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SPLIT VARIATIONAL INCLUSIONS FOR BREGMAN MULTIVALUED
MAXIMAL MONOTONE OPERATORS

MuJAHID ABBAS!, FAIK GURSOY?**, YUSUF IBRAHIM? AND ABDUL RAHIM KHAN?

Abstract. We introduce a new algorithm to approximate a solution of split variational inclusion prob-
lems of multivalued maximal monotone operators in uniformly convex and uniformly smooth Banach
spaces under the Bregman distance. A strong convergence theorem for the above problem is established
and several important known results are deduced as corollaries to it. As application, we solve a split
minimization problem and provide a numerical example to support better findings of our result.
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1. INTRODUCTION

Censor [8] imposed the well known split feasibility problem (SFP), which is formulated as finding a point
x* € C such that Az* € @, where C' and Q) are nonempty closed and convex subsets of R™ and R™, respectively,
where A is an m x n matrix. Byrne [3], defined CQ-algorithm as follows:

Tpy1 = Po(z, + *yAT(PQ —1)Az,), n >0,

where 2o € R" is an initial value, v € (0, ﬁ) and Po and Pg denote the metric projections onto C' and
@, respectively. The split feasibility problem has been considered by many authors and in many aspects
[1-3,5,8,9,13, 16, 25, 26, 30]. In practice, SFP serves as a model in the intensity-modulation radiation ther-
apy (IMRT) treatment planning [2,5]. Censor et al. [10] introduced a concept of Split Variational Inequality
Problem (SVIP), which is a problem of finding a point * € H; solves

(f(x*),z—2*) >0 forall x € C,

and the point y* = Ax* € Hy such that

(9(y"),y —y™) >0 forall y € Q,
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where C' and @) are closed and convex subsets of Hilbert spaces H; and Hj, respectively, A : Hy — Hj is a
bounded linear operator and A* : Hy — Hy is adjoint of A, f : Hy — H; and g : Hy — Hy are two given
operators. Furthermore, they proposed the following algorithm. Let A > 0 and x; € H; be arbitrary chosen.
Define the sequence {z,} by

Tng1 = PLN@n + 7 A" (PG — 1) Az,)), ¥n > 0, (1.1)

where v € (0, W), and denoted by Pé’)‘ and PC%’)‘ the expressions Po(I — Af) and Pgo(I — Ag), respectively.
By some assumptions imposed on the operators f and g, they proved weak convergence result for the sequence
{z,} to a solution point of split variational inequality problem.

Let E be a real normed space with dual E* and J(z) = {z* € E*;{(z,z*) = |z|/||=*|, [|[z*] = ||=||} be the
normalized duality. A map B : F — E* is called monotone if for each x,y € F, the following inequality holds:
(n—v,x —y) > 0Vyp € Bz, v € By. It is called maximal monotone if, in addition, the graph of B is not
properly contained in the graph of any other monotone operator. Also, B is maximal monotone if and only
if it is monotone and for all ¢ > 0, R(J + tB) = E*, where R(J + ¢B) is the range of (J + tB); see [4]. By
using maximal monotone mappings, Moudafi [15] introduced the following Split Monotone Variational Inclusion
(SMVT).

{ﬁnd z* € Hy:0€ f(z*)+ Bi(z*), and (12)

y* = Axz* € Hy: 0 € g(y*) + Ba(y),

where B : H; — 291 and B, : Hy — 272 are multi-valued maximal monotone mappings on Hilbert spaces,
H, and Hs, respectively, and A : H; — H, is a bounded linear operator, f : H; — H; and g : Hy — Hy are
two given single-valued operators. When f and g are zero functions in (1.2), we have the usual Split Variational
Inclusion Problem (SVIP). The algorithm introduced by Schépfer et al. [20] involves computations in terms of
Bregman distance in the setting of p-uniformly convex and uniformly smooth real Banach spaces. Their iterative
algorithm given below, converges weakly under some suitable conditions.

Tpy1 = e Iz, +yA*J(Pg — I)Ax,), n >0, (1.3)

where Il denotes the Bregman Projection and A* the adjoint operator of A. It is obvious that, strong conver-
gence is more useful than the weak convergence in some applications. Recently, strong convergence theorems
for SFP have been studied in the setting of p-uniformly convex and uniformly smooth real Banach spaces; see
for example [11,17,22,23].

In this paper, inspired by the above cited works, we use a modified version of (1.1) and (1.3) to approximate
a solution of the problem proposed here. Both the iterative methods and the underlying space used here are
improvements of those employed in [6,7,10,11,13,17,20,22,23,28] and the references therein.

