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SPLIT VARIATIONAL INCLUSIONS FOR BREGMAN MULTIVALUED
MAXIMAL MONOTONE OPERATORS

Mujahid Abbas1, Faik Gürsoy2,∗, Yusuf Ibrahim3 and Abdul Rahim Khan4

Abstract. We introduce a new algorithm to approximate a solution of split variational inclusion prob-
lems of multivalued maximal monotone operators in uniformly convex and uniformly smooth Banach
spaces under the Bregman distance. A strong convergence theorem for the above problem is established
and several important known results are deduced as corollaries to it. As application, we solve a split
minimization problem and provide a numerical example to support better findings of our result.
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1. Introduction

Censor [8] imposed the well known split feasibility problem (SFP), which is formulated as finding a point
x∗ ∈ C such that Ax∗ ∈ Q, where C and Q are nonempty closed and convex subsets of Rn and Rm, respectively,
where A is an m× n matrix. Byrne [3], defined CQ-algorithm as follows:

xn+1 = PC(xn + γAT (PQ − I)Axn), n ≥ 0,

where x0 ∈ Rn is an initial value, γ ∈ (0, 2
‖A‖2 ) and PC and PQ denote the metric projections onto C and

Q, respectively. The split feasibility problem has been considered by many authors and in many aspects
[1–3, 5, 8, 9, 13, 16, 25, 26, 30]. In practice, SFP serves as a model in the intensity-modulation radiation ther-
apy (IMRT) treatment planning [2, 5]. Censor et al. [10] introduced a concept of Split Variational Inequality
Problem (SVIP), which is a problem of finding a point x∗ ∈ H1 solves

〈f(x∗), x− x∗〉 ≥ 0 for all x ∈ C,

and the point y∗ = Ax∗ ∈ H2 such that

〈g(y∗), y − y∗〉 ≥ 0 for all y ∈ Q,
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where C and Q are closed and convex subsets of Hilbert spaces H1 and H2, respectively, A : H1 → H2 is a
bounded linear operator and A∗ : H2 → H1 is adjoint of A, f : H1 → H1 and g : H2 → H2 are two given
operators. Furthermore, they proposed the following algorithm. Let λ > 0 and x1 ∈ H1 be arbitrary chosen.
Define the sequence {xn} by

xn+1 = P f,λC (xn + γA∗(P g,λQ − I)Axn)),∀n ≥ 0, (1.1)

where γ ∈ (0, 1
‖A‖2 ), and denoted by P f,λC and P g,λQ the expressions PC(I − λf) and PQ(I − λg), respectively.

By some assumptions imposed on the operators f and g, they proved weak convergence result for the sequence
{xn} to a solution point of split variational inequality problem.

Let E be a real normed space with dual E∗ and J(x) = {x∗ ∈ E∗; 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖} be the
normalized duality. A map B : E → E∗ is called monotone if for each x, y ∈ E, the following inequality holds:
〈η − ν, x − y〉 ≥ 0∀η ∈ Bx, ν ∈ By. It is called maximal monotone if, in addition, the graph of B is not
properly contained in the graph of any other monotone operator. Also, B is maximal monotone if and only
if it is monotone and for all t > 0, R(J + tB) = E∗, where R(J + tB) is the range of (J + tB); see [4]. By
using maximal monotone mappings, Moudafi [15] introduced the following Split Monotone Variational Inclusion
(SMVI). {

find x∗ ∈ H1 : 0 ∈ f(x∗) +B1(x∗), and
y∗ = Ax∗ ∈ H2 : 0 ∈ g(y∗) +B2(y∗),

(1.2)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal monotone mappings on Hilbert spaces,
H1 and H2, respectively, and A : H1 → H2 is a bounded linear operator, f : H1 → H1 and g : H2 → H2 are
two given single-valued operators. When f and g are zero functions in (1.2), we have the usual Split Variational
Inclusion Problem (SVIP). The algorithm introduced by Schöpfer et al. [20] involves computations in terms of
Bregman distance in the setting of p-uniformly convex and uniformly smooth real Banach spaces. Their iterative
algorithm given below, converges weakly under some suitable conditions.

xn+1 = ΠCJ
−1(Jxn + γA∗J(PQ − I)Axn), n ≥ 0, (1.3)

where ΠC denotes the Bregman Projection and A∗ the adjoint operator of A. It is obvious that, strong conver-
gence is more useful than the weak convergence in some applications. Recently, strong convergence theorems
for SFP have been studied in the setting of p-uniformly convex and uniformly smooth real Banach spaces; see
for example [11,17,22,23].

In this paper, inspired by the above cited works, we use a modified version of (1.1) and (1.3) to approximate
a solution of the problem proposed here. Both the iterative methods and the underlying space used here are
improvements of those employed in [6, 7, 10,11,13,17,20,22,23,28] and the references therein.

Definition 1.1. For each p > 1, let g : R+ −→ R+ given by g(t) = tp−1 be a gauge function such that g(0) = 0
and limt→∞ g(t) =∞. We define the generalized duality map Jp : E −→ 2E

∗
given by

Jg(t) = Jp(x) = {x∗ ∈ E∗; 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = g(‖x‖) = ‖x‖p−1}.

Definition 1.2. Let E be a smooth Banach space, the Bregman distance 4p of x to y, with respect to the
convex continuous function f : E → R given by f(x) = 1

p‖x‖
p, is defined as

4p(x, y) =
1
q
‖x‖p − 〈Jp(x), y〉+

1
p
‖y‖p,

for all x, y ∈ E and p, q ∈ (1,∞) such that 1
p + 1

q = 1.



