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OPTIMALITY AND DUALITY FOR NONSMOOTH SEMI-INFINITE
MATHEMATICAL PROGRAM WITH EQUILIBRIUM CONSTRAINTS
INVOLVING GENERALIZED INVEXITY OF ORDER o >0

BHUWAN CHANDRA JOSHI*

Abstract. In this paper, we derive sufficient condition for global optimality for a nonsmooth semi-
infinite mathematical program with equilibrium constraints involving generalized invexity of order
o > 0 assumptions. We formulate the Wolfe and Mond—Weir type dual models for the problem using
convexificators. We establish weak, strong and strict converse duality theorems to relate the semi-
infinite mathematical program with equilibrium constraints and the dual models in the framework of
convexificators.
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1. INTRODUCTION

In nonsmooth optimization the notion of convexificator has proved that it provides nice calculus rules for
establishing necessary optimality conditions. The notion of compact and convex convexificator is introduced by
Demyanov [7], which was later developed by Demyanov and Jeyakumar (see [8]). The notion of convexificator
is a generalization of the notions of upper convex and lower concave approximations (see [9]). Jeyakumar and
Luc [19,20] introduced the notions of nonconvex closed convexificator and approximate Jacobian, respectively.
Making use of these notions, different Lagrange multiplier rules for efficiency were established (see, e.g., [10,11,
19,21,24,25,47)).

The notion of convexificator is a generalization of known subdifferentials such as Michel-Penot [29], Clarke [3],
and Mordukhovich [32]. Later Luc [25] derived a Fritz John type necessary condition for a weak minimum of
constrained multiobjective programming without set constraint via approximate Jacobians. Dutta and Chandra
[10] established some necessary optimality conditions of Fritz John type for weak minima in terms of upper
semi-regular and upper convexifactors for multiobjective optimization problems with inequality constraints.

In the recent years, numerous generalizations of convex functions have been derived which proved to be
useful for extending optimality conditions and some classical duality results, previously restricted to only convex
programs, to larger classes of optimization problems. One of them which is mostly used is invexity introduced
by Hanson [16]. Invex functions are extremly significant in optimization theory mainly due to the properties
regarding their global optima. In 1985, Cravan et al. [5] defined non smooth invex functions. Israel and Mond [1]
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discussed optimality in his paper “What is Invexity?” In last few decades, duality and optimality condition in
invex optimization theory have been discussed by several authors (see [22,23,43]) and references therin.

The class of mathematical programs with equilibrium constraints is an extension of the class of bilevel
programming problems [4,6,27,46]. Mathematical programming problems with equilibrium constraints belong to
a difficult class of nonlinear optimization problems. Since the feasible region of these problems are not necessarily
convex. In MPEC problems many constraint qualifications like Mangasarian-Fromovitz constraint qualification,
Abadie constraint qualification, Slater constraint qualification do not hold (see [51]). Flegel et al. [12] considered
optimization problems with a disjunctive structure of the feasible set and obtained optimality conditions for
disjunctive programs with application to MPEC using Guignard-type constraint qualifications. Movahedian
and Nobakhtian [33] introduced nonsmooth strong stationarity, M-stationarity and generalized Abadie and
Guignard-type constraint qualifications for nonsmooth MPEC. Movahedian and Nobakhtian [34] introduced a
nonsmooth type M-stationary condition based on the Michel-Penot subdifferential and established the Kuhn—
Tucker, Fritz-John-type, M-stationary necessary conditions for the nonsmooth MPEC. Further, Movahedian
and Nobakhtian [35] established necessary optimality conditions for Lipschitz MPEC on Asplund space and
sufficient optimality conditions for nonsmooth MPEC in Banach space. (MPEC) plays a very important role in
many fields such as economic equilibrium, engineering design, capacity enhancement in traffic, dynamic pricing
in telecommunication networks and multilevel games [2,17,40]. For recent results in MPEC, we refer to the
articles [15,31,36-38,42] and references therin.

Semi-infinite programming problem (SIP) involves finitely many decision variables and infinitely many con-
straints. SIP has been widely applied in many fields, such as engineering design problem [39], transportation
problem [26], disjunctive programming [44], robot trajectory design problem [28], robust optimization and design
centering problem [45], air pollution control problem [49], optimal power flow problems in power systems with
transient stability constraints [48], lapidary cutting problems [50]. For more literature, we refer to the survey
articles [18,26,39], to the monograph [13] as well as to the books [14,41] which contain several tutorial articles
on theory, numerics and many possible applications of semi-infinite programming to the modeling and solution
of real-life problems.

In practice, it is natural that an (MPEC) problem may arise where infinite many restrictions are present rather
than finite many restrictions in finitely many variables. This motivated us to the mathematical formulation of
a semi-infinite mathematical program with equilibrium constraints (SIMPEC) for generalized convex functions
of order o > 0 assumptions. The organization of this paper is as follows: in Section 2, we give some preliminary,
definitions and results. In Section 3, we show that M-stationary condition is sufficient for global optimality
under some SIMPEC generalized strong invexity of order o > 0 assumptions. In Section 4, we formulate Wolfe
and Mond—Weir type dual models for the SIMPEC and establish weak and strong duality theorems relating to
the MPEC and the two dual models under strong invexity of order ¢ > 0 and generalized strong invexity of
order ¢ > 0 assumptions. In Section 5, we conclude the results of this paper.

2. PRELIMINARIES

Throughout this paper, R™ denotes the n-dimensional Euclidean space with inner product (-,-) and C' is
a non-empty subset of R™. The convex hull of C' and convex cone generated by C are denoted by co C' and
cone C' respectively.

