Optimality and duality for nonsmooth semi-infinite mathematical program with equilibrium constraints involving generalized invexity of order σ > 0
RAIRO. Operations Research, Tome 55 (2021), pp. S2221-S2240

In this paper, we derive sufficient condition for global optimality for a nonsmooth semi-infinite mathematical program with equilibrium constraints involving generalized invexity of order σ > 0 assumptions. We formulate the Wolfe and Mond–Weir type dual models for the problem using convexificators. We establish weak, strong and strict converse duality theorems to relate the semi-infinite mathematical program with equilibrium constraints and the dual models in the framework of convexificators.

DOI : 10.1051/ro/2020081
Classification : 90C30, 90C46, 49J52
Keywords: Nonsmooth analysis, convexificators, duality, constraint qualification
@article{RO_2021__55_S1_S2221_0,
     author = {Joshi, Bhuwan Chandra},
     title = {Optimality and duality for nonsmooth semi-infinite mathematical program with equilibrium constraints involving generalized invexity of order $\sigma > 0$ },
     journal = {RAIRO. Operations Research},
     pages = {S2221--S2240},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020081},
     mrnumber = {4223154},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020081/}
}
TY  - JOUR
AU  - Joshi, Bhuwan Chandra
TI  - Optimality and duality for nonsmooth semi-infinite mathematical program with equilibrium constraints involving generalized invexity of order $\sigma > 0$ 
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S2221
EP  - S2240
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020081/
DO  - 10.1051/ro/2020081
LA  - en
ID  - RO_2021__55_S1_S2221_0
ER  - 
%0 Journal Article
%A Joshi, Bhuwan Chandra
%T Optimality and duality for nonsmooth semi-infinite mathematical program with equilibrium constraints involving generalized invexity of order $\sigma > 0$ 
%J RAIRO. Operations Research
%D 2021
%P S2221-S2240
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020081/
%R 10.1051/ro/2020081
%G en
%F RO_2021__55_S1_S2221_0
Joshi, Bhuwan Chandra. Optimality and duality for nonsmooth semi-infinite mathematical program with equilibrium constraints involving generalized invexity of order $\sigma > 0$. RAIRO. Operations Research, Tome 55 (2021), pp. S2221-S2240. doi: 10.1051/ro/2020081

[1] A. Ben-Israel and B. Mond, What is Invexity? J. Aust. Math. Soc. Ser. B. 28 (1986) 1–9. | MR | Zbl | DOI

[2] W. Britz, M. Ferris and A. Kuhn, Modeling water allocating institutions based on multiple optimization problems with equilibrium constraints. Environ. Model. Softw. 46 (2013) 196–207. | DOI

[3] F. H. Clarke, Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, NY (1983). | MR | Zbl

[4] B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization. Ann. Oper. Res. 153 (2007) 235–256. | MR | Zbl | DOI

[5] B. D. Craven and B. M. Glover, Invex Functions and Duality. J. Aust. Math. Soc. Ser. A. 39 (1985) 1–20. | MR | Zbl | DOI

[6] S. Dempe and A. B. Zemkoho, Bilevel road pricing: theoretical analysis and optimality conditions. Ann. Oper. Res. 196 (2012) 223–240. | MR | Zbl | DOI

[7] V. F. Demyanov, Convexification and concavification of a positively homogeneous function by the same family of linear functions. Universia di Pisa, Report 3, 208, 802 (1994).

[8] V. F. Demyanov and V. Jeyakumar, Hunting for a smaller convex subdifferential. J. Glob. Optim. 10 (1997) 305–326. | MR | Zbl | DOI

[9] V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis. Verlag Peter Lang, Frankfurt (1995). | MR | Zbl

[10] J. Dutta and S. Chandra, Convexifactors, generalized convexity and vector optimization. Optimization 53 (2004) 77–94. | MR | Zbl | DOI

[11] J. Dutta and S. Chandra, Convexifactors, generalized convexity and optimality conditions. J. Optim. Theory Appl. 113 (2002) 41–65. | MR | Zbl | DOI

[12] M. L. Flegel, C. Kanzow and J. V. Outrata, Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints. Set-Valued Anal. 15 (2006) 139–162. | MR | Zbl | DOI

[13] M. A. Goberna and M. A. López, Linear Semi-Infinite Optimization. John Wiley & Sons, Chichester (1998). | MR | Zbl

[14] M. A. Goberna and M. A. López, editors. Semi-Infinite Programming: Recent Advances. Kluwer, Dordrecht (2001). | Zbl | DOI

[15] S. M. Guu, Y. Singh and S. K. Mishra, On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints. J. Inequal. Appl. 2017 (2017) 1–9. | MR

[16] M. A. Hanson, On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 80 (1981) 545–550. | MR | Zbl | DOI

[17] P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48 (1990) 161–220. | MR | Zbl | DOI

[18] R. Hettich and K. O. Kortanek, Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35 (1993) 380–429. | MR | Zbl | DOI

[19] V. Jeyakumar and D. T. Luc, Approximate Jacobian matrices for nonsmooth continuous maps and C 1 -optimization. SIAM J. Control Optim. 36 (1998) 1815–1832. | MR | Zbl | DOI

[20] V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101 (1999) 599–621. | MR | Zbl | DOI

[21] V. Jeyakumar, D. T. Luc and S. Schaible, Characterizations of generalized monotone nonsmooth continuous maps using approximate Jacobians. J. Convex Anal. 5 (1998) 119–132. | MR | Zbl

