofRn. We have shown that this bounding functions are tighter than the classical bounding functions. The
computational results show the efficiency of these new bounding functions in computing a range of nonconvex
function over simplexes. These new bounding functions can be used in a branch and bound algorithm for solving
global optimization problems over simplexes, the work in this direction is currently in progress.
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