The negative polar cone is defined by C~ = {u € R"|Vz € C, (x,u) < 0}.
Let C be a nonempty subset of R™ and x € ¢lC (closure of C'), then the contingent cone T'(z,C) to C at z
is defined by

T(xz,C) = {u e R"3t, | 0,Fu, — u such that x + t,u, € C}.
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We consider SIMPEC in the following form:

SIMPEC min  F(u)
subject to:  g(u,t) <0Vt €T, h(u)=0,
O(u) >0, (u) >0, (0(u),(u)) =0,
where the set T is an infinite compact subset of R*, F : R* - R, g:R* xT — RF, h:R" - RP, §:R* — R!
and 1) : R" — R! are given functions. If we take h(u) := 0, 8(u) := 0, ¥(u) := 0, then, the optimization problem

with equilibrium constraint coincides with the standard nonlinear programming problem.
The following index sets will be used throughout the paper:

Ty :=Ty(u):={teT:g(at) =0},
6:=6(a):={i=1,2,...,1:0;(a) = 0,¢;(a) > 0},
wi=w(@):={i=1,2,...,1:6;(a) =0,¢;(a) = 0},
ki=r(a):={i=1,2,...,1:0,(2) > 0,¢;(a) =0},
where @ € X is a feasible vector for the problem SIMPEC and the set w denotes the degenerate set.

Definition 2.1. Let F': R” — RU {400} be an extended real-valued function, v € R", and let F'(u) be finite.
Then, the lower and upper Dini directional derivatives of F' at u in the direction y are defined, respectively, by

F, (u,y) := liminf Fu+ty) — F(u)

t—0t t ’

and

E(u,y) :=limsup Flutty) = F(u),

t—0t t

Definition 2.2 (see [20]). A function F' : R™ — R U {400} is said to have upper convexificators, 0*F(u) at
w € R™ if 0*F(u) C R™ is a closed set and for each y € R™,

Fy(wy) < sup (§y).
£€0*F(u)
Definition 2.3 (see [20]). A function F' : R™ — R U {400} is said to have lower convexificators, 0,F(u) at
u € R™ if 0,F(u) CR™ is a closed set and for each y € R,

Fl(u,y)> inf Y) .
4 (u,y) 2 (& v)
The function F is said to have a convexificator 0*F(u) C R™ at u € R, iff 9*F(u) is both upper and lower
convexificators of F' at u.

Definition 2.4 (see [10]). A function F' : R™ — R U {400} is said to have upper semi-regular convexificators,
O*F(u) at uw € R™ if 9*F(u) C R™ is a closed set and for each y € R"

Ff(u,y)< sup (). (2.1)
£€0* F(u)

Based on the definitions of an invex function [30] and generalized invex functions [43], we are introducing the
definition of strongly invex function of order o > 0 and generalized strongly invex functions of order ¢ > 0 in
terms of convexificators.

Definition 2.5. Let F': R” — RU {+0o0} be an extended real valued function, which admit convexificator at
% € R™ and 7 : R™ x R™ — R"™ be a kernel function then, f is said to be
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(i) strongly 0*-invex of order o > 0 at @ with respect to 7 if for every u € R™,u # 4, there exist u > 0 such
that

F(u) = F(@) + (& n(u, w) + pln(w, @)1, vV Ee 0" F(a).

(ii) strongly 0*-pseudoinvex of order o > 0 at @ with respect to 7 if for every u € R™ u # 1, there exist u > 0
such that

3¢ e 0 F(a), (§n(u,w)) + plln(u,a)|7 2 0= F(u) = F(a).
(iii) strongly 9*-quasiinvex of order o > 0 at @ with respect to n if for every u € R™, u # 4, there exist u > 0

such that
F(u) < F(a) = (& n(u, @) + plln(u,a)||” <0, VEe€IF(a)

We provide following examples in support of the definition of §*-invex function and generalized 0*-invex
functions of order o > 0, respectively.

Example 2.6. Consider the function F' : R — R is given by

2. >
F(u){2+u’ u > 0,

2—-%; u<o0

if we take point 4 = 0, then the function becomes strongly 0*-invex of order ¢ at w = 0 with respect to the
kernel function, n(u, @) = u? and 9*F(0) = {—3,0}.

Example 2.7. Consider the function F' : R — R is given by

1+% u=>0,
F(u) = 42.
14+u*; u<O0

if we take point @ = 0, then the function becomes strongly 0*-pseudoinvex function of order o at 4 = 0 with
respect to the kernel function, n(u, @) = u + @ and 0*F(0) = {1,0}.

Example 2.8. Consider the function F' : [-1,1] — R is given by F(u) = —u, if we take point & = —1, on the
set [—1,1], then the function becomes strongly 9*-quasiinvex function of order o at @ = —1 with respect to the
kernel function, n(u, @) = u? + @2, and 9*F(—1) = {—1}.

Pandey and Mishra [38] presented the following notations for SIMPEC:

m p

g= U cod*g(u,t;), h= U co0" hi() U cod* (—h;)(w),

=1

=1
D5 = U co0* ®@;(0) U cod* (—®;)(a), P, = U co0* ®; (),

i€ PiEw
U, = | o0 W, () U cod™ (—W,) (1), Wy = | J cod* W;(a),
1ER €W

(®0), = U co0* (—®;) () U cod* (—¥;) (@),
€W
[(@) =g~ Nh~ Nd; NI, N (D)3,
where, t1,t2,...,tm € Tg(@), m <n+1, and @ is a feasible point of the problem SIMPEC.

The following definitions are taken from Pandey and Mishra [38] for SIMPEC.
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Definition 2.9. Let @ be a feasible point of SIMPEC, and assume that all functions have convexificators
considered above at 4. We say that the generalized standard Abadie constraint qualification (GS Abadie CQ)
holds at @ if at least one of the dual sets used in the definition of I'(@) is nonzero and

I'(@) C T(C, ).

The following definitions of a generalized alternatively stationary point and a generalized strong stationary
point are taken from Joshi et.al. [23].

