The edge geodetic self decomposition number of a graph
RAIRO. Operations Research, Tome 55 (2021), pp. S1935-S1947

Let G = (V, E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G1, G2, … , $$ of G such that every edge of G belongs to exactly one $$(1 ≤ in). The decomposition π = {G1, G2, … , $$} of a connected graph G is said to be an edge geodetic self decomposition, if $$($$) = $$(G) for all i(1 ≤ in). The maximum cardinality of π is called the edge geodetic self decomposition number of G and is denoted by $$(G), where $$(G) is the edge geodetic number of G. Some general properties satisfied by this concept are studied.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020073
Classification : 05C12, 05C70
Keywords: Edge geodetic number, edge geodetic decomposition, edge geodetic self decomposition, edge geodetic self decomposition number
@article{RO_2021__55_S1_S1935_0,
     author = {John, J. and Stalin, D.},
     title = {The edge geodetic self decomposition number of a graph},
     journal = {RAIRO. Operations Research},
     pages = {S1935--S1947},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020073},
     mrnumber = {4223150},
     zbl = {1469.05142},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020073/}
}
TY  - JOUR
AU  - John, J.
AU  - Stalin, D.
TI  - The edge geodetic self decomposition number of a graph
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S1935
EP  - S1947
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020073/
DO  - 10.1051/ro/2020073
LA  - en
ID  - RO_2021__55_S1_S1935_0
ER  - 
%0 Journal Article
%A John, J.
%A Stalin, D.
%T The edge geodetic self decomposition number of a graph
%J RAIRO. Operations Research
%D 2021
%P S1935-S1947
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020073/
%R 10.1051/ro/2020073
%G en
%F RO_2021__55_S1_S1935_0
John, J.; Stalin, D. The edge geodetic self decomposition number of a graph. RAIRO. Operations Research, Tome 55 (2021), pp. S1935-S1947. doi: 10.1051/ro/2020073

[1] P. Arul Paul Sudhahar, A. Ajitha and A. Subramanian, Edge geodetic domination number of a graph. Int. J. Math. App. 4 (2016) 45–50.

[2] M. Atici, On the edge geodetic number of a graph. Int. J. Comput. Math. 80 (2003) 853–861. | MR | Zbl | DOI

[3] F. Buckley and F. Harary, Distance in Graphs. Addison-Wesley, Redwood City, CA (1990). | MR | Zbl

[4] F. Harary, Graph Theory. Narosa Publishing House, New Dehli (1998).

[5] J. John and D. Stalin, Edge geodetic self decomposition of graphs. Disc. Math. Algorithms App. 12 (2020) 2050064. | MR | Zbl | DOI

[6] R. E. Mariano and S. R. Canoy, Jr., Edge geodetic covers in graphs. Int. Math. Forum 46 (2009) 2301–2310. | MR | Zbl

[7] P. Paulraja and S. Ganesamoorthy, Multidecompositions of line graphs of complete graphs. Disc. Math. Algorithms App. 11 (2019) 1950035. | MR | Zbl | DOI

[8] P. Paulraja and T. Sivakaran, Decompositions of some regular graphs into unicyclic graphs of order five. Disc. Math. Algorithms App. 11 (2019) 1950042. | MR | Zbl | DOI

[9] V. Samodivkin, On the edge geodetic and edge geodetic domination numbers of a graph. Commun. Comb. Optim. 5 (2019) 41–54. | MR | Zbl

[10] A. P. Santhakumaran and J. John, Edge geodetic number of a graph. J. Disc. Math. Sci. Cryptography 10 (2007) 415–432. | MR | Zbl | DOI

[11] A. P. Santhakumaran and J. John, The connected edge geodetic number of a graph. Scientia 17 (2009) 67–82. | MR | Zbl

[12] A. P. Santhakumaran and J. John, The upper edge geodetic number and the forcing edge geodetic number of a graph. Opuscula Math. 29 (2009) 427–441. | MR | Zbl | DOI

[13] A. P. Santhakumaran and J. John, The upper connected edge geodetic number of a graph. Filomat 26 (2012) 131–141. | MR | Zbl | DOI

[14] A. P. Santhakumaran and S. V. Ullas Chandran, Comment on “Edge geodetic covers in graphs”. Proyecciones J. Math. 34 (2015) 343–350. | MR | Zbl | DOI

[15] D. Stalin and J. John, Edge geodetic dominations in graphs. Int. J. Pure Appl. Math. 116 (2017) 31–40.

[16] D. Stalin and J. John, Forcing edge geodetic dominations in graphs. Int. J. Pure Appl. Math. 10 (2018) 172–177.

[17] D. Stalin and J. John, Upper edge geodetic dominations in graphs. J. Adv. Res. Dyn. Control Syst. 9 (2018) 201–205.

[18] F. Zheng, Advanced hybrid approaches based on graph theory decomposition, modified evolutionary algorithm and deterministic optimisation techniques for the design of water distribution systems, Ph.D. thesis. The University of Adelaide (2013).

[19] F. Zheng, A. C. Zecchin and A. R. Simpson, A decomposition and multistage optimization approach applied to the optimization of water distribution systems with multiple supply sources. Water Resour. Res. 49 (2012) 380–399. | DOI

Cité par Sources :