Definition 1.1. For each p > 1, let g : Rt — R* given by g(t) = t?~! be a gauge function such that g(0) = 0
and lim;_,, g(t) = co. We define the generalized duality map JP : E — 25" given by

Tow = J*(2) = {a" € B (w,a") = [[|ll="||, [|="]| = g(ll])) = [l«]"~"}.

Definition 1.2. Let E be a smooth Banach space, the Bregman distance A, of  to y, with respect to the

convex continuous function f : F — R given by f(x) = %Hpr , is defined as

1 1
Dp(z,y) = 6||x|\f’ — (JP(@),y) + Z;Hyllp,

for all x,y € F and p, q € (1,00) such that %—i— % =1.
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Definition 1.3. Let E be a smooth Banach space and E* its dual, the bifunctional V,, with respect to the

convex continuous function f : F — R given by f(z) = %Hme , is defined by

1 1
Vo(x*, x) = —||l*||? — (x*, x) + —||z||?,
p(z*, ) qll 7= (=", z) pll |

for all z € E, 2* € E* and p, ¢ € (1,00) such that %—&— % =1.

Definition 1.4. A Banach space E is said to be uniformly convex, if for z,y € F, 0 < dg(e) < 1, where
p(e) = inf{l — [|5(z +y)[; lz] = llyll = 1, |z — y|| > ¢, where 0 < e < 2}.

Definition 1.5 ([19]). A Banach space E is said to be uniformly smooth, if for z,y € E and r > 0,
limréo(p%@) = 0 where pg(r) = Ssup{|lz +y|| + |z —y|| — 2 : ||z]| = 1, [ly|| < r}. Moreover,

(1) pg is continuous, convex and nondecreasing with pg(0) =0 and pg(r) <r.

(2) The function r — pET(T) is nondecreasing and fulfills pET(T) > 0 for all r > 0.

Lemma 1.6 ([19]). Let {x,} be a sequence in a smooth Banach space E. Consider the following assertions;

(1) limp—oo ||zn —2|| =0
(2) limp—oo |znll = || and limy,— oo (JP(2n), ) = (JP(x),x)
(3) limp—oo Ap(xpn,x) =0.

The assertions (1) = (2) = (3) are valid. If E is also uniformly convez, then the assertions are equivalent.

Lemma 1.7. Let E be a reflexive and smooth Banach space and E* its dual. Let A, and V, be the mappings
defined as above and J%, the generalized duality map on E. Then Ap(z,y) = V,(Jhx,y) for all z,y € E.

Proof. For p,q € (1,00) let J}. : E* — E and Jp, : E — E* be duality mappings, where J§. J., = I. It follows
from 1% + % = 1 that p(q¢ — 1) = ¢q. So, we have that

1 1
Dp(,y) = gHwII” — (Jpz,y) + ;IlyH”

1 1
= gHJq*JﬁmH” — (Jpz,y) + ];Ilyllp

= 1Bl = () + P
= CI el = () + ol
= Vp(.]gx,y).
O

Lemma 1.8 ([19]). Let E be a reflezive, strictly convex and smooth Banach space and JP be the duality mapping
of E. Then

(i) for every closed and convex subset C C E and x € E, there exists a unique element I, (z) € C' such that
Ap(z, I (2)) = mingec Ap(z,y); T (z) is called the Bregman projection of x onto C, with respect to the
function f(x) = %Hx”p Moreover, xg € C' is the Bregman projection of x onto C if

(JP(xo — @),y — x0) = 0

or equivalently
Dp(zo,y) < Dp(z,y) — Dp(z, o) for every y € C.



S2420 M. ABBAS ET AL.

(ii) the Bregman projection and the metric projection are related via Po(z) —x =117, (0), Vo € E. Especially,
we have Po(0) = II7,(0) and thus ||IIZ(0)| = minyec [|y]-

The uniform convexity of F implies that E is reflexive and E* is uniformly smooth. Therefore, Theorem 2
in [27], for z,y € E and z*,y* € E* and ||z + y||? replaced by ||a* — y*||? gives the following technical result.

Lemma 1.9. For the uniformly smooth space E*, with the duality map J?, Vo*,y* € E*, we have

[ =y |7 < [l2"|* = ¢{J* ("), y") + g4 (2, y") where

. x Ll =ty V|l )e tly*
ey =gy [ LD, (WY )

t =ty v [l
and Gy = 8V 64cK, " with ¢, Kg > 0.