Definition 2.10. A feasible point @ of SIMPEC is called a generalized alternatively stationary (GA-stationary)
point if there are vectors 7 = (79,7, 7% 7%) € REFPT2 5 = (41 40 4¥) € RPT2 and ty,ts, ...ty € Ty(a),
m < n + 1 satisfying the following conditions:

P
0 € co0*F(u) + ZT cod*g(u, t;) + Z 71 00" i () + 7100 (— I ) ()]
i=1 m=1

l

+ 3 [ e0d (0:) (@) + i cod (— i) (@)

=1

l
+ 3 [leod* (6)(@) + 7 cod” (:)(@)] (2.2)

1=1
7 >060=1,2,...,m), 7, A >0, m=1,2,....p, (2.3)
Tf,rﬁ,'yf,'ygpzo,i=1,2,...,l, (2.4)
=1l =9l=7{=0, (2.5)
Vicwy!=0orvy!=0. (2.6)

Definition 2.11. A feasible point @ of SIMPEC is called a generalized strong stationary (GS-stationary) point
if there are vectors 7 = (19,7, 70, 7%) € RF4PH2 y = (41 0 %) € RPT2 and ty,ta, ..., bty € T,(),m < n+1
satisfying (2.2) to (2.5) together with the following condition

VieEw, 'yf:(), W =0.
The following result shows that GS-stationarity is a necessary optimality condition for SIMPEC.

Theorem 2.12 ([38]). Let @ be a local optimal solution of SIMPEC. Suppose that F is locally Lipschitz function
at 4, which admits a bounded upper semi-reqular convezificator 0* F(u). Assume also that GS-ACQ holds at @
and that the cone

d = cone co g + cone co h+ cone co D5 + cone co U, + cone co (PT),,,
is closed, then u is a GS-stationary point.

Corollary 2.13 ([38]). Let @ be a local optimal solution of SIMPEC. Suppose that F is locally Lipschitz near a.
Assume also that F' and effective constraint functions admit bounded upper semi-reqular convexificators at u. If
GS-ACQ holds at @, then u is a GS-stationary point.

In the next section, we prove global sufficient optimality conditions and we show that under certain SIMPEC
generalized strong invexity of order o assumptions, generalized alternatively (GA)-stationarity turns into a
global sufficient optimality condition.
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3. OPTIMALITY CONDITION

We consider the following index sets:

Wi i={icw:v =09 >0},
wi’::{iéw:*yf>0,7?=0},
5t ={i€d:y! >0},
HATZZ{iEHZ’y;b>0}.

Theorem 3.1. Let 4 be a feasible GA-stationary point of SIMPEC, assume that F is strongly 0*-
pseudoinver function of order o at @ with respect to the kernel n and g(-,t)(t € Ty), £hm(m = 1,2,...,p),
—0;(i € dUw),—;(i € wURK) are strongly 0*-quasiinvez functions of order o at @ with respect to the common
kernel n. If wz u wfy” U (w U Ii,JYr = ¢, then @ is a global optimal solution of SIMPEC.

Proof. Let u be any arbitrary feasible point of SIMPEC. Then, for any ¢; € T,(4), we have
g(u, t;) < g(a,t;), Vt; € Ty(a).
By strong 9*-quasiinvexity of g; of order o at @, there exist uf > 0, such that
(€9, n(u, @) + 1 |n(u,a)||” <0, V& € dg(u,ts), ¥t € Ty(). (3.1)

Similarly, we have

(Gno (@) + poml(, D7 0, ¥ G € 0 hn(@), ¥ m = {1,2,...,), (3:2)
(Vs (0, @) + im0, D7 S0,V v € 0" (~hi) (@), V= {1,2,.....p}, (3.3)
(&n(, @) + pdlin(u, D)7 <0, ¥l €' (=0)(@), ViedUw, (3.4)
(&% n(w,@)) + ¥ In(w,@)|7 <0, V¥ €0 (~W)(@), ViewUn. (3.5)

0 T _ 1o C_ h
If wiUwyuUu 5,? U H,t = ¢, multiplying (3.1)-(3.5) by 77 \12/ 0 ¢ = 1,2,....om), 7, > 0

(
(m=1,2,....p), ¥, > 0(m=1,2,....,p), 79 >0(G € §Uw), 7¥ > 0 (i € wU k), respectively and
adding, we obtain

m D l l
< <Z ¢l + Z [TTIZCm +’yfn1/m] + ZTfﬁf + Z#f?) > + Z 72 pd |n(u, @)||”

i€ly
+ZTum||nUUH"+vaum||nuu||"+ZT HWUUH"+2T i In(w, @)l|” <0,

where &7 € co0*g(ii,t;), Cm € c00* b (@), Vm € c00*(—hy)(@), & € cod*(—0;)(), and &F € cod*(—V,;)(@).
Since all p; > 0 that is the above inequality can also be written as

m P l l
< (Z T+ [T+ vm) + Y€+ er’fﬁ“) ,n(u,a>> <0.
=1 m=1 =1 =1
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Thus by GA-stationarity of 4, we can select £ € cod*F (@), so that,
(& nlu, @) + plln(u, w)[|” = 0.
By strong 0*-pseudoinvexity of order o of F' at @ with respect to the common kernel 7, we get
F(u) = F(a)

for all feasible points u. Hence u is a global optimal solution of SIMPEC. O

The example given below illustrates Theorem 3.1.

Example 3.2. Consider the following SIMPEC problem
SIMPEC

min F(u) := {

subject to:
glu,t) == —u? =t <0,¥Yt €[0,1],

w;,  u >0,
O(u) := { 5

u; u >0,
1—€e“ u<O,

u?; u <0,
u?|cos Z|; u # 0,
V() = {o- U=

(O(u), ¥(u)) :=0.

Here F is 0*-pseudoinvex of order ¢ > 0 at @ = 0 with respect to the kernel, n(u, %) = cosusin@. Further,
g, —0 and — ¥ are 9*-quasiinvex of order o > 0 at @ = 0 with respect to the common kernel n(u, @) = cos u sin 4.
The feasible point for the given SIMPEC is @ = 0. We have cod*F(0) = [—1,1], cod*g(0,t1) = 0, t; = 0,
c0d*(—0)(0) = [~1,0] and cod*(—¥)(0) = [~m,7]. One can easily verify that, there exist 79 = 1,7% = 1 and
7% =1 such that @ = 0 is a GA- stationary point and % = 0 is a global optimal solution for the given primal
problem SIMPEC. Hence the assumptions of the Theorem 3.1, are satisfied.