[22] B. C. Joshi, Higher order duality in multiobjective fractional programming problem with generalized convexity. Yugosl. J. Oper. Res. 27 (2017) 249–264. | MR | DOI

[23] B. C. Joshi, S. K. Mishra and P. Kumar, On Semi-infinite Mathematical Programming Problems with Equilibrium Constraints Using Generalized Convexity. J. Oper. Res. Soc. Ch. (2019). DOI: . | DOI | MR

[24] B. Kohli, Optimality conditions for optimistic bilevel programming problem using convexifactors. J. Optim. Theory Appl. 152 (2012) 632–651. | MR | Zbl | DOI

[25] D. T. Luc, A multiplier rule for multiobjective programming problems with continuous data. SIAM J. Optim. 13 (2002) 168–178. | MR | Zbl | DOI

[26] M. A. López and G. Still, Semi-infinite programming. Eur. J. Oper. Res. 180 (2007) 491–518. | MR | Zbl | DOI

[27] Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996). | MR | Zbl

[28] S. P. Marin, Optimal parameterization of curves for robot trajectory design. IEEE T Automat. Contr. 33 (1988) 209–214. | Zbl | DOI

[29] P. Michel and J.-P. Penot, Calcul sous-différentiel pour des fonctions lipschitziennes et nonlipschitziennes. C. R. Math. Acad. Sci. 12 (1984) 269–272. | MR | Zbl

[30] S. K. Mishra and G. Giorgi, Invexity and Optimization, Springer-Verlag, Berlin-Heidelberg (2008). | MR | Zbl

[31] S. K. Mishra, V. Singh and V. Laha, On duality for mathematical programs with vanishing constraints. Ann. Oper. Res. 243 (2016) 249–272. | MR | DOI

[32] B. S. Mordukhovich and Y. Shao, On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2 (1995) 211–228. | MR | Zbl

[33] N. Movahedian and S. Nobakhtian, Constraint qualifications for nonsmooth mathematical programs with equilibrium constraints. Set-Valued Anal. 17 (2009) 65–95. | MR | Zbl | DOI

[34] N. Movahedian and S. Nobakhtian, Nondifferentiable multiplier rules for optimization problems with equilibrium constraints. J. Convex Anal. 16 (2009) 187–210. | MR | Zbl

[35] N. Movahedian and S. Nobakhtian, Necessary and sufficient conditions for nonsmooth mathematical programs with equilibrium constraints. Nonlinear Anal. 72 (2010) 2694–2705. | MR | Zbl | DOI

[36] Y. Pandey and S. K. Mishra, Duality for nonsmooth optimization problems with equilibrium constraints, using convexificators. J. Optim. Theory Appl. 171 (2016) 694–707. | MR | DOI

[37] Y. Pandey and S. K. Mishra, On strong KKT type sufficient optimality conditions for nonsmooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints. Oper. Res. Lett. 44 (2016) 148–151. | MR | DOI

[38] Y. Pandey and S. K. Mishra, Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators. Ann. Oper. Res. 269 (2018) 549–564. | MR | DOI

[39] E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev. 29 (1987) 21–89. | MR | DOI

[40] A. U. Raghunathan and L. T. Biegler, Mathematical programs with equilibrium constraints in process engineering. Comput. Chem. Eng. 27 (2003) 1381–1392. | DOI

[41] R. Reemtsen and J. J. Ruckmann, editors. Semi-Infinite Programming. Kluwer, Dordrecht (1998). | MR | DOI

[42] Y. Singh, Y. Pandey and S. K. Mishra, Saddle point optimality criteria for mathematical programming problems with equilibrium constraints. Oper. Res. Lett. 45 (2017) 254–258. | MR | DOI

[43] M. Soleimani-Damaneh, Characterizations and applications of generalized invexity and monotonicity in Asplund spaces. Top. 20 (2012) 592–613. | MR | Zbl | DOI

[44] O. Stein, Bi-level strategies in semi-infinite programming. In: Vol. 71 of Nonconve Optimization and its Applications. Kluwer Academic Publishers, Boston (2003). | MR | Zbl

[45] O. Stein, How to solve a semi-infinite optimization problem. Eur. J. Oper. Res. 223 (2012) 312–320. | MR | Zbl | DOI

[46] S. Suh and T. J. Kim, Solving nonlinear bilevel programming models of the equilibrium network design problem: a comparative review. Ann. Oper. Res. 34 (1992) 203–218. | MR | Zbl | DOI

[47] S. K. Suneja and B. Kohli, Optimality and duality results for bilevel programming problem using convexifactors. J. Optim. Theory Appl. 150 (2011) 1–19. | MR | Zbl | DOI

[48] X. Tong, C. Ling and L. Qi, A semi-infinite programming algorithm for solving optimal power flow with transient stability constraints. J Comput. Appl. Math. 217 (2008) 432–447. | MR | Zbl | DOI

[49] A. I. F. Vaz and E. C. Ferreira, Air pollution control with semi-infinite programming. Appl. Math. Model. 33 (2009) 1957–1969. | MR | Zbl | DOI

[50] A. Winterfeld, Application of general semi-infinite programming to lapidary cutting problems. Eur. J. Oper. Res. 191 (2008) 838–854. | MR | Zbl | DOI

[51] J. J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307 (2005) 350–369. | MR | Zbl | DOI

Cité par Sources :