SPLIT VARIATIONAL INCLUSIONS FOR BREGMAN MULTIVALUED MAXIMAL MONOTONE OPERATORS S2419

Definition 1.3. Let E be a smooth Banach space and E∗ its dual, the bifunctional Vp with respect to the
convex continuous function f : E → R given by f(x) = 1

p‖x‖
p, is defined by

Vp(x∗, x) =
1
q
‖x∗‖q − 〈x∗, x〉+

1
p
‖x‖p,

for all x ∈ E, x∗ ∈ E∗ and p, q ∈ (1,∞) such that 1
p + 1

q = 1.

Definition 1.4. A Banach space E is said to be uniformly convex, if for x, y ∈ E, 0 < δE(ε) ≤ 1, where
δE(ε) = inf{1− ‖ 1

2 (x+ y)‖; ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε, where 0 ≤ ε ≤ 2}.

Definition 1.5 ([19]). A Banach space E is said to be uniformly smooth, if for x, y ∈ E and r > 0,
limr→0(ρE(r)

r ) = 0 where ρE(r) = 1
2 sup{‖x+ y‖+ ‖x− y‖ − 2 : ‖x‖ = 1, ‖y‖ ≤ r}. Moreover,

(1) ρE is continuous, convex and nondecreasing with ρE(0) = 0 and ρE(r) ≤ r.
(2) The function r 7→ ρE(r)

r is nondecreasing and fulfills ρE(r)
r > 0 for all r > 0.

Lemma 1.6 ([19]). Let {xn} be a sequence in a smooth Banach space E. Consider the following assertions;

(1) limn→∞ ‖xn − x‖ = 0
(2) limn→∞ ‖xn‖ = ‖x‖ and limn→∞〈Jp(xn), x〉 = 〈Jp(x), x〉
(3) limn→∞4p(xn, x) = 0.

The assertions (1) =⇒ (2) =⇒ (3) are valid. If E is also uniformly convex, then the assertions are equivalent.

Lemma 1.7. Let E be a reflexive and smooth Banach space and E∗ its dual. Let 4p and Vp be the mappings
defined as above and JpE the generalized duality map on E. Then 4p(x, y) = Vp(J

p
Ex, y) for all x, y ∈ E.

Proof. For p, q ∈ (1,∞) let JqE∗ : E∗ → E and JpE : E → E∗ be duality mappings, where JqE∗J
p
E = I. It follows

from 1
p + 1

q = 1 that p(q − 1) = q. So, we have that

4p(x, y) =
1
q
‖x‖p − 〈JpEx, y〉+

1
p
‖y‖p

=
1
q
‖JqE∗J

p
Ex‖

p − 〈JpEx, y〉+
1
p
‖y‖p

=
1
q
‖JpEx‖

p(q−1) − 〈JpEx, y〉+
1
p
‖y‖p

=
1
q
‖JpEx‖

q − 〈JpEx, y〉+
1
p
‖y‖p

= Vp(J
p
Ex, y).

�

Lemma 1.8 ([19]). Let E be a reflexive, strictly convex and smooth Banach space and Jp be the duality mapping
of E. Then

(i) for every closed and convex subset C ⊂ E and x ∈ E, there exists a unique element Πp
C(x) ∈ C such that

4p(x,Πp
C(x)) = miny∈C4p(x, y); Πp

C(x) is called the Bregman projection of x onto C, with respect to the
function f(x) = 1

p‖x‖
p. Moreover, x0 ∈ C is the Bregman projection of x onto C if

〈Jp(x0 − x), y − x0〉 ≥ 0

or equivalently
4p(x0, y) ≤ 4p(x, y)−4p(x, x0) for every y ∈ C.
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(ii) the Bregman projection and the metric projection are related via PC(x)− x = Πp
C−x(0), ∀x ∈ E. Especially,

we have PC(0) = Πp
C(0) and thus ‖Πp

C(0)‖ = miny∈C ‖y‖.

The uniform convexity of E implies that E is reflexive and E∗ is uniformly smooth. Therefore, Theorem 2
in [27], for x, y ∈ E and x∗, y∗ ∈ E∗ and ‖x+ y‖p replaced by ‖x∗ − y∗‖q gives the following technical result.

Lemma 1.9. For the uniformly smooth space E∗, with the duality map Jq, ∀x∗, y∗ ∈ E∗, we have

‖x∗ − y∗‖q ≤ ‖x∗‖q − q〈Jq(x∗), y∗〉+ σ̄q(x∗, y∗) where

σ̄q(x∗, y∗) = qGq

∫ 1

0

(‖x∗ − ty∗‖ ∨ ‖x∗‖)q

t
ρE∗

(
t‖y∗‖

2(‖x∗ − ty∗‖ ∨ ‖x∗‖)

)
dt (1.4)

and Gq = 8 ∨ 64cK−1
q with c,Kq > 0.

Lemma 1.10 ([19]). Let E be a reflexive, strictly convex and smooth Banach space. We write
4∗q(x, y) = 1

p‖x
∗‖q − 〈JqE∗x∗, y∗〉 + 1

q‖y
∗‖q for x∗ = JpE(x), y∗ = JpE(y) for the Bregman distance on the

dual space E∗ with respect to the function f∗q (x∗) = 1
q‖x
∗‖q. Then we have 4p(x, y) = 4∗q(x∗, y∗).

Lemma 1.11. Let E be a reflexive, smooth and strictly convex Banach space. Then for all x, y, z ∈ E and
x∗ = JpEx, z∗ = JpEz, the following hold:

(1) 4p(x, y) ≥ 0 and 4p(x, y) = 0 if x = y;
(2) 4p(x, y) = 4p(x, z) +4p(z, y) + 〈x∗ − z∗, z − y〉.