Remark 3.3. Based on the Definition 2.5, the definitions of strongly invex function of order ¢ and generalized
strongly invex function of order ¢ can also be given in terms of upper semi-regular convexificators.

4. DUALITY

In this section, we formulate and study a Wolfe type dual problem for the problem SIMPEC using the
asumption of strong 9*-invexity of order o. We also formulate Mond—Weir type dual problem and study the
problem SIMPEC using strong 0*-invexity of order o and generalized strong 0*-invexity of order o assumptions.

The formulation of Wolfe type dual problem for the problem SIMPEC is as follows:

WD max {F(v) + ZTigg(v,ti) + Z ot b (v) — Z [Tf@i(v) + Tiw’L/)i(’U)} }
i=1 m=1

v,T :
=1
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subject to :

P
0 € cod*F(v) + ZT cod*g(v, t;) + Z 7 00" h, )+'yﬁlcoa*(—hm)(v)]
=1 m=1

l

+ Z [choﬁ*(—ai)(v) + choﬁ*(—wi)(v)] )

i=1
>0 =1,2,...,m), 7" Ah >0, m=1,2,....p,

Tf,ﬁ’b,'yf, ;ﬁzo 1=1,2,...,1,

Tg:Tgb:'yzzvgpzo,ViEw,vf:Qvf:O, (4.1)

where 101};1 = T#L - 71?177- = (7-977_h77_977_1b) € Rk+p+2l7 Y= (’yh7797’7w) € RIH—QZ’ and t17t27~-~7tm € Tq(ﬂ/)a
m<n-+1.

Theorem 4.1 (Weak duality). Let @ be feasible for the problem SIMPEC, (v,T) be feasible for the dual WD
and the index sets I,,6,w, k are defined accordingly. Suppose that F, g(-,t) (t € Ty), hm (m=1,2,...,p), —b;
(i € 6Uw), —1; (i € wUk) admit bounded upper semi-reqular convezificators and are strongly 0*-invex functions

of order o at v, with respect to the common kernel n. If wg U w;/’ U 5j‘ u mj = ¢, then for any u feasible for the
problem SIMPEC, we have

m P l
F(u) = F(0) + Y 7lg(0,ts) + Y pluhm() = D [700:0) + 70 u(v)]
i=1 m=1 i=1
Proof. Let us suppose that u be any feasible point for the problem SIMPEC. Then, we have
g(u,t) <0, VteT and hy,(u) =0, Vm=1{1,2,...,p}.
Since F' is strongly invex function of order o at v, with respect to the kernel 7, then there exist p such that
F(u) = F(v) = (€, n(u,v)) + plin(u,0)[7, V&€ F(v). (4.2)
Similarly, we have
g(u,t;) — g(v,ti) = (& n(u,v)) + pf [n(u,0) |7, V& € 07g(v,4:),V t; € Ty(v), (4.3)

for all m = {1,2,...,p}, we have

han (1) = hin (0) Z (G 1w, 0)) + | [0(w, )75V G € 0% han (v), (4.4)

—h (1) + hin (V) 2 (Vi (w,0)) + pn[0(w, 0) |7,V v € 07 (—han) (v), (4.5)
in the same manner, we have

—0;(u) + 0:(v) 2 (&7, 0w, v)) + 1 In(u,0)||7, ¥ & €0*(~0:)(v), ViesUw, (4.6)

—i(u) + Pi(v) > (€ n(u,v)) + pd In(u, )|, VEL € 0" (—i)(v), ViewUr. (4.7)

If wg Uw? U 6f Ukt = ¢, then multiplying (4.3) to (4.7) by 77 > 0 (i = 1,2,...,m), ho> 0
(m=1,2,....p), Y% >0 (m = 1,2,...,p), 77 > 0 (i € § Uw), T-w >

. 0 (i € wU k), respectively and
adding (4.2) to (4.7), we obtain
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m m P P P
v)+ Y mlg(uts) = > g t) + Y T () = > T (0) = Y Al ()
=1 m=1 m=1

i=1 m=1

P l l l l
Y A (0) =Y 0 (w) + > w0 (0) = Y P bi(u) + > i(v)
m=1 =1 =1 =1 i=1
m p l
> <5 +D T+ [Tl b+ [ el + TW} n(u, v)>
i=1 m=1 i=1

p
 plln(u, )17+ D i llnCu )17+ Y T I, 0) |7

icly m=1
+ vaumlln (u,v) ||“+ZT Ylin(u, v) ||"+ZT Flln(u, )7,

where £ € cod*F(v), £ € cod*g(v,t;)(t; € T,), Cm € c00* by (V) T € c0d* (—hm)(v), €7 € cod*(—6;)(v), and
5? € co0*(—1;)(v). From (2.2), we have
om P ) 1 ) )
E+ 3 TIE+ D [T+ Aim] + 3 [70E + VEY] =
i1 m=1 i1

Therefore,

m m p p
v) + ZTigg(mti) - ZTf’gi(v,ti) + Z 7 B (1) — Z Z Yo
i=1 i=1 me1

m=1
p l l l
Y AR (0) =Y P0i(u) + > 0 () = > wi(u) + Z i (v)
m=1 i=1 i=1 i=1

Now, using feasibility condition of SIMPEC, i.e., g(u,t;) <0, hp(u) =0, 0;(u) >0, ¥;(u) > 0, it follows that

P l l
ZT g(v,t;) Z Tl (V) + Y A () + > 70:(0) + D> 7 i(v) > 0
m=1 =1 =1

m=1

Hence,

m P l
V) Y0, t) + D phhm(v) = Y [700:(0) + T ui(v)]
i=1 m=1

i=1

where, p =77 —~" “and the proof is completed. (I

Theorem 4.2 (Strong duality). Let @ be a local optimal solution of the problem SIMPEC and assume that F is
locally Lipschitz near . Suppose that F, g(-,t) (t € T), £hy, (m=1,2,...,p),—0; (i € dUw),—; (i € wURK)
admit bounded upper semi-reqular convezificators and are strongly 0* -invex functions of order o at @ with respect
to the common kernel n. If GS-ACQ holds at i, then, 3 7 = (79,71, 7, 7¥) € R¥+P+2L sych that (a,7) is an
optimal solution of the dual WD and the corresponding objective values of SIMPEC and WD are equal.

