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THE EDGE GEODETIC SELF DECOMPOSITION NUMBER OF A GRAPH

J. Joun* AND D. STALIN?

Abstract. Let G = (V, E) be a simple connected graph of order p and size q. A decomposition of
a graph G is a collection 7 of edge-disjoint subgraphs G1,Ga, ..., Gy of G such that every edge of G
belongs to exactly one G;(1 < i < n). The decomposition 7 = {G1,Ga,...,Gxr} of a connected graph G
is said to be an edge geodetic self decomposition, if ge(G;) = g.(G) for all i(1 < ¢ < n). The maximum
cardinality of 7 is called the edge geodetic self decomposition number of G and is denoted by 744, (G),
where g.(G) is the edge geodetic number of G. Some general properties satisfied by this concept are
studied.
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1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected graph without loops or multiple edges. The order and
size of G are denoted by p and ¢ respectively. For basic graph theoretic terminology we refer to Harary [3,4].
N@w) ={u € V(G) : uwv € E(G)} is called the open neighborhood of the vertex v in G. The degree of an vertex
v € V(GQ) is | N(v) |. The mazimum and minimum degree of a graph G is denoted by A and ¢ respectively.
A vertex of degree p — 1 is called a universal vertex. If e = {u,v} is an edge of a graph G with deg(u) = 1
and deg(v) > 1, then we call e a pendent edge, u a leaf and v a support vertex. For a non empty vertex subset
S C V(G) of a graph G, an induced sub graph of S in G, denoted by (S)¢, is the subgraph of G, with vertex
set V((S)g) = S and edge set E((S)g) = {uv € E(G) : u,v € S}. We denote by P,,C, and K, s, the path on
p vertices, the cycle on p vertices and complete bipartite graph in which one partite set has r vertices and the
other partite set has s vertices respectively. For any connected graph G, a vertex v € V(G) is called a cut vertex
of G, if V(G) — {v} is no longer connected. A vertex v in a connected graph G is said to be a semi simplicial
vertex of G, if A((N(v))) = |N(v)| — 1. A vertex v is a simplicial vertex of a graph G, if (N(v)) is complete.
Every simplicial vertex of a graph G is semi simplicial vertex. A graph G is said to be a semi complete graph,
if every vertex of G is semi simplicial. It is observed that a semi simplicial graph has no cut vertices and no end
vertices. Any graph with at least two universal vertices is a semi complete graph. Also there are semi complete
graphs having no universal vertex. A graph having unique universal vertex is not semi complete.
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The distance d(u,v) between two vertices u and v in a connected graph G is the length of a shortest u—v
path in G. An u—v path of length d(u,v) is called a u—v geodesic. A vertex x is said to lie on a u—v geodesic
P, if x is a vertex of P including the vertices u and v. The closed interval I.[u,v] consist of all edges lies in u—wv
geodesic of G. For S C V, I.[S] = Uy veslelu,v]. A set S CV is called an edge geodetic set of G, if I.[S] = E.
The edge geodetic number g.(G) of G is the minimum order of its edge geodetic sets and any edge geodetic set
of order g.(G) is an edge geodetic basis of G or g.-set of G. The edge geodetic number of a graph was introduced
by M. Atici [2] and further studied in [1,6,10-14]. Recently edge geodetic concepts were studied in [9,15-17].
For any connected graph G, 2 < g.(G) < p. For the cycle Cp(p > 4), g¢(Cp) = 2, if p is even and g.(C,) = 3,
if p is odd. Any connected graph having exactly one universal vertex has edge geodetic number p — 1. In this
paper, we study the concepts of edge geodetic self decomposition in a connected graph G. Edge geodetic concepts
have applications in game theory, location theory, distributed computing, information retrieval, communication
networks etc.

A decomposition m of a graph G is a collection of edge-disjoint subgraphs G, Ga,...,G, of G, such that
every edge of G belongs to exactly one G;(1 < i < n). The concept of decomposition is recently studied in
[5,7,8]. Various types of decomposition of G have been studied in the literature by imposing conditions on
each subgraph G;(1 < i < n). Edge geodetic decomposition is very important for current research, so that the
limitations with available concepts can be overcome. If each G;(1 < i < n) of an edge geodetic decomposition
is a tree, then it speed up the computational searching. In our real life normally, design of a large scale water
network with multiple source is computationally very rigorous. This is due to the size of the search space as
well as the time for hydraulic simulation of the network. By considering a g.-set as the the water source of the
WDS system the edge geodetic self decomposition method to partition the larger optimization problems in to
smaller ones that in turn reduces the computational overhead for optimising the design of water distribution
system(WDS) [18,19]. Throughout this paper G denotes simple connected graph with at least two vertices. The
following theorems are used in the sequel.