Proof. The property (1) is proved in [19]. For (2) we have that

4p(x, z) +4p(z, y) =
1
q
‖x‖p − 〈x∗, z〉+

1
p
‖z‖p +

1
q
‖z‖p − 〈z∗, y〉+

1
p
‖y‖p

=
1
q
‖x‖p − 〈x∗, z〉+ ‖z‖p − 〈z∗, y〉+

1
p
‖y‖p + 〈x∗, y〉 − 〈x∗, y〉

=
(

1
q
‖x‖p − 〈x∗, y〉+

1
p
‖y‖p

)
+ 〈z∗, z〉 − 〈z∗, y〉+ 〈x∗, y〉 − 〈x∗, z〉

⇔ 4p(x, y) = 4p(x, z) +4p(z, y) + 〈x∗ − z∗, z − y〉.

�

If E is smooth and f(x) = 1
p‖x‖

p, then the following result holds (cf. Prop. 5 in [18]).

Lemma 1.12. Let E be a smooth Banach space and f : E → R be a continuous convex function given by
f(x) = 1

p‖x‖
p. If x0 ∈ E and the sequence {4p(xn, x0)}∞n=1 is bounded, then the sequence {xn} is also bounded.

2. Main results

Let E1 and E2 be uniformly convex and uniformly smooth Banach spaces and E∗1 and E∗2 be their duals,
respectively. Let U : E1 → 2E

∗
1 and T : E2 → 2E

∗
2 be multi-valued maximal monotone operators. For K ⊂ E1,

closed and convex, δ > 0 and p, q ∈ (1,∞), let A : E1 → E2 be a bounded and linear operator, A∗ denotes
the adjoint of A and AK be closed and convex. Suppose that Πp

AK : E2 → AK is the Bregman projection
onto a closed and convex subset AK. Let BUδ : E1 → E1 be the generalized resolvent operator defined by
BUδ = (JpE1

+ δU)−1JpE1
and BTδ : E2 → E2 be another generalized resolvent operator defined by BTδ =

(JpE2
+ δT )−1JpE2

. Let us denote the solutions of variational inclusion problem with respect to U and T by
SOLV IP (U) and SOLV IP (T ), respectively. Let the set of solutions of split variational inclusion problem be
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given by Ω = {x∗ ∈ SOLV IP (U);Ax∗ ∈ SOLV IP (T )} 6= ∅. Let x1 ∈ E1 be chosen arbitrarily and the sequence
{xn} ⊂ E1 be defined as follows;

un = BUδn

(
JqE∗1

(
JpE1

xn − λnA∗JpE2
(I −Πp

AKB
T
δn

)Axn
))
,

Kn+1 = {v ∈ Kn : 4p(un, v) ≤ 4p(xn, v)},
xn+1 = Πp

Kn+1
(x1), n ≥ 1,

(2.1)

where δn ∈ (0,∞). It is remarked that we have replaced the gradient algorithm in (1.1) [the projection maps in
(1.3), respectively] with the resolvent operators and used the generalized duality map in our algorithm.

We shall strictly employ the above terminology in the sequel.

Lemma 2.1. Suppose that σ̄q is the function in (1.4) for the characteristic inequality of the uniformly
smooth space E∗1 . For the sequence {xn} ⊂ E1 defined by (2.1), let 0 6= xn ∈ E1, 0 6= A and
0 6= JpE2

(I −Πp
AKB

T
δn

)Axn ∈ E∗2 . Let λn > 0 and µn > 0 be defined, respectively, by

λn =
1
‖A‖

1
‖JpE2

(I −Πp
AKB

T
δn

)Axn‖
and µn =

1
‖xn‖p−1

· (2.2)

Then

1
q
σ̄q
(
JpE1

xn, λnA
∗JpE2

(I −Πp
AKB

T
δn)Axn

)
≤

{
2qGq‖JpE1

xn‖qρE∗1 (µn) if µn ∈ (0, 1],
2qGqρE∗1 (µn) if µn ∈ (1,∞),

(2.3)

where Gq is the constant defined in Lemma 1.9 and ρE∗1 is the modulus of smoothness of E∗1 .

Proof. By Lemma 1.9, we have

1
q
σ̄q
(
JpE1

xn, λnA
∗JpE2

(I −Πp
AKB

T
δn)Axn

)
= Gq

∫ 1

0

(∥∥JpE1
xn − λnA∗JpE2

(I −Πp
AKB

T
δn

)Axn
∥∥ ∨ ‖JpE1

xn‖
)q

t

× ρE∗
(

t‖λnA∗JpE2
(I −Πp

AKB
T
δn

)Axn‖(∥∥JpE1
xn − λnA∗JpE2

(I −Πp
AKB

T
δn

)Axn
∥∥ ∨ ‖JpE1

xn‖
)) dt,

(2.4)

for every t ∈ [0, 1].

We note that∥∥JpE1
xn − λn,iA∗JpE2

(I −Πp
AKB

T
δn)Axn

∥∥ ≤ ‖xn‖p−1 +
∥∥λnA∗JpE2

(I −Πp
AKB

T
δn)Axn

∥∥ .
By (2.2), with xn 6= 0

λn =
µn
‖A‖

‖xn‖p−1∥∥JpE2
(I −Πp

AKB
T
δn

)Axn
∥∥ (2.5)

and so we have that

∥∥JpE1
xn − λnA∗JpE2

(I −Πp
AKB

T
δn)Axn

∥∥ ≤ (1 + µn)‖xn‖p−1

and {
‖xn‖p−1 ≤

∥∥JpE1
xn − λnA∗JpE2

(
I −Πp

AKB
T
δn

)
Axn

∥∥ ∨ ‖JpE1
xn‖ ≤ 2‖xn‖p−1 if µn ∈ (0, 1]

‖xn‖p−1 ≤
∥∥JpE1

xn − λnA∗JpE2

(
I −Πp

AKB
T
δn

)
Axn

∥∥ ∨ ‖JpE1
xn‖ ≤ 2 if µn ∈ (1,∞).