Proof. Since 4 is a local optimal solution of the problem SIMPEC and the GS-ACQ is satisfied at @, now, using
Corollary 2.13, i.e., 37 = (79,7, 79, 7¥) € RFP+2L and 5 € (3",749,7¥) € RP*2 such that the GS-stationarity
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conditions for the problem SIMPEC are satisfied, it follows that 3 € € cod*F(a), & € cod*g(a,ti),
Con € €00l (), Dy € O™ (—han) (@), E9 € c0d*(—0;)(@) and £V € cod* (—1b;)(a), such that

m p l

€ Do E + 3 [+ hma] + S [HE + 708 -
=1 m=1 =1

~ . ~h

520(221,2,...,771), hoAh >0, m=1,2,...,p,

#0520, i=1,2,...,1,

Z’Z’

T,f:Tg/):’yH:'y& =0,Vi€w, ’yfz(), ’ysz.

Therefore (@, 7) is feasible for the dual WD. Now, using Theorem 4.1, we obtain

m P l
W)+ Y7290, t) + D phn(0) = Y [70i(0) + TP 0i(v)] (4.8)
i=1 m=1

i=1

where, pf, = 78 — 4 for any feasible solution (v,7) for the dual WD. Using the feasibility condition of
SIMPEC and its dual WD, d.e., for i = 1,2,...,m, g;(4) = 0, hy,(a) =0, (m = 1,2,...,p), 0;(a) = 0,
Vi € § Uw, and ¢;(a) = 0,Vi € w U Kk, we get

m P l
F(i) = @)+ Y 7g@) + Y puhan(®) = Y [70:(0) + 7 0i(w)] (49)
— Ak . Using (4.8) and (4.9), we obtain

i;ﬂ it +me Zl:[ @) + 746 ()]

i=1

ZTg'Ut +me i{ JrTwLZJZ()}.

m=1 i=1

~h
Where7 Pm = m

Hence, (@,7) is an optimal solution for the dual WD and the corresponding objective values of SIMPEC and
WD are equal. O

Theorem 4.3 (Strict converse duality). Let @ be an optimal solution for (SIMPEC) and @ be an optimal
solution for (WD). If the assumptions of the strong duality theorem are satisfied and F be strictly strong invex
of order o at u then u = u.

Proof. We proceed by contradiction. Assume % F# «. By the strong duality theorem there exist
7= (79,70, 70 7¥) € REPH2 5 ¢ (3759 4¥) € RP*2 and indices t,t2,...,tym € Ty(@),m < n+1,
such that (@,7) be an optimal solution for (WD) and

m l
fla) = F(w)+ 3" 7fg(a.1:) + Z Pt (8) = 3 [70:(@) + 7 ()|
m l
= F(i) + Y 7g(.1) +Zp Z[ 00.(@) + 70 (@ )}. (4.10)

Now, strict strong invexity of F' at @ gives

F(a) = F(a) > (& n(u,w)) + pln(,a)|”, Ve d F(a) (4.11)



OPTIMALITY AND DUALITY FOR NONSMOOTH SEMI-INFINITE MATHEMATICAL PROGRAM S2231

Similarly, we have

g(’aati) - g(ﬂ,tl) > < igvn(aa 12)> + Mf”n(ﬂ)a)nav v gf € 8*9(117 tz)v v ti € Tq(ﬂ), (412)

for all m = {1,2,...,p}, we have

hn (@) = han (@) = (G (T, @) + [0, D],V G € 0" I (), (4.13)
P () + P () = (Vi (@, @) + pm (@, W)[7, Y vm € 0% (=him (), (4.14)
in the same manner, we have
—0i(a) + 0:(a) > (& n(@, @) + pf In(@,a)l|7, V& €d*(=6:) (@), ViedUw, (4.15)
— i (@) + ¥u(@) > (& n(@, @) + puf |n(@,@)||7, V& €0 (—i)(@), Vi€wur. (4.16)
If W) Uwy Udsh Ukl = ¢, then multiplying (4.1 > "

2) to (4.16) by 77 > 0 (i = 1,2,...,m), ¥@ > 0
(m:1727"'?p)) ;?1}"}'7,>0(m:1)27"')p)7 7:10> (Zeéuw) 7’:1/) (

p i € wU k), respectively and
adding (4.11) to (4.16), we obtain

hS]

l
<€ + Z%gﬁg + Z G+ ] + 30 [Fo€0 4 7Y n(a, a)>

m=1 i=1

+plln(a, @ II"+ZT Plla—al” +Z bl In (@, @)

+vaumllnﬂ II"+ZT ?lIn(a H"+ZT i lIn(a, a)ll°.

m=1

From (4.1), we have £ € cod*F(a), & € cod*g(,t:)(t; € T,), Cm € c00*h(@), U € cod*(—hum)(),
€% € cod* (—0;) (@), and fz/’ € co0*(—1;) (), such that

m l
Z ~g§g + Z |:T Cm + 'Yme:| + Z |:7~'10£ZH + %:bé,}b} =
i=1 m=1 i=1
That is one has
m D P P
F(a) = F(i) + > #g(u,t;) = > #gli,t:) + > Fhhm(@) = > Fhhm (@) = > Al (1)

Now, as @ is an optimal solution for (SIMPEC), we get

m P l
7) = F(@) + 3 #gi(@) + > phn(@) = S [7#60:(3) + 7 0u(@)] >0,
i=1 m=1 2
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i.e.,

m

F(@) > (@) + 3. #0:@) + 3 @) = 3 [7904(0) + 7 0@)]

i=1 m=1 i=1
Which contradicts (4.10). Therefore % = @ O
Example 4.4. Consider the following SIMPEC in R?;
SIMPEC

min f(ur,ug) := |u| + u3

subject to:

g(u,t) == |ur| —t <0,t €10,1],
O(uy,uz) := |ug| +us >0,
Y(ur, uz) := —ug >0,

0(ur, uz)p(ur, uz) := ua(|ua| + uz) = 0.