Lemma 1.10 ([19]). Let E be a reflerive, strictly convex and smooth Banach space. We write
Ni(z,y) = %Hx*”q — (JE.x* y*) + é”y*Hq for ¥ = Jb(z), y* = Jh(y) for the Bregman distance on the
dual space E* with respect to the function f;(z*) = %Hx*”q. Then we have Ap(x,y) = Ai(z*,y%).

Lemma 1.11. Let E be a reflezive, smooth and strictly convex Banach space. Then for all z,y,z € E and
x* = Jhx, 2* = Jhz, the following hold:

(1) Ap(z,y) > 0and Ay(z,y) =0if 2 =y;

(2) A;D(xvy> = AP(‘TVZ) + AP(Z’y) + (2" — 2",z —y).

Proof. The property (1) is proved in [19]. For (2) we have that

1 1 1 1
—||lz||? = (¥, 2) + = ||z]|]P + =||z]|]P — (", y) + = ||y||”
7= @52+ ClE AP = G+l

1 * * 1 * *
I = @2 2l = (Fy) + Jllyll” + %) = (o)

Dp(,2) + Dp(z,y)

(;ﬂwutw+;yw)+@ﬂ@@tw+@tw@i@

<~ Ap(xay) = Ap(ir?'z) + Ap(zay) + <£L'* - 2*72 - y>

If E is smooth and f(z) = %Hx”p, then the following result holds (¢f. Prop. 5 in [18]).

Lemma 1.12. Let E be a smooth Banach space and f : E — R be a continuous convex function given by

fz) = %||x||p. If xg € E and the sequence {2y (xy, x0)} o2y is bounded, then the sequence {x,} is also bounded.
2. MAIN RESULTS

Let E; and Es be uniformly convex and uniformly smooth Banach spaces and E} and E3 be their duals,
respectively. Let U : B} — 21 and T : E; — 2% be multi-valued maximal monotone operators. For K C FEj,
closed and convex, 6 > 0 and p,q € (1,00), let A : E; — F5 be a bounded and linear operator, A* denotes
the adjoint of A and AK be closed and convex. Suppose that II% ;- : E; — AK is the Bregman projection
onto a closed and convex subset AK. Let ng : E1 — E; be the generalized resolvent operator defined by
BY = (Jp, +0U)~"Jp, and BY' : By — E> be another generalized resolvent operator defined by B =
(Jg2 + 5T)*1J§2. Let us denote the solutions of variational inclusion problem with respect to U and T by
SOLVIP(U) and SOLVIP(T), respectively. Let the set of solutions of split variational inclusion problem be
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given by Q = {z* € SOLVIP(U); Ax* € SOLVIP(T)} # 0. Let x1 € E; be chosen arbitrarily and the sequence
{zn} C E1 be defined as follows;

wn = BY, (i (T, 20 — \eA" T, (I~ T BT ) Az )
Koy ={v€ Ky : Dp(un,v) < Ap(2n,0)}, (2.1)
Tpr =M | (21),n > 1,

where 6,, € (0,00). It is remarked that we have replaced the gradient algorithm in (1.1) [the projection maps in

(1.3), respectively] with the resolvent operators and used the generalized duality map in our algorithm.
We shall strictly employ the above terminology in the sequel.

Lemma 2.1. Suppose that &, is the function in (1.4) for the characteristic inequality of the uniformly
smooth space Ef. For the sequence {xp,} C E; defined by (2.1), let 0 # =z, € E;, 0 # A and
0 +# JgQ (I- HZKB(;TH)A&% € E5. Let A\, > 0 and p,, > 0 be defined, respectively, by

1 1 1

Ap = —— and p, = ——- (2.2)
AN 1T, (I — 11 i BY ) Az [l [P~
Then
1 290G |15, @l pm: (n) if pin € (0,1]
=6, (JP ), \fA*JE (I —TIB, . B YAz, < =k n LM T 2.3
.7 Uk 5.1 = MaxcBa, JAan) < {2qupEr (1) it € (o), )
where G is the constant defined in Lemma 1.9 and pg: is the modulus of smoothness of ET.
Proof. By Lemma 1.9, we have
1 V(| T8 @y — ANy A* TR (T — T 1 BEY ) Az || V|| T8 20]])*
700 (V@0 M A™ T, (1 = 1) B ) Asa) = Gq/o (1, A — so) Az [V 1, al)
HAn A" T (1~ TP, BE ) Aw, |
X pE~ = )
([ 75, 20 — AnA* g (I — T B ) Azy|| V (|5, 2 ll)
(2.4)
for every t € [0, 1].
We note that
|5, @ — An i AT, (I = T8 By YAz, || < [lan P71 + A A" TS, (I — I By ) Azy|| .
By (2.2), with x,, # 0
fin lzall?~?
Ay = (2.5)
and so we have that
[T, 2 = A A™ T, (I = T i By ) A || < (1 + pa) [P
and
an P71 < || T8, 20 — A A" TG, (I =T BE ) Az || V | J5, @l < 2[|zn|P~h if pn € (0,1] (2.6)
[@n P~ < || o, 20 — AnA*Th, (I — T8 BE ) Az, || V || 5 20|l < 2 if g1, € (1,00).