Theorem 1.1 ([10]). Each simplicial vertex, in particular every end vertex of G belongs to every minimum
edge geodetic set of G.

Theorem 1.2 ([10]). For any non-trivial tree T, the edge geodetic number g.(T) equals the number of end-
vertices in T'.

Theorem 1.3 ([10]). For the complete bipartite graph G = K, ,

2 ifm=n=1,
ge(Kmn) =< n if m=1,n>2,
min{m,n} if m,n > 2.

2. THE EDGE GEODETIC SELF DECOMPOSITION NUMBER OF A GRAPH

Definition 2.1. The decomposition 7 = {G1, Ga,...,G,} of G is said to be an edge geodetic self decomposition
of G, if g.(G) = 9.(G;), (1 < i < n) for all i and the maximum cardinality of 7 is said to be edge geodetic self
decomposition number of G and is denoted by 74, (G).

Example 2.2. For the graph G given in Figure 1, S = {v1,v2,v3,v6} is a minimum edge geodetic set so that
9e(G) = 4. The graphs G; and G2 (given in Figs. 1a and 1b) is a decomposition of G. Since g.(G1) = ¢g.(G2) =
4 = ¢g.(G), m = {G1,G>} is an edge geodetic self decomposition of G. It is easily verified that there is no edge
geodetic self decomposition set of cardinality more than 2. Therefore 744, (G) = 2.

Definition 2.3. A graph G is said to be edge geodetic self decomposable, if mg4, (G) > 2. If G is not edge
geodetic self decomposable graph, then 7y, (G) = 1.
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FIGURE 1.

Remark 2.4. Every graph need not be edge geodetic self decomposable. For the graph G given in Figure 2,
9¢(G) = 3. But G has no decomposition 7 = {G1,G2} such that g.(G) = g.(G1) = ge(G2) = 3 and hence
Tsg. (G) = 1.

Theorem 2.5. For any connected graph G, 1 < 754, (G) < g.

Proof. From the Definition 2.3, 7y, (G) > 1. Let ¢g.(G) = 2. Then 7(G) = {G; = K2}(1 < i < g). By
Theorem 1.2, g.(G;) = 2 = g.(G). Hence 7 is the unique edge geodetic self decomposition set of G. Therefore
1 < 7. (G) <gq. O

Remark 2.6. The bounds in Theorem 2.5 are sharp. For the graph G given in Figure 2, s, (G) = 1 and for
the path G = P,, msg, (G) = ¢. Also the bounds in Theorem 2.5 can be strict. For the graph G given in Figure 1,
Figures la and 1b represents a maximum edge geodetic self decomposition of G such that 7y, (G) = 2. Hence
1 < mg, (G) <gq.

Theorem 2.7. Let G be a connected graph with g.(G) = k(3 <k <p—2). Then gy (G) > 2, if

(i) G has at least two non adjacent non pheripheral vertices u and v of degree k such that mazimum degree of
each component of (V — {u,v}) <2 or
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(ii) A(G) =k + 1 and G has at least two adjacent vertices u and v of degree k + 1 such that maximum degree
of each component of (V — {u,v}) < 2.

Proof.

Case i. Suppose that G has at least two non adjacent non pheripheral vertices u and v of degree k such

that maximum degree of each component of (V — {u,v}) < 2.
Subcase ia. Suppose that the maximum degree of each component of (V — {u,v}) = 0. Then ¢.(G) = 2,

which is a contradiction to k > 3. Without loss of generality let us assume that {u,v,w} is a set
of non adjacent vertices such that the components of V' — {u,v,w} are isolated vertices. Then since
deg(u) = deg(v) = deg(w) = k, G = K33 and can be decomposed as exactly three star subgraphs
G1 = Ky, Gy = K1, and G3 = K (k = 3) with rooted vertices u, v and w. Then 7 = {G1, G2, Gs}
is a decomposition of G. Hence by Theorem 1.2, g.(G;) = k, (i = 1,2, 3). Since g.(G) = k, 7 is an edge
geodetic self decomposition of G.