Now, we formulate Wolfe-type dual problem WD of SIMPEC

max [v1| + 03 + 79|va| = [77(Jor] + v2) + 7% (—v2)]

subject to: (8> € <2§)2) + 79 <€Og> _ 40 <€10> o <_01) |

where £, &9, and ¢9 € [-1,1].

Here one can see that, if w is nonempty then either
7 >0,7%>00r 7% = 0.

If we take @ = (0,0), as a feasible point then the index sets §(0,0) and (0,0) are empty sets, but w(0,0) is
non-empty. Also, solving a constraint equation in the feasible region of WD we get a number of choices for
7% and 7. Since w is non-empty so we can consider w,wg', w;j)‘ to decide the feasible region of WD. Now it is
clear that the assumptions of Theorem 4.1 are satisfied. Hence we can say that Theorem 4.1, holds between
SIMPEC and WD.

Since @ = (0,0) is an optimal solution for the SIMPEC also one can see that the GS-ACQ is satisfied at .
If we take

1 1
&= §,Tg =1,89 = 5,7'9 =1,¢=1, and ¥ =

then @ = (0,0) is a generalized strong stationary point. Further, we have

()= () +1(6) () (%)

such that (@, 7) is an optimal solution of WD and the optimal values corresponding to the objective function of
the primal and its dual are equal. Hence the assumptions of the Theorem 4.2, are satisfied.
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Now, we formulate the Mond—Weir type dual problem (MWD) for the problem SIMPEC and establish duality

theorems using convexificators.
MWD max{F(v)}

subject to:
P
0 € co0"F(v) + ZT cod*g(v,t;) + Z 7" 00" hp, )—|—’y£’ncoa*(—hm)(v)]
i=1 m=1

—I—Z[ cod* (—0,;)(v )—|—7' cod* (— 1/)1-)(11)],

(ti € Ty), hm(v)=0(m=1,2,...,p),

97—1?77,771 ZO 7::1,27...’17

=1 =Al =9 =0Vicwrl =07 =0, (4.17)

where, 7 = (79, 7", 79, 7¥) € RFFPH2 o = (41 49 4¥) € RPF2L and, ty,ta,... tm € Ty(@),m < n+ 1.

Theorem 4.5 (Weak duality). Let @ be feasible for the problem SIMPEC, (v, T) be feasible for the dual MWD
and the index sets Iy, d,w,k be defined accordingly. Suppose that F,g(-,t) (t € T),xh, (m =1,2,...,p),—b6;
(i € 6Uw), —1; (i € wUk) admit bounded upper semi-regular convezificators and are strongly 0*-invex functions
of order o at v, with respect to the common kernel n. If wﬁ‘; U w}f U 5j u nj = ¢, then for any u feasible for the
problem SIMPEC, we have

F(u) > F(v).

Proof. Since f is strongly 0*-invex function of order o at v, with respect to the kernel 7, then for some p > 0,
we have

F(u) = F(v) 2 (€ n(u,0)) + plln(u,0)[[7, ¥ & € 9*F(v). (4.18)

Similarly, we have

g(u,ti) = g(v,t:) = (&, n(u, v)) + i In(w, V)17,V & € 0°g(v, 1),V t; € Ty, (4.19)

for all m = {1,2,...,p}, we have

hin (1) = B (0) Z (G 1w, 0)) + p|[1(w, V|7,V G € " (0), (4.20)

—hn (1) + hin (0) 2 (Vm, 0w, ) + pm |0 (w, V)7,V v € O (=P ) (v), (4.21)

in the same manner, we have

—0;(u) + 0;(v) > (&7, (u,v)) + if I (u,0)||7, ¥ & € 0% (=0:)(v), ViedUw, (4.22)

—i(w) + i (v) = (€ n(u,0)) + i In(uwv)l|7, V& €0 (—i)(v), ViewUn. (4.23)
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0 _ 1o C_ h _
If wf Uw¥ U 6T Ukl = ¢, multiplying (4.19) to (4.23) by 77 >0 (i = 1,2,...,m), 7/t > 0(m =1,2,...,p),

A >0 (m=1,2,...,p), 7 >0 (i€ §Uw), 7¥ >0 (i €wU k), respectively and adding (4.18) to (4.23), we
obtain

m P p p
) + ZT 9(u,t;) Z T9(v,ts) + Y (W) = Y T (0) = > Al (w)
=1 m=1 m=1 m=1

l l
£ 3 o) - Z ) + 3 W) =D i (w) + D ()
m=1 i=1 i i=1

i=1

m p l
> <£+ SOHE Y [hlon + ] + 3 [70E] Y] (u7v)>
=1 m=1

=1
P
+ gl )17+ lIn(u, o) |7+ D T I, v) |7
icly m=1

+ Z Yokt |1 (1, 0) |7 +ZT ?lIn(u, 0) 7 +ZT P lln(u,0))7,

where € € cod*F(v), £ € cod*g(v,t;)(t € T),Cm € 00 hun(V), Dy € c00*(—hp)(v), €7 € cod*(—6;)(v), and
é;” € co0*(—1;)(v). From (4.17), we have

m P l
E+ D+ 3 [rhlm+ | + 30 [18 + 7P| =
=1 m=1 1=1
Therefore,

m m P P P
)+ Y Tiglusti) = > mEg(o,t) + D T (u) = Y Tl (v) - Z Yol (1)
=1 m=1 m=1 m=1

=1

14 l l
+ Z A B (0) —fo)ﬁi(u) +Z7'f0i erdzz ZT Pi(v
m=1 i=1 i=1
Now using the feasibility of u and v for SIMPEC and MWD, it follows that
F(u) > F(v).
Hence, the proof is completed. O
Theorem 4.6 (Strong duality). Let @ be a local optimal solution of the problem SIMPEC and let F be locally
Lipschitz near . Suppose that F, g; (i=1,2,...,m), £h,, (m=1,2,...,p), —6; (i € Uw), —t; (i EwURK)
admit bounded upper semi-reqular convezificators and are strongly 0* -invex functions of order o at @ with respect

to the common kernel . If GS-ACQ holds at 4, then there exists 7, such that (@, 7) is an optimal solution of
the dual MWD and the corresponding objective values of SIMPEC and MWD are equal.