52422 M. ABBAS ET AL.
By (2.6), (2.5) and Definition 1.5(2), we get

. t|| A A JE (I — 1% BE ) Az, || < oo tl[AnA*JE, (I — % BY ) Az, ||
"\ (15, zn — tAn A TG (I =T BE YAy, || V[T nll) ) — 7 [, [|P—1

= pe; (thn)- (2.7)
Substituting (2.7) and (2.6) into (2.4), and using nondecreasingness of pg:, we get (2.3) as required. O

Lemma 2.2. For the sequence {x,} C Ey defined by (2.1), let 0 # x,, 0 # Jp (I — 1%, Bf )Ax,, € E3, and
An >0 and p, > 0 be defined by (2.2) and X, and p, are chosen such that

(Jp, I-10%  BE ) Az, (I-11% , BY, ) A,

. .
X if 1
(1) = 4 0T 178 9178, I, BL JAz, ] » 1 Hn € 0,1, 2.8)
PE; \Hn (78, (=11 BT ) Aw,,(1-T1% BT, ) Az, ) :
Lom X 2 - n if p, € (1,00)
290G, [[A]] 175, (I-11%  Bf ) Ay || ) n ) )

where v € (0,1). Then, for allv € Q, we get

<JZ“ (I_HZXKBg )Amn,(I—HiKBg )A$n>
Aoy (i, 0) < Dy (2, 0) — [1 — 2 n n - 2.9
p(tnv) < BplEn;0) = {1 =] TANJE (T~ T, BT ) Ax, | (29)

Proof. For v = B,ly]v and Av = B,?Afu, by Lemma 1.7, we have that

By (utns ) = D (B, (T (TB,n = AaA" T, (I = T4y BE) Awy) ) 0)
= 8 (BE (s (Jh,wn = AaA" TG, (1= T BL) Azy) ) BY.v)
< Vo (Th,on = A AT, (1= T B ) Az, v)
1

1
- | T8, a0 — M A* T (I — 115 B} ) Az, || + EHvllp

— (B, 2, v) + (N AR TE (I =115 BS ) Az, v), (2.10)
where,
(A A* T (I =115 BY ) Azy,v) = (A\oJh, (I =T BY ) Az, Av — Az, + Az, — 11 BY Axy,)
+ (Mndh, (I =15 By ) Awy 1% BY Ay, — Ay, + Axy,)
= — (AT, (0 BE, — 1) Aw,. (Av — Aw,) — (I BY, — 1) Aa,)
— (\Th, (1= Ty BE) Ay, (T =0, BY) Ay
+ (M, (I =15 B ) Ay, Azy) .

As AK is closed and convex so by Lemma 1.8(i) and the variational inequality for the Bregman projection of
zero onto AK — Az, as in Lemma 1.8(ii), we arrive at

(A%, (5 Bf — 1) Az, (Av — Amy,) — (1% Bf — 1) Az, ) > 0
and therefore, we obtain

(M A*JE (I =T By )Azn,v) < — (A Jb, (I =TI BY ) Awmy,, (I — 1% BY ) Axy,)
+ (M Jb, (I -8B} YAz, Ay, . (2.11)
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In addition, by Lemma 1.9, we have that
B A (0 T BE ) < Bl (A, T, (0 T BT )
+ éa*q (JB, xn, A A*JY, (I — 115 BY ) Ay, (2.12)
By Lemma 2.1 and (2.12), we have that

1 . 1
p (|78, 20 — AaA* T8 (I =TI i B ) Az | < 5||ngxnuq — N (A, T8 (I — T BY ) Az,
+21Gy|| T, wnll* Pz (1im)- (2.13)