Subcase ib. Suppose that maximum degree of each component of (V — {u,v}) is either 1 or 2. Assume

that {u,v} is a cut set of G. Let Gy,,Gl,, ..., G, be the components of (V — {u,v}). Since 1 < [(A(V —
{u,v}))] <2, at least one component Gy, (1 <i < n) is a path. Let u;,,u,,,,...,u;,; = Gy, be the path.
Then either u, v or both adjacent with u;, and w;,. Also G1 = [(u U N(u) U {u,,u,,,,- .., u;})] and
Gy = [(vUN(v))] or G1 = [(vUN (v) U{us,,u,,,,--.,u,})] and Ga = [(uUN (u))] are trees having k end
vertices. Now m = {G1, G2} is a decomposition of G and by Theorem 1.2, g.(G1) = 9.(G2) = 9.(G) = k
so that 7 is an edge geodetic self decomposition of G and hence myq, (G) > 2.

Suppose that {u,v} is not a cut set of G. Since 1 < A((V — {u,v})) < 2, (V — {u,v}) is path. Let
Ui, Wit1, - - - , U; be the path. Then 7 = {G1, G2} is a decomposition of G, where G1 = [(uUN (u)U{uiuz})]
and Gy = [(VUN (v) U{ug,us,...,u;})]. Moreover G; and G5 are trees and has k end vertices. Hence by
Theorem 1.2, go.(G1) = ge(G2) = g.(G) = k so that « is an edge geodetic self decomposition of G. Thus
Tsg. (G) > 2.

Case ii. Without loss of generality assume that u and v are the two adjacent vertices of G having degree k+ 1.
Let G1 = K1 be a star graph with rooted vertex v. Since A(G) = k+ 1, Go = G — {v} is a graph having
exactly one vertex of degree k. Then as in the Case i, 7(G) = {G1, G2} is an edge geodetic self decomposition
of G so that 7y, (G) > 2.

O

Remark 2.8. The converse of the Theorem 2.7 need not be true. For the graph G given in Figure 3,
S = {v1,v2,v5} is the minimum edge geodetic set of G so that g.(G) = k = 3. However G can be decomposed as
(1 and G4 given in Figures 3a and 3b, each has edge geodetic number 3 and G has only one vertex vs of degree
3 and adjacent vertex vg has degree 5 # k + 1.
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Theorem 2.9. Let G be an edge geodetic self decomposable graph with g.(G) = k(3 <k <p—2) and G has r
non adjacent vertices of degree k. Then msy, (G) > r.

Proof. Let S = {uy,us,...,u,} be the set of r non adjacent vertices of degree k.

Case i. Suppose that each component of (V—S) is K;. Then it is easily verified that 7 = {G1,G2,...,G,} is
an edge geodetic self decomposition of G, where G; = K1 (1 <7 <r) and so ms,, (G) = 7.
Case ii. Suppose that A((V-S5)) > 2.
Subcase iia. Suppose that the components of (V—S) are paths and S dominates G. Then as the same
arguments given in Theorem 2.7, my,, (G) = 7.
Subcase iib. Suppose that at least one component of (V—S) is not a path. Since G is an edge geodetic
self decomposable, the non path component has edge geodetic number k& (otherwise G cannot be edge
geodetic self decomposable). Hence w4, (G) > 7.

O
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Remark 2.10. The converse of the Theorem 2.9 need not be true. For the graph G given in Figure 4,
S = {v1,v5,vs} is a minimum edge geodetic set of G so that ¢g.(G) = k = 3. However G can be decomposed as
G1 and G given in Figures 4a and 4b, each has edge geodetic number 3 and G has no vertex of degree 3.

Theorem 2.11. Let G be a k-reqular graph, where g.(G) = k(3 <k < p—2). Then 144, (G) > B(G).

Proof. This follows from Theorem 2.9. ]

Theorem 2.12. Let G be a k-reqular graph where g.(G) = k(3 < k < p—2) and S be an independent set of G.
Then w54, (G) = B(G), if and only if S is a dominating set of G as well as mazimum degree of each component

of (V=-5) <2.