Proof. The proof can be done similar to the proof of Theorem 4.2 by invoking Theorem 4.5. ]

Theorem 4.7 (Strict converse duality). Let @ be an optimal solution for (SIMPEC) and @ be an optimal
solution for (MWD). If the assumptions of the strong duality theorem are satisfied and F be strictly strong
0*-invex of order o at u then u = u.
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Proof. We proceed by contradiction. Assume @ # @. By the strong duality theorem there exist
o= (79,770, 7%) € RMPH2 5 ¢ (37 3% 4%) € RP2L and indices t1,ta,...,tym € Ty(a),m < n + 1,
such that (@,7) be an optimal solution for (MWD) and

f(w) = F(a). (4.24)
Now strictly strong 0*-invexity of F' at @ gives
F(u) = F(a) > (& n(a, w) + plln(u, )7, v§ e 0"F(a). (4.25)
Similarly, we have
9(u,t;) — (@, t;) = (&, n(w, @) + pfIn(@,a)||7, V& €0%g(u,t:), Vit € Ty(a), (4.26)
for all m = {1,2,...,p}, we have
b (@) = B (@) 2 (G (@, @) + prm (@, @) |7,V G € O (), (4.27)
—h (@) + han (@) = (Vm, 0(t; @) + |G, )7,V v € % (—hm ) (@), (4.28)
in the same manner, we have
—0i(a) + 0:(@) > (& n(@, @) + pf In(@,a)[|7, V& € (~6:)(@), ViedUw, (4.29)
—hi(@) + (@) > (& n(@, @) + (@, @)||7, V& €0 (—i)(@), Vi€wUr. (4.30)
If w,ey Uw}f U nyr U Hi = ¢, then multiplying (4.26) to (4.30) by 77 > 0 (i = 1,2,...,m), 75 > 0
(m=1,2,...,p), 3 >0 (m =1,2,....,p), 7 >0 (i € §Uw), 7 > 0 (i € wU k), respectively and

adding (4.25) to (4.30), we obtain

F() — F@) + 3 g t) — S At + 32 #h @) — 32 (@) — 32 3 )
P P 2
3 Sl — SR + S0 — 3 @) + 3 @)
<§ + Z #9¢9 + Z " G+ ] + i [70e! + 7el] @, a>>
+ plln(@, @)||” + ZT I|ln(a, w)l|” + Z " I (3, ) |7

P
+ ) A (@, @ H‘”rZT ! \In(a >||”+wau?|\n(ﬂ,ﬂ)\\”-
m=1 i=

From (4.17), we have £ € cod*F (@), & € cod*g(u,t:)(t; € Ty), Cm € O hu(@W), P € cod*(—hm)(@),
€0 € cod* (—0;) (@), and £ € cod* (—;)(), such that

i FIE9 4 i [ e +%’£Lﬂm} + i [%féf +%j’gﬂ —
=1 m=1 i=1

That is one has
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Now, using the feasibilty of @ and @ for (SIMPEC) and (MWD), respectively, we get

F(a) — F(@) > 0.

i.e.,
Which contradicts (4.24). Therefore @ = 4. O
Example 4.8. Consider the following SIMPEC in R?;
SIMPEC
min |U1| + ug
subject to:
glu,t) :=|uy| —t <0,V telo1l],
O(u1,uz) == |U1|+U2 >0,
Y(u1,uz) = uz — |u1| = 0,
(Jur] 4+ u2)(ug — |ua]) ==

Now, we formulate Mond-Weir type dual problem (MWD) for SIMPEC

max |v1| + vy
v, T

subject to: (8) c (g) + 79 (EOQ) _ 9 (€I9> Y (5;’) ’

where £,¢9,6% € [-1,1] and ¢¥ € {—1,1}.

m(ji] —1) 2 0, t € Ty(u) = {0}, (4.31)
70 (|v1| + v2) <0, (4.32)
™ (vg — [11]) <0 (4.33)

If w is nonempty then either
7 >0,7% >00r 7% = 0.

If we take the point @ = (0,0) from the feasible region, then the index sets §(0,0) and (0,0) are empty sets,
but w(0,0) is non-empty. Also, solving constraints equation in the feasible region of MWD we get a number of
choices for 7% and 7%. Since w is non-empty so we can consider w, w;' , wz; to decide the feasible region of MWD.
Now it is clear that the assumptions of Theorem 4.5 are satisfied. Hence we can say that Theorem 4.5, holds
between SIMPEC and MWD.

Since 4 = (0, 0) is the optimal solution of SIMPEC and GS-ACQ is satisfied at 4. Now if we take
1 1 1
g_ ’gg 5 69:17511):_177-9:177-9257 a‘nde):i?

then @ = (0,0) is the generalized strong stationary point and

)= () (@) -2 (0) -2 (1)
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Now it is clear that, we have 7 such that (@, 7) is an optimal solution of MWD and the optimal values correspond-
ing to the objective function of the primal and its dual are equal. Hence, the assumptions of the Theorem 4.6
are satisfied.

In order to justify Theorem 4.7, let we start with a contradiction i.e., let @ # © (i.e., the value of the objective
function of the primal SIMPEC is not equal to the value of the objective function of its dual MWD).

We have shown in our example, that there exist © = (0,0) and

¢ = %,gﬂ = —%,59 =1 =-1,7=17"= % and 7% = %
such that o is an optimal solution corresponding to the dual MWD. One can also see that for u # @ function
f is strictly strong invex. It is also clear that corresponding to the objective function f given in the primal
SIMPEC problem @ = (0,0) is an optimal solution. Which is a contradiction. Hence Theorem 4.7, is satisfied.