Substituting (2.13) and (2.11) into (2.10), we have that

1 1
Dp(un,v) < gllJﬁlanq + EHUH” = (Jg, @, 0) + 27G || T, @ pis; (i)

— (A, (I =115 BY YAy, (I — 1% By )Awy,)
= Ap (wp,0) + 2qu||J§1xn||qu1* (tin)
— (A, (I =115 B ) Az, (I — % By ) Azy,) . (2.14)
Substituting (2.2) and (2.8) into (2.14), we have that
L <(J§2 (I- HQKB(;TH)Axn, (I - HIAKB(;TH)Azn>
[AI T, (I = T e BY ) Auy|
<(J§2 (- HZKBg;)Axm (I - H’AKB:{")Axn)
[AINl T, (I = I i BY ) Az
<Jg2 (I — HZKBg;)Axn, (I — HZKBg;)Axn>

= A, (zn,v) — [1 — ] .
? AT, (I = I BY ) Az,

Ap(un,v) < Ap (Tn,v) +

Thus, (2.9) holds. O

We now prove our main result.

Theorem 2.3. For § > 0 and p,q € (1,00), let (I — I BY) be demiclosed at zero. Let 1 € Ey be chosen
arbitrarily and the sequence {x,} be defined by (2.1), where

1 1
AT 117G, T=T%  BY, YAz, |’ Tn # 0 1
— —1 p—
An = . <J§2 (IfngKBéTn)Az,,L,(IfngKBéTn)Axny’ . and p, = [zn [P~ (2.15)
€T, = n
TAT? 175, (I—T0% BL ) Az, [ ) Tn

are chosen such that equation (2.8) holds. If Q = {z* € SOLVIP(U); Az* € SOLVIP(T)} # 0, then {z,}
converges strongly to x* € Q, where I ; B (Az*) = B (Az*).

Proof. We will divide the proof into two steps.

Step one. We show that {z,} is a bounded sequence.

Assume that || J5, (I — 1%, Bf )Az,|| = 0. Then from v = BYv, Lemma 1.7 and v € Q, we get

Ay(un,v) = D, (BgL(ng*(ngxn)), Bg{Lv) < V(8 20, 0) = D, v). (2.16)
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Next assume that ||.Jp, (I — 1%  Bf )Aw,|| # 0 and x,, # 0. Then for v € ©, by Lemma 2.2, we get

<J52 (I- HQKBg;)Axn, (I - H‘ZKB(?;)AJ,‘”>
IAIITE, (I = 1T By, ) An||

< Ap(zp,v). (2.18)

Ap(tp,v) < Dp(an,v) —[1 — (2.17)

For x,, = 0, we have

1
Ap(an,v) = Ellvllp (2.19)

and so by (2.19), we have that
1 *
Bpln,v) = o | AnA* T2 (I —T1% B ) A, ||
+ Dp(@n,v) + Ay (JG, (I — I8 B ) Az, Av) . (2.20)
Substituting (2.11) in (2.20), we have that
1
Dp(Un,v) < p [AnA* T2, (I — 115, BY ) Az, ||

+ Dp(@n, ) + Ay (JB (I — 118 B ) Az, Ay,
— A (JB, (I =108 1 B ) Az, (I = 11 1 By )Axy,) . (2.21)

By (2.15), we have that

1 1 (Jb (I-T%,BF)Az,, (I —TI% Bl )Axz,)"
q [l |75, (I =TI BY ) Aw,||”

é [AnA*JE (I — 11" BY ) Az, ||* = (2.22)

Substituting (2.22) into (2.21), we have that

S 1 (Jp, (I =T BY YA, (I — 1% BY ) A,,)”
= q|A|P 7%, (I — 1%, BT ) Az, ||”
+ Dp(Tn,v) + An (T, (I = T B ) Az, Ay
- )‘n<J§2 (I - HiKBg:JAxm (I - HZ/)lKBéTn)AxW
<1 B 1> 1 (Jo, (I -1 B ) Awy, (I — 1% BY ) Az, )P

p/ Al 175, (I = 1T BY ) Az ||?
+ Dp(@n,0) + An || J5, (I — T B ) Az, ||| Ay |

1 (Jp,( - HZKBéTn)Amm (- HZKB({L)A%V
e 175, (I = 1% Bf ) A |7

1 (Jp,(I— HZKB(;T”)A:cn, (I - HZKBg:L)A:an
ol Al 17, (I — 10 5 BY, ) Az ||P '

Ap(Up,v)

= A, (Tn,v)

(2.23)

This implies that
Ap(up,v) < Dp(xn,v). (2.24)

By (2.1), (2.16), (2.18) and (2.24), v € K, so that Q C K.
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We know from (2.1), z,, = H’I’(nxl. Then, by Lemma 1.8, we have
Dp(xn,x1) = Dp(hrz, 1) < Dp(v,21) — Dp(v,20) = Dp(@n, 1) < Dp(v,21) Yo € Q C K. (2.25)

By (2.25), the sequence {A,(z,, 1)} is bounded and therefore by Lemma 1.12, {z,} is bounded. Hence, {u,}
is also bounded. Consequently, there exists a subsequence x,, such that z,, — 2* as j — oo (— stands for
weak convergence).