Proof. Let S = {u1,us,...,u,} be an independent set of G. Suppose that 754, (G) = 5(G). We have to prove S
is a dominating set of G and maximum degree of each component of (V—5) < 2.
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Case i. Suppose that S is not a dominating set of G. Then, there exists at least one vertex v € V such that
v ¢ N(S). Without loss of generality let us assume that v is adjacent to w, where w € N(u;)(1 < i < r).
As the same argument in the Theorem 2.7, let u; be the rooted vertex of G; € w. Hence, either g.(G;) # k
or G is not edge geodetic self decomposable so that 7,4, (G) # G(G), which is a contradiction.

Case ii. Suppose that maximum degree of each component of (V—S) < 2. Then each component of (V—5)

is neither f(h)_s‘ nor a path. If S is a cut set of G, then at least one component of (V' —S) has degree at
least three. Also, if S is not a cut set of G, then A[(V—S)] > 3. Since G is edge geodetic self decomposable,
ge[(V=8)] = k or each component of V—S has edge geodetic number k (otherwise G' cannot be edge geodetic
self decomposable) so that 74, (G) # G(G), which is a contradiction.
Conversely suppose that S is a dominating set of G and maximum degree of each component of (V—S) < 2.
Then by Theorem 2.9, my, (G) > B(G). Suppose that msy (G) > B(G). Let § = {ui,us,...,u,} be
a maximum independent set of G. Then the maximum degree of (V — 8) > 3, which is a contradiction.
Therefore 7y, (G) = B(G).

O

Remark 2.13. The Theorem 2.12 need not be true, if G is a non regular graph. For the graph G = K34,
Tsq.(G) = B(G) = 4. However G is not a regular graph.

Theorem 2.14. Let G be an edge geodetic self decomposable graph and g.(G) = k(k # 2). Then s, (G) < f
1

.
k
Moreover sy, (G) = &, if and only if G; = K1 4, (1 <i <n),(k #3) and fork =3,G; = K13 or K3,(1<i<n

)-

Proof. Let G be an edge geodetic self decomposable graph and ¢.(G) = k and G1,Ga,...,G,, € w. Then

9e(Gi) = k,(1 < i < n) so that |[E(G;)| > k. Therefore 7y, (G) < [{#]. Suppose that m,, (G) = { and

G # K1,. Then E(G;) > k and so 74, (G) < #, which is a contradiction. Moreover itG;=Ki13,(1<i<n-1)
or Gy = K3, E(G;) = k(1 <1 <n)(or G; = K3,Gj = K13(1 <i,j < n)). Then it is clear that 7,4, (G) = £.
Converse is clear. O

Corollary 2.15. For the wheel graph G = W1 ,_1(p > 3), 75, (G) = 1.

Proof. For the wheel graph G = W1 ,_1(p > 4), ¢ = 2(p — 1) and hence g.(G) = p — 1. Also by Theorem 2.14,
m = {G1,G2} and G1 = G2 = K; p_1. Since G contains only one universal vertex this decomposition is not
possible. Hence it follows that 7.4 (G) = 1. O

Theorem 2.16. For a connected graph G, sy, (G) = q, if and only if g.(G) = 2.

Proof. Let msy, (G) = ¢. Then it is clear that 7 = {G; = Ks},(1 < i < ¢). Hence by Theorem 1.2, g.(G) = 2.
Conversely suppose that g.(G) = 2. We have to prove 744, (G) = g¢. It is enough to prove that 7 = {G; = Ks},
(1 <i < gq). Suppose that G; # Ko for some (1 < i < g). Then | E(G;) |> 2 for some i, (1 < i < gq). Hence, it
follows that 744 (G) < ¢, which is a contradiction. Therefore 744, (G) = g. O

Corollary 2.17. For an even cycle G = Ca,(n > 2), w5y, (G) = q.

Proof. This follows from Theorem 2.16. (]
Observation 2.18. Let G # C, be a unicyclic graph with edge geodetic number g.(G) = k(3 < k < p —3).
Then G has at least £ — 2 end vertices.

Theorem 2.19. Let G # C, be a unicyclic graph. Then gy (G) > 2, if and only if G is the anyone of the
graph given in the family &

Proof. Let G # C), be a unicyclic graph and C be the cycle in G such that | C' |= C(G).
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Case i. Suppose that g.(G) =k, (5 < k < p—1). Then by Observation 2.18, G has at least k — 2 end vertices.
If 759, (G) = r(r > 2), then each decomposition indices graph G;(1 < i < r) has at least k — 2 end vertices
of G. Hence G has at least r(k — 2) end vertices and so ¢g.(G) > r(k — 2), which is a contradiction.