(2.6)
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By (2.6), (2.5) and Definition 1.5(2), we get

ρE∗1

(
t
∥∥λnA∗JpE2

(I −Πp
AKB

T
δn

)Axn
∥∥(∥∥JpE1

xn − tλnA∗JpE2
(I −Πp

AKB
T
δn

)Axn
∥∥ ∨ ‖JpE1

xn‖
)) ≤ ρE∗1

(
t
∥∥λnA∗JpE2

(I −Πp
AKB

T
δn

)Axn
∥∥

‖xn‖p−1

)
= ρE∗1 (tµn). (2.7)

Substituting (2.7) and (2.6) into (2.4), and using nondecreasingness of ρE∗1 , we get (2.3) as required. �

Lemma 2.2. For the sequence {xn} ⊂ E1 defined by (2.1), let 0 6= xn, 0 6= JpE2
(I − Πp

AKB
T
δn

)Axn ∈ E∗2 , and
λn > 0 and µn > 0 be defined by (2.2) and λn and µn are chosen such that

ρE∗1 (µn) =


ι

2qGq‖A‖ ×
〈
JpE2

(I−ΠpAKB
T
δn

)Axn,(I−ΠpAKB
T
δn

)Axn
〉

‖JpE1
xn‖q‖JpE2

(I−ΠpAKB
T
δn

)Axn‖
, if µn ∈ (0, 1],

ι
2qGq‖A‖ ×

〈
JpE2

(I−ΠpAKB
T
δn

)Axn,(I−ΠpAKB
T
δn

)Axn
〉

‖JpE2
(I−ΠpAKB

T
δn

)Axn‖
, if µn ∈ (1,∞),

(2.8)

where ι ∈ (0, 1). Then, for all v ∈ Ω, we get

4p(un, v) ≤ 4p(xn, v)− [1− ι]
〈
JpE2

(I −Πp
AKB

T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn
〉

‖A‖‖JpE2
(I −Πp

AKB
T
δn

)Axn‖
· (2.9)

Proof. For v = BUγ v and Av = BTγ Av, by Lemma 1.7, we have that

4p(un, v) = 4p
(
BUδn

(
JqE∗1

(
JpE1

xn − λnA∗JpE2

(
I −Πp

AKB
T
δn

)
Axn

))
, v
)

= 4p
(
BUδn

(
JqE∗1

(
JpE1

xn − λnA∗JpE2

(
I −Πp

AKB
T
δn

)
Axn

))
, BUδnv

)
≤ Vp

(
JpE1

xn − λnA∗JpE2

(
I −Πp

AKB
T
δn

)
Axn, v

)
=

1
q

∥∥JpE1
xn − λnA∗JpE2

(
I −Πp

AKB
T
δn

)
Axn

∥∥q +
1
p
‖v‖p

− 〈JpE1
xn, v〉+

〈
λnA

∗JpE2

(
I −Πp

AKB
T
δn

)
Axn, v

〉
, (2.10)

where,〈
λnA

∗JpE2

(
I −Πp

AKB
T
δn

)
Axn, v

〉
=
〈
λnJ

p
E2

(
I −Πp

AKB
T
δn

)
Axn, Av −Axn +Axn −Πp

AKB
T
δnAxn

〉
+
〈
λnJ

p
E2

(
I −Πp

AKB
T
δn

)
Axn,Π

p
AKB

T
δnAxn −Axn +Axn

〉
= −

〈
λnJ

p
E2

(
Πp
AKB

T
δn − I

)
Axn, (Av −Axn)−

(
Πp
AKB

T
δn − I

)
Axn

〉
−
〈
λnJ

p
E2

(
I −Πp

AKB
T
δn

)
Axn,

(
I −Πp

AKB
T
δn

)
Axn

〉
+
〈
λnJ

p
E2

(
I −Πp

AKB
T
δn

)
Axn, Axn

〉
.

As AK is closed and convex so by Lemma 1.8(i) and the variational inequality for the Bregman projection of
zero onto AK −Axn, as in Lemma 1.8(ii), we arrive at〈

λnJ
p
E2

(Πp
AKB

T
δn − I)Axn, (Av −Axn)− (Πp

AKB
T
δn − I)Axn

〉
≥ 0

and therefore, we obtain〈
λnA

∗JpE2
(I −Πp

AKB
T
δn)Axn, v

〉
≤ −

〈
λnJ

p
E2

(I −Πp
AKB

T
δn)Axn, (I −Πp

AKB
T
δn)Axn

〉
+
〈
λnJ

p
E2

(I −Πp
ΓB

T
δn)Axn, Axn

〉
. (2.11)
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In addition, by Lemma 1.9, we have that

1
q

∥∥JpE1
xn − λnA∗JpE2

(I −Πp
AKB

T
δn)Axn

∥∥q ≤ 1
q
‖JpE1

xn‖q − λn
〈
Axn, J

p
E2

(I −Πp
AKB

T
δn)Axn

〉
+

1
q
σ̄q
(
JpE1

xn, λnA
∗JpE2

(I −Πp
AKB

T
δn)Axn

)
(2.12)

By Lemma 2.1 and (2.12), we have that

1
q

∥∥JpE1
xn − λnA∗JpE2

(I −Πp
AKB

T
δn)Axn

∥∥q ≤ 1
q
‖JpE1

xn‖q − λn
〈
Axn, J

p
E2

(I −Πp
AKB

T
δn)Axn

〉
+ 2qGq‖JpE1

xn‖qρE∗1 (µn). (2.13)