Step two. We show that z, — z* € Q.
Since ;41 = H’I’(nﬂacl C K41 C K,, and J? is weakly sequentially continuous, we have by Lemma 1.11
Ap(una -Tn) = Ap (unvxn+1) + Ap(xn-‘rlaxn) + <un — Tn+1, ngmn+1 - ngxn>
< Ap (xnaxn+l) + Ap(xn-i-hxn) + <un — Tn+1, ngxn-i-l - ngxn>

= Ny (T, 2n) + (Un — T, Jh Tny1 — ngxn>

— 0 asn — oo. (2.26)
It follows from (2.1) that

(J, Tn — I, Un) — An A", (I — HQKBZ{H)Amn
On

€ U(up). (2.27)

By (2.17), we have that

(Jo (I —T% BT YAxy, (I — 1% BT )Ax,,)
IAN[ITE, (T = T By ) A | ’

AP (umv) < Ap(xmv) - [1 - L]

and

Ap(xn,v) — Dp(tn,v)

I -1 BY YAz, | <
H( AK 5n) ” ||A||_1[1—[,}

— 0 asn — oo. (2.28)

By (2.23), we have that

1 (JB (I =T BY ) Ay, (I — 1% BY ) A, )P
pllAllP 175, (I = T BS, ) Az [P

Ap(un’ U) < AP(Inv U)

and therefore

Ap(n,v) — Dp(un,v)|?
I(I =TI 4 B;, ) Az || < | =2 -
AR 0n (pl| Al

By (2.26) to (2.29) and weak sequential continuity property of JP, we have that 0 € U(z*). This means that
z* € SOLVIP(U). But, since A, (-, ) is lower semi continuous and convex and thus weakly lower semi contin-
uous on int(domf) then from the fact that x,, — 2* as j — oo, wee see that

— 0 asn — oo. (2.29)

Ap(a*,z) < lijrgi)rolf Ay (Tp,,w1) < Dp(v,21).
From the definition of v, that is v = Bg(v), we can conclude that * = v and the sequence x,, — z*. In addition,
it is clear that Az, — Az*. So by using (2.28), (2.29) and applying the demicloseness of (I — Hi\KBg;) at zero,
we have that 0 € T(Az*) as I15, .. Bf (Az*) = Bf (Az*). Therefore Az* € SOLVIP(T). Hence, z* € (.
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Finally, by Lemma 1.11, we have

limsup A, (2, 2*) = limsup [Ap(:cn,xl) + Ap(zq,2%) + <$n — 71, ngxl — Jf;lx*>]

n—oo n—oo
< lim sup [Ap(sc*, z1) + Dp(z1,27) + <xn — 21, ngxl - ngx*ﬂ
n—oo
= lim sup <sc* — T, ngx* — J§1m1> =0.
n—oo
Thus, we obtain lim A, (z,,2*) = 0. Hence by Lemma 1.6 we get =, — z* as n — 0. (|

n—oo
IfU:FE — Fyand T : E5 — Es are nonexpansive in Theorem 2.3, then we get:

Corollary 2.4. For 6 > 0 and p,q € (1,00), let (I —II%, ./ T) be demiclosed at zero. Let x1 € Ey be chosen
arbitrarily and the sequence {x,} be defined as follows;

wn = U, (J%ik (T8, 0 — A A* TS (I — HQKTn)Axn)) :
Kpt1 ={ve K, : Dp(un,v) < Dp(an,v)},
Tns1 =1 (21),n > 1,

where
1 1 " 7&0
N TAT 175, (I-117%  Tn) Az [ 1 n
— .
n L (T, (T, 1) Ay (1T, T) Az ) I
TAT» 175, T  To) Az, [P , Tp =0,
and pi, = W are chosen such that

(B, I=T1 ( To) A (I-T1% ; To) Az )

. :
X : if 1
o () = | T [T 2P, -1 Ty Az, i #n € (0,1];
e -
7 (i ) (T8, (I=T1%  T) Az, (1-T1%,  T,) Az ) . (1, o0)
209G, AT < 75, (100, ) Az | At pn € (1, 00),

where € (0,1). If F(U) and F(II%,T) denote the fized point set of U and II5 T, respectively, and
Q={z* € F(U); Ax* € F(II', . T)} # 0, then {z,,} converges strongly to z* € Q, where I, , T (Az*) = T(Ax*).