Case ii. Suppose that g.(G) = 4. Then by Theorem 1.1, G has at most four end vertices. Let S = {v1,vo, v3,v4}
be the set of all end vertices.

Subcase iia. Suppose that C(G) is odd and any two non adjacent vertices has degree four. Then there
exists at least one edge e of G such that e ¢ I.[S]. Hence, it follows that S is not an edge geodetic set of
G so that g.(G) > 4, which is a contradiction.

Subcase iib. Suppose that C(G) is even and A(G) = 4. Let uw and v be the pair of peripheral vertices of
C. If at least one of the peripheral vertex of G has degree 2, then there exists at least one edge e of G
such that e ¢ I.[S]. Hence, it follows that S is not an edge geodetic set of G so that g.(G) > 4, which is
a contradiction.

Subcase iic. Supposethat C'(G) iseven and G has exactly three end vertices. Then it is clear that 75, (G) = 1.
Thus, if g.(G) = 4, then only possible unicyclic edge geodetic self decomposable graph G are given in
Figures 5a and 5b in the family <. The graphs G of & given in Figures 5a and 5b can be decomposed
as G and G4 such that each graph is a tree with four end vertices. Hence by Theorem 1.2, g.(G1) =
9e(G2) = ge(G) = 4 so that 744, (G) > 2.
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Case iii. g.(G) = 3. Then by Theorem 1.1, G has at most three end vertices. Let S = {v1,v2,v3} be the set of
all end vertices of G.

Subcase iiia. Suppose G has exactly three vertices u,v and w of degree 3 such that d(u,w) > d(u,v) +
d(v,w). Then it is clear that G has at least one edge e of G such that e ¢ I.[S]. Hence, it follows that S
is not an edge geodetic set of G so that g.(G) > 3, which is a contradiction.

Subcase iiib. Suppose C' is an even cycle with at least one non peripheral vertex has degree three. Then
G has an edge e such that e ¢ I.[S]. Hence, it follows that S is not an edge geodetic set of G so that
9e(G) > 3, which is a contradiction. Moreover, if G has exactly one vertex of degree 3. Hence it follows
that ., (G) = 1.

Subcase iiic. Suppose C(G) is even and exactly one non peripheral vertex has degree four. Then there
exists at least one edge e of G such that e ¢ I.[S]. Hence, it follows that S is not an edge geodetic set of
G so that g.(G) > 3, which is a contradiction.

Subcase iiid. Suppose G has exactly two end vertices v and v. If any two peripheral vertices of G has
degree three, then g.(G) = 2, which is a contradiction. Thus, if ¢g.(G) = 3, then only possible unicyclic
edge geodetic self decomposable graphs G are given in Figures 5¢—5f in the family 3. The graphs G of
S given in Figures 5¢c—5f can be decomposed as G, G2 or G3 such that each graph is a tree with three
end vertices. Hence by Theorem 1.2, g.(G;) = ¢.(G) = 3(1 < ¢ < 3) so that g, (G) > 2.

Case iv. Suppose that g.(G) = 2. Then by Theorem 1.1, G has at most two end vertices and C(G) must
be even. Hence at most two peripheral vertices of G can have degree three. Thus, if g.(G) = 2, then only
possible unicyclic edge geodetic self decomposable graphs G are given in Figures 5g and 5h in the family <.
Then by Theorem 2.16, 74, (G) > 2.

O
Corollary 2.20. Let G be a unicyclic graph with g.(G) # 2. Then w54, (G) < 3.
Proof. This follows from Theorem 2.19. (]

The following theorem was proved in [5].
Theorem A. For a connected graph G, g.(G) = p, if and only if G is semi complete.

Theorem 2.21. Let G be a connected graph with g.(G) = p. Then gy, (G) = 1.

Proof. Suppose that G is an edge geodetic self decomposable graph with g.(G) = p. Then by Theorem A, G is
semi complete. Let 7 = {G1,Ga,...,G,} be a edge geodetic self decomposition of G. Then g.(G) = g.(G;)(1 <
i < m). Since g.(G) = p, 9e(Gi) = p(1 < i < n). Then each G;(1 < i < n) is semi complete. Therefore each
G;(1 < i < n) has either at least two universal vertices or G has no universal vertices.
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Case i. Suppose that G;(say) has at least two universal vertices. Hence any one of G;(2 < i < n) has order at
most p — 2. Then g¢.(G;) < p—2(2 < i <n), which is a contradiction. Therefore 7y, (G) = 1.