Substituting (2.13) and (2.11) into (2.10), we have that

4p(un, v) ≤ 1
q
‖JpE1

xn‖q +
1
p
‖v‖p − 〈JpE1

xn, v〉+ 2qGq‖JpE1
xn‖qρE∗1 (µn)

−
〈
λnJ

p
E2

(I −Πp
AKB

T
δn)Axn, (I −Πp

AKB
T
δn)Axn

〉
= 4p (xn, v) + 2qGq‖JpE1

xn‖qρE∗1 (µn)

−
〈
λnJ

p
E2

(I −Πp
AKB

T
δn)Axn, (I −Πp

AKB
T
δn)Axn

〉
. (2.14)

Substituting (2.2) and (2.8) into (2.14), we have that

4p(un, v) ≤ 4p (xn, v) +
ι
〈
(JpE2

(I −Πp
AKB

T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn
〉

‖A‖‖JpE2
(I −Πp

AKB
T
δn

)Aun‖

−
〈
(JpE2

(I −Πp
AKB

T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn
〉

‖A‖‖JpE2
(I −Πp

AKB
T
δn

)Axn‖

= 4p (xn, v)− [1− ι]
〈
JpE2

(I −Πp
AKB

T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn
〉

‖A‖‖JpE2
(I −Πp

AKB
T
δn

)Axn‖
·

Thus, (2.9) holds. �

We now prove our main result.

Theorem 2.3. For δ > 0 and p, q ∈ (1,∞), let (I − Πp
AKB

T
δ ) be demiclosed at zero. Let x1 ∈ E1 be chosen

arbitrarily and the sequence {xn} be defined by (2.1), where

λn =


1
‖A‖

1
‖JpE2

(I−ΠpAKB
T
δn

)Axn‖
, xn 6= 0

1
‖A‖p

〈
JpE2

(I−ΠpAKB
T
δn

)Axn,(I−ΠpAKB
T
δn

)Axn
〉p−1

‖JpE2
(I−ΠpAKB

T
δn

)Axn‖p
, xn = 0

and µn =
1

‖xn‖p−1
(2.15)

are chosen such that equation (2.8) holds. If Ω = {x∗ ∈ SOLV IP (U);Ax∗ ∈ SOLV IP (T )} 6= ∅, then {xn}
converges strongly to x∗ ∈ Ω, where Πp

AKB
T
δn

(Ax∗) = BTδn(Ax∗).

Proof. We will divide the proof into two steps.

Step one. We show that {xn} is a bounded sequence.

Assume that ‖JpE2
(I −Πp

AKB
T
δn

)Axn‖ = 0. Then from v = BUγ v, Lemma 1.7 and v ∈ Ω, we get

4p(un, v) = 4p
(
BUδn(JqE∗1 (JpE1

xn)), BUδnv
)
≤ Vp(JpE1

xn, v) = 4p(xn, v). (2.16)
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Next assume that ‖JpE2
(I −Πp

AKB
T
δn

)Axn‖ 6= 0 and xn 6= 0. Then for v ∈ Ω, by Lemma 2.2, we get

4p(un, v) ≤ 4p(xn, v)− [1− ι]
〈
JpE2

(I −Πp
AKB

T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn
〉

‖A‖‖JpE2
(I −Πp

AKB
T
δn

)Axn‖
(2.17)

≤ 4p(xn, v). (2.18)

For xn = 0, we have

4p(xn, v) =
1
p
‖v‖p (2.19)

and so by (2.19), we have that

4p(un, v) =
1
q

∥∥λnA∗JpE2
(I −Πp

AKB
T
δn)Axn

∥∥q
+4p(xn, v) + λn

〈
JpE2

(I −Πp
AKB

T
δn)Axn, Av

〉
. (2.20)

Substituting (2.11) in (2.20), we have that

4p(un, v) ≤ 1
q

∥∥λnA∗JpE2
(I −Πp

AKB
T
δn)Axn

∥∥q
+4p(xn, v) + λn

〈
JpE2

(I −Πp
AKB

T
δn)Axn, Axn

〉
− λn

〈
JpE2

(I −Πp
AKB

T
δn)Axn, (I −Πp

AKB
T
δn)Axn

〉
. (2.21)

By (2.15), we have that

1
q

∥∥λnA∗JpE2
(I −Πp

AKB
T
δn)Axn

∥∥q =
1
q

1
‖A‖p

〈
JpE2

(I −Πp
AKB

T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn
〉p∥∥JpE2

(I −Πp
AKB

T
δn

)Axn
∥∥p · (2.22)

Substituting (2.22) into (2.21), we have that

4p(un, v) ≤ 1
q

1
‖A‖p

〈
JpE2

(I −Πp
AKB

T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn
〉p∥∥JpE2

(I −Πp
AKB

T
δn

)Axn
∥∥p

+4p(xn, v) + λn〈JpE2
(I −Πp

AKB
T
δn)Axn, Axn〉

− λn〈JpE2
(I −Πp

AKB
T
δn)Axn, (I −Πp

AKB
T
δn)Axn〉

≤
(

1− 1
p

)
1
‖A‖p

〈JpE2
(I −Πp

AKB
T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn〉p

‖JpE2
(I −Πp

AKB
T
δn

)Axn‖p

+4p(xn, v) + λn‖JpE2
(I −Πp

AKB
T
δn)Axn‖‖Axn‖

− 1
‖A‖p

〈JpE2
(I −Πp

AKB
T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn〉p

‖JpE2
(I −Πp

AKB
T
δn

)Axn‖p

= 4p (xn, v)− 1
p‖A‖p

〈JpE2
(I −Πp

AKB
T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn〉p

‖JpE2
(I −Πp

AKB
T
δn

)Axn‖p
· (2.23)

