Split variational inclusions for Bregman multivalued maximal monotone operators
RAIRO. Operations Research, Tome 55 (2021), pp. S2417-S2431

We introduce a new algorithm to approximate a solution of split variational inclusion problems of multivalued maximal monotone operators in uniformly convex and uniformly smooth Banach spaces under the Bregman distance. A strong convergence theorem for the above problem is established and several important known results are deduced as corollaries to it. As application, we solve a split minimization problem and provide a numerical example to support better findings of our result.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020085
Classification : 47J25
Keywords: Split variational inclusion problem, maximal monotone operators, Bregman distance, strong convergence, uniformly convex and uniformly smooth Banach space
@article{RO_2021__55_S1_S2417_0,
     author = {Abbas, Mujahid and G\"ursoy, Faik and Ibrahim, Yusuf and Khan, Abdul Rahim},
     title = {Split variational inclusions for {Bregman} multivalued maximal monotone operators},
     journal = {RAIRO. Operations Research},
     pages = {S2417--S2431},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020085},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020085/}
}
TY  - JOUR
AU  - Abbas, Mujahid
AU  - Gürsoy, Faik
AU  - Ibrahim, Yusuf
AU  - Khan, Abdul Rahim
TI  - Split variational inclusions for Bregman multivalued maximal monotone operators
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2417
EP  - S2431
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020085/
DO  - 10.1051/ro/2020085
LA  - en
ID  - RO_2021__55_S1_S2417_0
ER  - 
%0 Journal Article
%A Abbas, Mujahid
%A Gürsoy, Faik
%A Ibrahim, Yusuf
%A Khan, Abdul Rahim
%T Split variational inclusions for Bregman multivalued maximal monotone operators
%J RAIRO. Operations Research
%D 2021
%P S2417-S2431
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020085/
%R 10.1051/ro/2020085
%G en
%F RO_2021__55_S1_S2417_0
Abbas, Mujahid; Gürsoy, Faik; Ibrahim, Yusuf; Khan, Abdul Rahim. Split variational inclusions for Bregman multivalued maximal monotone operators. RAIRO. Operations Research, Tome 55 (2021), pp. S2417-S2431. doi: 10.1051/ro/2020085

[1] C. Byrne, Iterative projection onto convex sets using multiple Bregman distances. Inverse Probl. 15 (1999) 1295–1313.

[2] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20 (2004) 103–120.

[3] C. Byrne, The split common null point problem. J. Nonlinear Convex Anal. 13 (2014) 759–775.

[4] V. Barbu, Maximal Monotone Operators in Banach Spaces. In: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York, NY (2011).

[5] A. Cegielski, Generalized relaxations of nonexpansive operators and convex feasibility problems. Contemp. Math. 513 (2010) 111–123.

[6] L. C. Ceng, Q. H. Ansari and C. F. Wen, An extragradient method for solving split feasibility and fixed point problems. Comput. Math. Appl. 64 (2012) 633–642.

[7] L. C. Ceng, M. M. Wong, A. Petrusel and J. C. Yao, Relaxed implicit extragradient-like methods for finding minimum-norm solutions of the split feasibility problem. Fixed Point Theory 14 (2013) 327–344.

[8] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 8 (1994) 221–239.

[9] Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21 (2005) 2071–2084.

[10] Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem. Numer. Algorithms 59 (2012) 301–323.

[11] J. Z. Chen, H. Y. Hu and L. C. Ceng, Strong convergence of hybrid Bregman projection algorithm for split feasibility and fixed point problems in Banach spaces. J. Nonlinear Sci. Appl. 10 (2017) 192–204.

[12] M. Eslamian and P. Eslamian, Strong convergence of split common fixed point problem. Numer. Funct. Anal. Optim. 37 (2016) 1248–1266.

[13] A. R. Khan, M. Abbas and Y. Shehu, A general convergence theorem for multiple-set split feasibility problem in Hilbert spaces. Carpathian J. Math. 31 (2015) 349–357.

[14] B. M. Lawan and A. Kılıçman, Strong convergence for the split common fixed-point problem for total quasi-asymptotically nonexpansive mappings in Hilbert space. Abstr. Appl. Anal. 2015 (2015) 1–7.

[15] A. Moudafi, Split monotone variational inclusions. J. Optim. Theory Appl. 150 (2011) 275–283.

[16] A. Moudafi, The split common fixed-point problem for demicontractive mappings. Inverse Probl. 26 (2010) 1–6.

[17] K. Nakajo and W. Takahashi, Strong convergence theorem for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279 (2003) 372–379.

[18] S. Reich and S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73 (2010) 122–135.

[19] F. Schöpfer, Iterative regularization methods for the solution of the split feasibility problem in Banach spaces. Ph.D. Thesis, Universitat des Saarlandes (2007).

[20] F. Schöpfer, T. Schuster and A. K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Probl. 24 (2008) 055008.

[21] W. Takahashi, The split common null point problem in Banach spaces. Arch. Math. (Basel) 104 (2015) 357–365.

[22] W. Takahashi, Split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 15 (2014) 1349–1355.

[23] F. H. Wang, A new algorithm for solving multiple-sets split feasibility problem in Banach spaces. Numer. Funct. Anal. Optim. 35 (2014) 99–110.

[24] H. K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type. Nonlinear Anal. 16 (1991) 1139–1146.

[25] H. K. Xu, A variable Krasnoselskii-Mann algorithm and the multiple set split feasibility problem. Inverse Probl. 22 (2006) 2021–2034.

[26] H. K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26 (2010) 105018.

[27] Z.-B. Xu and G. F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth banach spaces. J. Math. Anal. App. 157 (1991) 189–210.

[28] Y. H. Yao, G. Marino and L. Muglia, A Korpelevich’s method convergent to the minimum-norm solutions of a variational inequality. Optimization 63 (2012) 559–562.

[29] X. F. Zhang, L. Wang, L. M. Zhao and L. J. Qin, The strong convergence theorems for split common fixed point problem of asymptotically nonexpansive mappings in Hilbert spaces. J.Ineq. Appl. 2015 (2015) 1–11.

[30] J. Zhao and Q. Yang, Several solution methods for the split feasibility problem. Inverse Probl. 21 (2005) 1791–1800.

Cité par Sources :