Next, we establish weak duality and strong duality theorems for SIMPEC and its Mond—Weir type dual
problem (MWD) under the assumptions of generalized strong 9*-invexity of order o assumptions.
Theorem 4.9 (Weak duality). Let @ be feasible for the problem SIMPEC, (v, T) be feasible for the dual MWD
and the index sets I, 0,w, x are defined accordingly. Suppose that F' is strongly 0*-pseudoinvez of order o at v,
with respect to the kernel n and g(-,t) (t € Ty), £hy, (mM=1,2,...,p), —0; (1 € Uw), —; (i € wUK) admit
bounded upper semi-reqular convexificators and are strongly 0*-quasiinvex functions order o at v, with respect
to the common kernel n. If wf; U w}f U 5;‘ U fijy' = ¢, then for any u feasible for the problem SIMPEC, there
exist > 0, such that

F(u) > F(v).

Proof. Assume that, for some feasible point u, such that F(u) < F(v), then by strong 9*-pseudoinvexity of F
of order o at v, with respect to the kernel 7, we get
(& n(u,v)) + pln(u, v)||” <0,V £ € °F(v). (4.34)

From (4.17), E|§~ €  cod*F(v), éf €  cod*g(v,t;), C~m € o0 hy,(v), Um € cod*(—hpm)W),
€% € cod* (—6;)(v), and é:/’ € co0*(—1;)(v), such that

m p
=3 3 TG A = S = S TV € 0 F (), (4.35)
i=1

m=1 dUw wUK

From (4.34), we have

< (Z TIEY 4 Z [Tglém +’Y7}7Llﬂm:| + ZTféf + Zrz‘béf) ,n(u, v)> > 0. (4.36)

i=1 m=1 dUw wUK

For each t; € Ty, g(u,t;) <0 < g(v,t;). Hence, by strong 0*-quasiinvexity of order o of g(-,t), we obtain

(&.n(w,0)) + uflln(u,v)| <0, Vel € 0"glv,ts), Vb €T, (4.37)
Similarly, we have

<§m7n(u, U)> + pm|In(u, 0)||7 <0, Vi € Ohp(v), Vm={1,2,...,p}, (4.38)
for any feasible point v of the dual MWD, and for every m, —h,,(v) = —h;,(u) = 0. On the other hand,

—0;(u) < —6;(v),Vi € 6 Uw, and —;(u) < —1;(v), Vi € w U k. By 0*-quasiinvexity, we obtain
(Vs (1,0)) + ol )7 S0, ¥ v € O (=him) (), ¥ = {1,2,...,p}, (4.39)
(& n(w,0) + i In(w,0)|” <0, V& € (~0)(v),¥ i €U, (4.40)
<5j’,n(u,v)> + il n(u, )7 <0, VeV €0 (=) (v),¥ i € wU k. (4.41)
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From equations (4.37) to (4.41), we have

<§~f,n(u,v)> <0(i=1,2,...,m), <g:m,77(u,v)> <0, <z7m,n(u,v)> <0 (m={1,2,...,p}),
<~f,77(u7v)> <0,ViedUuw, <5p,n(u,v)> <0,ViewUs.

; 0 V5] et —
Since wi Uw? Uy U kT = ¢, we have

m P
<Z7—zg ?ﬂ?(“:”)> <0, < Z |:T’I}:Lé:m + 'Yg@:}/m:| an(uvv)> <0,
i=1

m=1

(Breaten <o (T <o

€
3

Therefore,
((Sorters 3 bt hon] + Soof8 4 08 ) ot ) <0
m=1 dUw wUK
which contradicts (4.36). Therefore F(u) > F(v). Hence the proof is completed. O

Theorem 4.10 (Strong duality). Let @ be a local optimal solution of the problem SIMPEC and let F be locally
Lipschitz near u. Suppose that F is strongly 0*-pseudoinvex of order o at U, with respect to the kernel 0,
g(,t) (t €T), £hy, (m=1,2,...,p), —=0; (i € §Uw), —1; (i € wUk) admit bounded upper semi-reqular
convexificators and are strongly 0*-quasiinvex functions of order o at @ with respect to the common kernel 7).
If GS-ACQ holds at 4, then there exists T, such that (@, 7) is an optimal solution of the dual MWD and the
respective objective values are equal.

Proof. The proof can be done similar to the proof of Theorem 4.2, by invoking Theorem 4.9. O

Example 4.11. Consider the following SIMPEC problem

min f(u) = [ul

subject to:
glu,t) :=|u|—t <0, Vitel0,1],
O(u) :==u >0,
P(u) = |U| >0,
O(u)ip(u) =

Now, we formulate Mond-Weir type dual problem MWD for SIMPEC,

max f(0) = o (4.42)

subject to:

0€&+79 — [r%° + 79¢Y),
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where £,£9,6%¥ € [~1,1] and €% =1,

m(Jul =) 2 0, ¢ € Ty(u) = {0},
ou < 0,
™|ul < 0.

The optimal solution for SIMPEC is uw = 0. For u = 0 index sets § and k are empty sets but 3 is nonempty i.e.,

B = 1. Further, we have £ = %,59 = %7 0 =1,¢v = %,7'9 =1,7% = % and 7% = 1, such that the value of the
objective function of the primal is equal to the value of the objective function of its dual. Hence strong duality

theorem 1is satisfied.

5. CONCLUSIONS

We have studied semi-infinite mathematical program with equilibrium constraints (SIMPEC) and derived the
sufficient conditions for global optimality for SIMPEC using generalized strong invexity of order o assumptions.
We have formulated the Wolfe type and Mond—Weir type dual models for the problem SIMPEC in the framework
of convexificators. We have established weak, strong and strict converse duality theorems relating to the problem
SIMPEC and two dual models using strong 0*-invexity of order ¢ and generalized strong 9*-invexity of order o
assumptions. We have Provided examples in order to understand the concepts of global optimality conditions
and the dual models for the SIMPEC.

Acknowledgements. The author would like to thank both of the reviewers for their helpful and effective comments which
help us to improve this paper scientifically.
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