This implies that

4p(un, v) ≤ 4p(xn, v). (2.24)

By (2.1), (2.16), (2.18) and (2.24), v ∈ Kn so that Ω ⊂ Kn.
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We know from (2.1), xn = Πp
Kn
x1. Then, by Lemma 1.8, we have

4p(xn, x1) = 4p(Πp
Kx1, x1) ≤ 4p(v, x1)−4p(v, xn)⇒4p(xn, x1) ≤ 4p(v, x1) ∀v ∈ Ω ⊂ Kn. (2.25)

By (2.25), the sequence {4p(xn, x1)} is bounded and therefore by Lemma 1.12, {xn} is bounded. Hence, {un}
is also bounded. Consequently, there exists a subsequence xnj such that xnj ⇀ x∗ as j → ∞ (⇀ stands for
weak convergence).

Step two. We show that xn → x∗ ∈ Ω.

Since xn+1 = Πp
Kn+1

x1 ⊂ Kn+1 ⊂ Kn and Jp is weakly sequentially continuous, we have by Lemma 1.11

4p(un, xn) = 4p (un, xn+1) +4p(xn+1, xn) +
〈
un − xn+1, J

p
E1
xn+1 − JpE1

xn
〉

≤ 4p (xn, xn+1) +4p(xn+1, xn) +
〈
un − xn+1, J

p
E1
xn+1 − JpE1

xn
〉

= 4p (xn, xn) +
〈
un − xn, JpE1

xn+1 − JpE1
xn
〉

−→ 0 as n→∞. (2.26)

It follows from (2.1) that

(JpE1
xn − JpE1

un)− λnA∗JpE2
(I −Πp

AKB
T
δn

)Axn
δn

∈ U(un). (2.27)

By (2.17), we have that

4p (un, v) ≤ 4p(xn, v)− [1− ι]
〈
JpE2

(I −Πp
AKB

T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn
〉

‖A‖‖JpE2
(I −Πp

AKB
T
δn

)Axn‖
,

and

‖(I −Πp
AKB

T
δn)Axn‖ ≤

[
4p(xn, v)−4p(un, v)

‖A‖−1[1− ι]

]
−→ 0 as n→∞. (2.28)

By (2.23), we have that

4p(un, v) ≤ 4p(xn, v)− 1
p‖A‖p

〈JpE2
(I −Πp

AKB
T
δn

)Axn, (I −Πp
AKB

T
δn

)Axn〉p

‖JpE2
(I −Πp

AKB
T
δn

)Axn‖p

and therefore

‖(I −Πp
AKB

T
δn)Axn‖ ≤

[
4p(xn, v)−4p(un, v)

(p‖A‖)−1

] 1
p

−→ 0 as n→∞. (2.29)

By (2.26) to (2.29) and weak sequential continuity property of Jp, we have that 0 ∈ U(x∗). This means that
x∗ ∈ SOLV IP (U). But, since 4p(·, x) is lower semi continuous and convex and thus weakly lower semi contin-
uous on int(domf) then from the fact that xnj ⇀ x∗ as j →∞, wee see that

4p(x∗, x1) ≤ lim inf
j→∞

4p (xnj , x1) ≤ 4p(v, x1).

From the definition of v, that is v = BUδ (v), we can conclude that x∗ = v and the sequence xn ⇀ x∗. In addition,
it is clear that Axn ⇀ Ax∗. So by using (2.28), (2.29) and applying the demicloseness of (I −Πp

AKB
T
δn

) at zero,
we have that 0 ∈ T (Ax∗) as Πp

AKB
T
δ (Ax∗) = BTδ (Ax∗). Therefore Ax∗ ∈ SOLV IP (T ). Hence, x∗ ∈ Ω.
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Finally, by Lemma 1.11, we have

lim sup
n→∞

4p (xn, x∗) = lim sup
n→∞

[
4p(xn, x1) +4p(x1, x

∗) +
〈
xn − x1, J

p
E1
x1 − JpE1

x∗
〉]

≤ lim sup
n→∞

[
4p(x∗, x1) +4p(x1, x

∗) +
〈
xn − x1, J

p
E1
x1 − JpE1

x∗
〉]

= lim sup
n→∞

〈
x∗ − xn, JpE1

x∗ − JpE1
x1

〉
= 0.

Thus, we obtain lim
n→∞

4p (xn, x∗) = 0. Hence by Lemma 1.6 we get xn → x∗ as n→∞. �

If U : E1 → E1 and T : E2 → E2 are nonexpansive in Theorem 2.3, then we get:

Corollary 2.4. For δ > 0 and p, q ∈ (1,∞), let (I − Πp
AKT ) be demiclosed at zero. Let x1 ∈ E1 be chosen

arbitrarily and the sequence {xn} be defined as follows;
un = Un

(
JqE∗1

(
JpE1

xn − λnA∗JpE2
(I −Πp

AKTn)Axn
))
,

Kn+1 = {v ∈ Kn : 4p(un, v) ≤ 4p(xn, v)},
xn+1 = Πp

Kn+1
(x1), n ≥ 1,

where

λn =


1
‖A‖

1
‖JpE2

(I−ΠpAKTn)Axn‖ , xn 6= 0

1
‖A‖p

〈
JpE2

(I−ΠpAKTn)Axn,(I−ΠpAKTn)Axn
〉p−1

‖JpE2
(I−ΠpAKTn)Axn‖p , xn = 0,

and µn = 1
‖xn‖p−1 are chosen such that

ρE∗1 (µn) =


ι

2qGq‖A‖ ×
〈
JpE2

(I−ΠpAKTn)Axn,(I−ΠpAKTn)Axn
〉

‖JpE1
xn‖p‖JpE2

(I−ΠpAKTn)Axn‖ , if µn ∈ (0, 1],

ι
2qGq‖A‖ ×

〈
JpE2

(I−ΠpAKTn)Axn,(I−ΠpAKTn)Axn
〉

‖JpE2
(I−ΠpAKTn)Axn‖ , if µn ∈ (1,∞),

where ι ∈ (0, 1). If F (U) and F (Πp
AKT ) denote the fixed point set of U and Πp