Case ii. Suppose that G(say) has no universal vertices. Then at least two vertices of G has degree p—2. Hence
anyone of G;(2 < i < n) has at least two pendent vertices (otherwise V(G;) < p— 1(2 < i < n)). Hence
Gi(2 < i <n) is not semi complete, which is a contradiction. Therefore 7y, (G) = 1.

O
Corollary 2.22. Let G be a connected graph having more than one universal vertex. Then gy, (G) = 1.
Proof. This follows from Theorem 2.21. (Il
Corollary 2.23. For the complete graph G = K,(p > 3), mse (G) = 1.
Proof. This follows from Corollary 2.22. O

Theorem 2.24. Let G be a connected graph with edge geodetic number p—1. Then msg, (G) =2, if G = K1+ H,
where H is a semi complete graph of order p — 1.

Proof. Let G = Ky, + H, where H is a semi complete graph of order p — 1. Then G can be decomposed
as G1 = Ky, and G2 = H and hence by Theorems 1.2 and A, 7,4, (G) > 2. Moreover by Theorem 2.21,
Tsg. (G) = 1 so that myy (G) = 2. O

Theorem 2.25. For the complete bipartite graph G = Kp, (1 <m <n),

1 if m=1,
ﬂ-sge (Km7n) = 2n lf m = 2771 2 37
n if m,n > 3.

Proof. Case i. Suppose that m = 1. Then G = K ,,. Hence by Theorem 2.14, 7,4, (G) = 1.
Case ii. Suppose that m = 2. Then by Theorems 1.3 and 2.16, 744, (G) = 2n.
Case iii. Supposethat3 < m < n.LetU = {uy,uz,...,uptand W = {wy, wa, ..., w, }H(m < n)beabi-partition
of G. Then by Theorem 1.3, g.(G) = m. Since deg(w;) = m(1 <i < n) G can be decomposes to n subgraphs
Gi = K1 (1 <i <n) with rooted vertex w;(1 <14 < n) so that 7 = {G1,Go,...,Gy} is a decomposition of
G. Then by Theorem 1.2, g.(G;) = m = g.(G) so that 7 is an edge geodetic self decomposition of G. Since
each G; is a star, 7 is an edge geodetic self decomposition of G. Therefore 75, (G) = n.
O

Lemma 2.26. Let G = K, ryrs....r, be a complete n-partite graph with ri <rp <r3 <,...,<ry,. Then

n—1
9.(G) = Z ;.
i=1

Proof. Let us prove the theorem by induction on i. Suppose i = 2. Then by Theorem 1.3, the result is true.
Let V1 = {1}11,’0127 [N 7U1r1}a ‘/2 = {’U2171)22, ey U2T2}, ey Vk = {’L}khvkg, ‘e 7'Ukrk} be the partition of V of
a complete k— partite graph G’ such that r; < ro < r3 < ... < 7r,. Then by induction hypothesis
9e(G) = Ei:ll r;. Let Viy = {v(k+1)1,v(;€+1)2,...,v(k+1)r(k+1)}. Then G = G’ 4+ V41 is a complete k + 1—
partite graph and

1 ifi#r
d(vig; vrs) = {2 if i i N

Therefore by assumption of induction hypothesis every edge having one terminal vertex from V;(1 <i <k —1)
lies in the geodesic joining a pair of vertices of V;(1 < ¢ < k — 1). Since the length of the geodesic v;; — vys
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through the edge viiv(41);(1 < i < 7,1 < j < 1) is 3, the edges vpvgy1);(1 <@ <, 1 < j < rpey)
doesn’t lie on a geodesic of S; = Uii’fl%. Then either S =57 UV, or § = 51 U Vjy1 is an edge geodetic set
of G. Since 1, < rp41, S = S1 UV is the minimum edge geodetic set of G so that g.(G) = Zle r;. Hence by
mathematical induction g.(G) = Z?;ll ;. O

Theorem 2.27. Let G = K, 1, 1., be a complete n-partite graph. Then mgq, (G) = max{ri,ro,r3...,rs}.