Remark 2.5. Corollary 2.4 generalizes the corresponding results in [6,7,11,15-17,22, 23, 28]. In particular,
it improves and extends the main result in [11] in the following aspects:

(1) we use a simpler algorithm,
(2) our split variational inclusion problem contains, as special case, their split feasibility problem,
(3) we work in a more general Banach space than p-uniformly convex.

In Theorem 2.3, let IT ;o = I , By and 1T} = B§ , where I} : E; — K is the Bregman projection from
E; onto K. Then we get the following result.

Corollary 2.6. For§ >0 and p,q € (1,00), let I}, : By — K be the Bregman projection from Ey onto K and
(I —1I*, ;) be demiclosed at zero. Let x1 € Ey be chosen arbitrarily and the sequence {x,} be defined as follows;

up = Jhe (T, a0 — M A" TR, (I = I ) Ay )
Kpt1 ={ve K, : Dp(un,v) < Ap(xn,v)},
Tnp1 =1y (21),n > 1,
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where
1 1
T TR T T 0
TAT 7%, (=1 A n#
)\n = po(r P yA I P yA p—1
1 <JE2( _HAK) xnv( _HAK) ﬁfn> o 0
| A[l» 175, I—11% ) Az [P oo T
and b, = W are chosen such that

Jo (I-10% ) Az, (I-11% 1) Az, .
2‘1GL A X < 2" p||lJP P A >7 if Hn S (07 1]a
q” H HJElwn,H HJEQ(I_HAK) -7371“
L (I8, (111 1) Az (I-T1% 1) Az )
290G || A]l 175, znlIPI 5, T-TT ) Aznll

pE; (in) =

if u, € (0, 00),

where v € (0,1). If Q = {a* € K; Az* € AK} # 0, then {z,,} converges strongly to z* € Q, where IT%, ;. T (Az*) =
T(Azx*).

Remark 2.7. Corollary 2.6 generalizes split feasibility problem result of Chen et al. [11] in the sense of
Remark 2.5 (1) and (3). Moreover, this result, holds in a broader framework than a Hilbert space, so it generalizes
the main result in [13].

Let E = Ey = Ej be a Hilbert space, I = Jp = Jp = ‘]%f =A*"p=q=2,and let UT: E - E
be nonexpansive mappings. Suppose F(U) # 0 and F(T) # (. The so-called hierarchical variational inequality
problem for nonexpansive mapping U with respect to a nonexpansive mapping T is to find a point z* € F(U)
such that

(z" = Tx* 2" —x) <0,Vz € F(U). (2.30)

It is easy to see that (2.30) is equivalent to the following fixed point problem: find z* € F(U) such that
Ax* € F(Pp(T), where Pppy : E — F(T) is the metric projection from E onto F(T). Hence by
Theorem 2.3, we deduce the following:

Corollary 2.8. For § > 0, let (I — Pp()T) be demiclosed at zero. Let xy € E be chosen arbitrarily and the
sequence {x,} be defined as follows;

up = Uy (xn - )\n(l - PF(T)Tn)xn) )
Kny1={v € Ky, : [[un, v|| < |lzn, v},
Tpt+1 = PKn+1 (.131),7’1 > 1;

where

1
A, = d T PreTeTs @70
1, T, =0,

and [, = are chosen such that

e

Nd=PpyTo)anll

PE(pn) = W, if i € (0,1],
n) = Y (I- z i o0

“U%T;T)“ if 1, € (0, 00),

where v € (0,1). If F(U) # 0 and F(T) # 0, then {x,} converges strongly to a solution of the hierarchical
variational inequality problem (2.50), where Ppir)T(z*) = T'(z*).
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3. APPLICATION TO SPLIT MINIMIZATION PROBLEM
The split minimization problem is to find:

x* € Ej such that h(z*) < h(z) Vo € B4y

and
Ax* € Fy such that h'(Az*) < W (Ax) VAx € E,

where h: By — R and b/ : E5 — R are convex lower semicontinuous functions. Now let the subdifferential of h
and b/, Oh : By — 257 and 0K : Fy — 2F2 be defined by

(Oh)x = {z* € E] : h(y) — h(z) > (y — z,2")Vy € E1 }

and
(O YAz = {Ax* € E5 : W/ (Ay) — W' (Az) > (Ay — Az, Ax*)WAy € E»},

respectively.