AKT , respectively, and
Ω = {x∗ ∈ F (U);Ax∗ ∈ F (Πp

AKT )} 6= ∅, then {xn} converges strongly to x∗ ∈ Ω, where Πp
AKT (Ax∗) = T (Ax∗).

Remark 2.5. Corollary 2.4 generalizes the corresponding results in [6, 7, 11, 15–17, 22, 23, 28]. In particular,
it improves and extends the main result in [11] in the following aspects:

(1) we use a simpler algorithm,
(2) our split variational inclusion problem contains, as special case, their split feasibility problem,
(3) we work in a more general Banach space than p-uniformly convex.

In Theorem 2.3, let Πp
AK = Πp

AKB
T
δn

and Πp
K = BUδn , where Πp

K : E1 → K is the Bregman projection from
E1 onto K. Then we get the following result.

Corollary 2.6. For δ > 0 and p, q ∈ (1,∞), let Πp
K : E1 → K be the Bregman projection from E1 onto K and

(I −Πp
AK) be demiclosed at zero. Let x1 ∈ E1 be chosen arbitrarily and the sequence {xn} be defined as follows;

un = JqE∗1

(
JpE1

xn − λnA∗JpE2
(I −Πp

AK)Axn
)
,

Kn+1 = {v ∈ Kn : 4p(un, v) ≤ 4p(xn, v)},
xn+1 = Πp

Kn+1
(x1), n ≥ 1,
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where

λn =


1
‖A‖

1
‖JpE2

(I−ΠpAK)Axn‖ , xn 6= 0

1
‖A‖p

〈
JpE2

(I−ΠpAK)Axn,(I−ΠpAK)Axn
〉p−1

‖JpE2
(I−ΠpAK)Axn‖p , xn = 0,

and µn = 1
‖xn‖p−1 are chosen such that

ρE∗1 (µn) =


ι

2qGq‖A‖ ×
〈
JpE2

(I−ΠpAK)Axn,(I−ΠpAK)Axn
〉

‖JpE1
xn‖p‖JpE2

(I−ΠpAK)Axn‖ , if µn ∈ (0, 1],

ι
2qGq‖A‖ ×

〈
JpE2

(I−ΠpAK)Axn,(I−ΠpAK)Axn
〉

‖JpE1
xn‖p‖JpE2

(I−ΠpAK)Axn‖ , if µn ∈ (0,∞),

where ι ∈ (0, 1). If Ω = {x∗ ∈ K;Ax∗ ∈ AK} 6= ∅, then {xn} converges strongly to x∗ ∈ Ω, where Πp
AKT (Ax∗) =

T (Ax∗).

Remark 2.7. Corollary 2.6 generalizes split feasibility problem result of Chen et al. [11] in the sense of
Remark 2.5 (1) and (3). Moreover, this result, holds in a broader framework than a Hilbert space, so it generalizes
the main result in [13].

Let E = E1 = E2 be a Hilbert space, I = JpE1
= JpE2

= JqE∗1
= A∗, p = q = 2, and let U, T : E → E

be nonexpansive mappings. Suppose F (U) 6= ∅ and F (T ) 6= ∅. The so-called hierarchical variational inequality
problem for nonexpansive mapping U with respect to a nonexpansive mapping T is to find a point x∗ ∈ F (U)
such that

〈x∗ − Tx∗, x∗ − x〉 ≤ 0,∀x ∈ F (U). (2.30)

It is easy to see that (2.30) is equivalent to the following fixed point problem: find x∗ ∈ F (U) such that
Ax∗ ∈ F (PF (T )T ), where PF (T ) : E → F (T ) is the metric projection from E onto F (T ). Hence by
Theorem 2.3, we deduce the following:

Corollary 2.8. For δ > 0, let (I − PF (T )T ) be demiclosed at zero. Let x1 ∈ E be chosen arbitrarily and the
sequence {xn} be defined as follows;

un = Un
(
xn − λn(I − PF (T )Tn)xn

)
,

Kn+1 = {v ∈ Kn : ‖un, v‖ ≤ ‖xn, v‖},
xn+1 = PKn+1(x1), n ≥ 1,

where

λn =

{
1

‖(I−PF (T )Tn)xn‖ , xn 6= 0

1, xn = 0,

and µn = 1
‖xn‖ are chosen such that

ρE(µn) =

{
ι‖(I−PF (T )Tn)xn‖

4G2‖xn‖2 , if µn ∈ (0, 1],
ι‖(I−PF (T )Tn)xn‖

4G2
, if µn ∈ (0,∞),

where ι ∈ (0, 1). If F (U) 6= ∅ and F (T ) 6= ∅, then {xn} converges strongly to a solution of the hierarchical
variational inequality problem (2.30), where PF (T )T (x∗) = T (x∗).
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3. Application to split minimization problem