R

Proof. Let us prove this theorem by induction on n. Let n = 2. Then G is a complete bipartite graph.
By Theorem 2.25, the result is true for n = 2. Assume that the result is true for n = k. Let G’ be
a complete k-partite graph Ky, ;s .r, and mse (G) = max{ri,ra,...,7x}. Let Vi = {vi1,v12,..., 010, },
Vo = {va1,v22,. .., V20, }s ooy, Vie = {Uk1, V2. .., Vkr, ; be the partition of V' of a complete k-partite graph G’
such that 1 < rp < r3 < ... < 1. Let Vgt = {Vk41)1, Vk41)2 -+ Ukt D)rpsr ) Lhen G = G + Viqy s
a complete k + 1-partite graph. By Lemma 2.26,

k
ge(G) = Zrz

Since the deg(v;) = Zle r; for all v; € Vi41 and Vjqy is an independent set, by Theorem 2.9, 7,4, (G) >
k+1. Let # = {Hy,H,...,H,,,H,, .}, where {H;(1 < i < k)} be the star subgraphs having rooted vertex
Vikt1yr (1 <@ < k) and H, = (V—{U0k+1)1> Ukt 1)2> - - - » V(l1)ry. }) - Since each H;(1 < i < k+1) is a subgraph

Tk+1
k
>
i=1

having exactly one universal vertex of degree

for (1<j<k+1),
k
ge(H;) = mi
i=1

and hence 7 is an edge geodetic decomposition of G. Moreover by Lemma 2.26, (V — Vi1) is a connected

subgraph with edge geodetic number
(k-1)

9.(G) = Z 5.
i=1

Hence, m be a maximum edge geodetic self decomposition so that 7y, (G) = rr41 = max{ri,r2,rs, ..., Tky1}.
Hence, the result is true for n = k + 1. Therefore by induction hypothesis the result is true for all n. (]

Corollary 2.28. For the complete r-partite graph G = Ky\ vy ry....rn (10 > 2), Tsq. (G) + g (G) = p.
Proof. This follows from Lemma 2.26 and Theorem 2.27. O

Theorem 2.29. For any connected graph G, msq,(G)ge(G) = q and 75y, (G) + g.(G) = p, if and only if
G=Kpnn 3<m<n).

Proof. Suppose that msg (G)ge(G) = q and 7sg, (G) + ge(G) = p. By Theorem 2.14, it is enough to prove that
G; = K1, if and only if G = K, ,(m <n). Let V = {v1,v2...,05} and W = {w1,wa ..., Wp=p_m }(m < n).
Without loss of generality assume that v; # w;(1 <i¢ <m,1 < j <n). To prove U and V are the partition of
V(G). Suppose this not the case. Then G has at least two adjacent vertices v; and v; from V' or some adjacent
vertices from W. Moreover v;,v; and w;(1 <1 < n) form a triangle so that w; is an extreme vertex of G. Then
w; belongs to every minimum edge geodetic set of G. Hence, g.(G) > m # g.(G;) and 754, (G) < p — ge(G),
which is a contradiction. The converse follows from Theorems 1.3, 2.14 and 2.25. (I
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Theorem 2.30. Let G be a bipartite graph. Then m54, (G) = ¢9.(G), if and only if G = Kp, m(m > 3) or K 2.

Proof. Let G be a bipartite graph and 7y, (G) = ¢.(G). Suppose that G = Ky, n(n > m) and G # K 5.
Then by Theorems 1.3 and 2.25, 74 (G) # ge(G), which is a contradiction. Hence, G = K, ,(m > 2)
or Ki,. Conversely suppose that G = K, ,(m > 2). Theorems 1.3 and 2.25, gy, (G) = g.(G). Also, if
G = K; 5 then m = {Ky, K3} and by Theorem 1.2, 7 is the unique edge geodetic self decomposition of G. Thus
70 () = 06(G). 0

We have the following realisation theorem.

Theorem 2.31. For any positive integer 3 < a < b, there exists a connected graph G such that g.(G) =
a,msq,(G) = b.

Proof. Case i. Suppose that 3 < a < b. Let G = K,;4(3 < a < b). Then by Theorems 1.3 and 2.25, g. = a,
Tsg. (G) = b.
Case ii. Suppose that 2 < a =b. Let G = K, 4,(a > 3). Then by Theorem 2.30, g.(G) = a, 754, (G) = a.
(Il
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