It is well known that Oh and Ok’ are maximal monotone on F; and Es and that 0 € (0h)x and 0 € (Oh') Az
if z and Az are minimizers of h and h’, respectively. Hence

’
B3 = proxy;, and BZ" = proxg,.

In Theorem 2.3, U = 0h and T = 9/, give the following result.

Theorem 3.1. Let the mapping of Oh, O’ I ., proxs, and proxg,, be defined as above. For § > 0 and p,
q € (1,00), let (I =1 joproxsy,) be demiclosed at zero. Let x1 € Ey be chosen arbitrarily and the sequence {x,}
be defined as follows;

Uy, = Proxgy, (Jql* (Jo, a0 — A A* I, (I — H’;‘Kprox(;h,)Axn)) ,
Kpt1 ={ve K, : Dp(un,v) < Ap(an,,v)},
Tppr =My | (21),n > 1,

where
1 1
T x 0
TAT T, =T e proxn  Aza] n 7
— ., ., —1
An = 1 <J§2 (Ifl_Ii‘Kprox(;h,/)Aa:n,(IfniKprox(;h,/)Aa:n>p 0
€T =
A]P 75, (I—TT%  proxs ;) Azn | o ’
and b, = W are chosen such that

<Jg2 (I—HiKproxéh/)Aq;n,(l—HZKprox5h/)Aa;n>

L .
y if p, € (0,1
s (kn) = 29G4 [| Al 175, @nllP 7%, (I-T1% ; proxsy, ) Az, ] ’ o € (0,1],
PE; (Hn . X <J§2(I*HZKPTOX«SIL’)ALu(I*HZKprOXM/)Amn> if € (0
1
29G || Al 175, (I=TT% , proxsps ) Ay | ’ Hn »02)

where ¢ € (0,1). If Q@ = {z* € Ey : h(z*) < h(z) and W (Az*) < W (Az),Yz € E1} # 0, then {x,} converges
strongly to x* € Q, where 115 ;-proxs;,, (Az*) = proxg, (Az*).
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4. A NUMERICAL EXAMPLE
Let By = E; =R, K = AK = [0,00) and Az = x Vz € E;. Define

0,1, >0

U,T:R%RbyU(x):T(Ax):{{l} <0

0, Az e (—00,0)

P R by P Aw) =
0.00) — [0, 00) by Pjo,c)(Ax) {Ax, Ax € [0,00),

(I+0U) ' =(I+0T)":R—R

#) y>0
by (I+06T) " (Ay) = (I +U) ' (y) = § 10" =
R y <0,
A Ay >0
Proooy(I+8T) "1t R — [0,00) by P ooy(I + 6T] " (Ay) = { #0377 2V =
10,00) ( ) [0,00) by Proo0) ( 7 (Ay) {07 Ay < 0.

It is clear that U and T are multi-valued maximal monotone mappings such that 0 € SOLVIP(U) and
0€ SOLVIP(T). For 6, = 2",

[1+]0,2"]]

e —zn Tn >0,
An: 17 xn:O,
3 Tn <0,

‘wn"

we get that
1+[38:2n] (zn, 1)7 xn >0,
Up = 07 Tn = 07
41 (xn + 1)a Tn <0,

Ty — U
Kn_,_l{vEKn:vS n2 n},

wn_41+i]72n] (zn—1)

5 , wn >0,
Tny1 = Pk, ., 71 =40, Zn =0,
Ty — 5wl (zn+1)
ZnTanrton ), z, < 0.
In particular,
Ty — o (T —1)
R CLES VA
2 y Tp > 07
Tpnt1 =40, z, =0,
wn_%(wnﬁ'l) T < 0
—_ n .

2 )

Now by Theorem 2.3, the sequence {z,} converges strongly to 0 € 2. The Figures 1 and 2 below obtained by
(M AT LAB) software indicate convergence of {z,} given by (2.1) with 2; = 1.0 and x; = —1.0, respectively.
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FIGURE 1. Convergence behavior of the sequence {z,} in (2.1) with z; = 1.0.
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FIGURE 2. Convergence behavior of the sequence {z,} in (2.1) with z; = —1.0.
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