The split minimization problem is to find:

x∗ ∈ E1 such that h(x∗) ≤ h(x) ∀x ∈ E1

and

Ax∗ ∈ E2 such that h′(Ax∗) ≤ h′(Ax) ∀Ax ∈ E2

where h : E1 → R and h′ : E2 → R are convex lower semicontinuous functions. Now let the subdifferential of h
and h′, ∂h : E1 → 2E

∗
1 and ∂h′ : E2 → 2E

∗
2 be defined by

(∂h)x = {x∗ ∈ E∗1 : h(y)− h(x) ≥ 〈y − x, x∗〉∀y ∈ E1}

and

(∂h′)Ax = {Ax∗ ∈ E∗2 : h′(Ay)− h′(Ax) ≥ 〈Ay −Ax,Ax∗〉∀Ay ∈ E2},

respectively.
It is well known that ∂h and ∂h′ are maximal monotone on E1 and E2 and that 0 ∈ (∂h)x and 0 ∈ (∂h′)Ax

if x and Ax are minimizers of h and h′, respectively. Hence

B∂hδ = proxδh and B∂h
′

δ = proxδh′ .

In Theorem 2.3, U = ∂h and T = ∂h′, give the following result.

Theorem 3.1. Let the mapping of ∂h, ∂h′,Πp
AK ,proxδh and proxδh′ be defined as above. For δ > 0 and p,

q ∈ (1,∞), let (I−Πp
AKproxδh′) be demiclosed at zero. Let x1 ∈ E1 be chosen arbitrarily and the sequence {xn}

be defined as follows;


un = proxδh

(
JqE∗1

(
JpE1

xn − λnA∗JpE2
(I −Πp

AKproxδh′)Axn
))
,

Kn+1 = {v ∈ Kn : 4p(un, v) ≤ 4p(xn, v)},
xn+1 = Πp

Kn+1
(x1), n ≥ 1,

where

λn =


1
‖A‖

1
‖JpE2

(I−ΠpAKproxδh′ )Axn‖
, xn 6= 0

1
‖A‖p

〈
JpE2

(I−ΠpAKproxδh′ )Axn,(I−ΠpAKproxδh′ )Axn
〉p−1

‖JpE2
(I−ΠpAKproxδh′ )Axn‖p

, xn = 0,

and µn = 1
‖xn‖p−1 are chosen such that

ρE∗1 (µn) =


ι

2qGq‖A‖ ×
〈
JpE2

(I−ΠpAKproxδh′ )Axn,(I−ΠpAKproxδh′ )Axn
〉

‖JpE1
xn‖p‖JpE2

(I−ΠpAKproxδh′ )Axn‖
, if µn ∈ (0, 1],

ι
2qGq‖A‖ ×

〈
JpE2

(I−ΠpAKproxδh′ )Axn,(I−ΠpAKproxδh′ )Axn
〉

‖JpE2
(I−ΠpAKproxδh′ )Axn‖

, if µn ∈ (0,∞),

where ι ∈ (0, 1). If Ω = {x∗ ∈ E1 : h(x∗) ≤ h(x) and h′(Ax∗) ≤ h′(Ax),∀x ∈ E1} 6= ∅, then {xn} converges
strongly to x∗ ∈ Ω, where Πp

AKproxδh′(Ax∗) = proxδh′(Ax∗).
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4. A numerical example

Let E1 = E2 = R, K = AK = [0,∞) and Ax = x ∀x ∈ E1. Define

U, T : R −→ R by U(x) = T (Ax) =

{
[0, 1], x ≥ 0
{1}, x < 0,

P[0,∞) : R −→ [0,∞) by P[0,∞)(Ax) =

{
0, Ax ∈ (−∞, 0)
Ax, Ax ∈ [0,∞),

(I + δU)−1 = (I + δT )−1 : R −→ R

by (I + δT )−1(Ay) = (I + δU)−1(y) =

{
y

1+[0,δ] , y ≥ 0
y

1+δ , y < 0,

P[0,∞)(I + δT )−1 : R −→ [0,∞) by P[0,∞)(I + δT ]−1(Ay) =

{
Ay

1+[0,δ] , Ay ≥ 0
0, Ay < 0.

It is clear that U and T are multi-valued maximal monotone mappings such that 0 ∈ SOLV IP (U) and
0 ∈ SOLV IP (T ). For δn = 2n,

λn =


|1+[0,2n]|

|xn(1+[0,2n])−xn| , xn > 0,
1, xn = 0,

1
|xn| , xn < 0,

we get that

un =


xn

1+[0,2n] (xn − 1), xn > 0,
0, xn = 0,
xn

2n+1 (xn + 1), xn < 0,

Kn+1 =
{
v ∈ Kn : v ≤ xn − un

2

}
,

xn+1 = PKn+1x1 =


xn− xn

1+[0,2n] (xn−1)

2 , xn > 0,
0, xn = 0,
xn− xn

2n+1 (xn+1)

2 , xn < 0.

In particular,

xn+1 =


xn− xn

(2n+1) (xn−1)

2 , xn > 0,
0, xn = 0,
xn− xn

2n+1 (xn+1)

2 , xn < 0.

Now by Theorem 2.3, the sequence {xn} converges strongly to 0 ∈ Ω. The Figures 1 and 2 below obtained by
(MATLAB) software indicate convergence of {xn} given by (2.1) with x1 = 1.0 and x1 = −1.0, respectively.
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Figure 1. Convergence behavior of the sequence {xn} in (2.1) with x1 = 1.0.

Figure 2. Convergence behavior of the sequence {xn} in (2.1) with x1 = −1.0.
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[19] F. Schöpfer, Iterative regularization methods for the solution of the split feasibility problem in Banach spaces. Ph.D. Thesis,
Universitat des Saarlandes (2007).
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