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THE EDGE GEODETIC SELF DECOMPOSITION NUMBER OF A GRAPH

J. John1,∗ and D. Stalin2

Abstract. Let G = (V,E) be a simple connected graph of order p and size q. A decomposition of
a graph G is a collection π of edge-disjoint subgraphs G1, G2, . . . , Gn of G such that every edge of G
belongs to exactly one Gi(1 ≤ i ≤ n). The decomposition π = {G1, G2, . . . , Gn} of a connected graph G
is said to be an edge geodetic self decomposition, if ge(Gi) = ge(G) for all i(1 ≤ i ≤ n). The maximum
cardinality of π is called the edge geodetic self decomposition number of G and is denoted by πsge(G),
where ge(G) is the edge geodetic number of G. Some general properties satisfied by this concept are
studied.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected graph without loops or multiple edges. The order and
size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [3, 4].
N(v) = {u ∈ V (G) : uv ∈ E(G)} is called the open neighborhood of the vertex v in G. The degree of an vertex
v ∈ V (G) is | N(v) |. The maximum and minimum degree of a graph G is denoted by ∆ and δ respectively.
A vertex of degree p − 1 is called a universal vertex. If e = {u, v} is an edge of a graph G with deg(u) = 1
and deg(v) > 1, then we call e a pendent edge, u a leaf and v a support vertex. For a non empty vertex subset
S ⊂ V (G) of a graph G, an induced sub graph of S in G, denoted by 〈S〉G, is the subgraph of G, with vertex
set V (〈S〉G) = S and edge set E(〈S〉G) = {uv ∈ E(G) : u, v ∈ S}. We denote by Pp, Cp and Kr,s, the path on
p vertices, the cycle on p vertices and complete bipartite graph in which one partite set has r vertices and the
other partite set has s vertices respectively. For any connected graph G, a vertex v ∈ V (G) is called a cut vertex
of G, if V (G) − {v} is no longer connected. A vertex v in a connected graph G is said to be a semi simplicial
vertex of G, if ∆(〈N(v)〉) = |N(v)| − 1. A vertex v is a simplicial vertex of a graph G, if 〈N(v)〉 is complete.
Every simplicial vertex of a graph G is semi simplicial vertex. A graph G is said to be a semi complete graph,
if every vertex of G is semi simplicial. It is observed that a semi simplicial graph has no cut vertices and no end
vertices. Any graph with at least two universal vertices is a semi complete graph. Also there are semi complete
graphs having no universal vertex. A graph having unique universal vertex is not semi complete.
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The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u−v
path in G. An u−v path of length d(u, v) is called a u−v geodesic. A vertex x is said to lie on a u−v geodesic
P , if x is a vertex of P including the vertices u and v. The closed interval Ie[u, v] consist of all edges lies in u−v
geodesic of G. For S ⊆ V , Ie[S] = ∪u,v∈SIe[u, v]. A set S ⊆ V is called an edge geodetic set of G, if Ie[S] = E.
The edge geodetic number ge(G) of G is the minimum order of its edge geodetic sets and any edge geodetic set
of order ge(G) is an edge geodetic basis of G or ge-set of G. The edge geodetic number of a graph was introduced
by M. Atici [2] and further studied in [1, 6, 10–14]. Recently edge geodetic concepts were studied in [9, 15–17].
For any connected graph G, 2 ≤ ge(G) ≤ p. For the cycle Cp(p ≥ 4), ge(Cp) = 2, if p is even and ge(Cp) = 3,
if p is odd. Any connected graph having exactly one universal vertex has edge geodetic number p − 1. In this
paper, we study the concepts of edge geodetic self decomposition in a connected graph G. Edge geodetic concepts
have applications in game theory, location theory, distributed computing, information retrieval, communication
networks etc.

A decomposition π of a graph G is a collection of edge-disjoint subgraphs G1, G2, . . . , Gn of G, such that
every edge of G belongs to exactly one Gi(1 ≤ i ≤ n). The concept of decomposition is recently studied in
[5, 7, 8]. Various types of decomposition of G have been studied in the literature by imposing conditions on
each subgraph Gi(1 ≤ i ≤ n). Edge geodetic decomposition is very important for current research, so that the
limitations with available concepts can be overcome. If each Gi(1 ≤ i ≤ n) of an edge geodetic decomposition
is a tree, then it speed up the computational searching. In our real life normally, design of a large scale water
network with multiple source is computationally very rigorous. This is due to the size of the search space as
well as the time for hydraulic simulation of the network. By considering a ge-set as the the water source of the
WDS system the edge geodetic self decomposition method to partition the larger optimization problems in to
smaller ones that in turn reduces the computational overhead for optimising the design of water distribution
system(WDS) [18,19]. Throughout this paper G denotes simple connected graph with at least two vertices. The
following theorems are used in the sequel.

Theorem 1.1 ([10]). Each simplicial vertex, in particular every end vertex of G belongs to every minimum
edge geodetic set of G.

Theorem 1.2 ([10]). For any non-trivial tree T , the edge geodetic number ge(T ) equals the number of end-
vertices in T .

Theorem 1.3 ([10]). For the complete bipartite graph G = Km,n,

ge(Km,n) =


2 if m = n = 1,
n if m = 1, n ≥ 2,
min{m,n} if m,n ≥ 2.

2. The edge geodetic self decomposition number of a graph

Definition 2.1. The decomposition π = {G1, G2, . . . , Gn} of G is said to be an edge geodetic self decomposition
of G, if ge(G) = ge(Gi), (1 ≤ i ≤ n) for all i and the maximum cardinality of π is said to be edge geodetic self
decomposition number of G and is denoted by πsge(G).

Example 2.2. For the graph G given in Figure 1, S = {v1, v2, v3, v6} is a minimum edge geodetic set so that
ge(G) = 4. The graphs G1 and G2 (given in Figs. 1a and 1b) is a decomposition of G. Since ge(G1) = ge(G2) =
4 = ge(G), π = {G1, G2} is an edge geodetic self decomposition of G. It is easily verified that there is no edge
geodetic self decomposition set of cardinality more than 2. Therefore πsge(G) = 2.

Definition 2.3. A graph G is said to be edge geodetic self decomposable, if πsge
(G) ≥ 2. If G is not edge

geodetic self decomposable graph, then πsge(G) = 1.
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Graph having edge geodetic number 4

Decomposed subgraphs having edge geodetic number 4

Figure 1.

Remark 2.4. Every graph need not be edge geodetic self decomposable. For the graph G given in Figure 2,
ge(G) = 3. But G has no decomposition π = {G1, G2} such that ge(G) = ge(G1) = ge(G2) = 3 and hence
πsge

(G) = 1.

Theorem 2.5. For any connected graph G, 1 ≤ πsge
(G) ≤ q.

Proof. From the Definition 2.3, πsge
(G) ≥ 1. Let ge(G) = 2. Then π(G) = {Gi = K2}(1 ≤ i ≤ q). By

Theorem 1.2, ge(Gi) = 2 = ge(G). Hence π is the unique edge geodetic self decomposition set of G. Therefore
1 ≤ πsge

(G) ≤ q. �

Remark 2.6. The bounds in Theorem 2.5 are sharp. For the graph G given in Figure 2, πsge
(G) = 1 and for

the path G = Pp, πsge
(G) = q. Also the bounds in Theorem 2.5 can be strict. For the graph G given in Figure 1,

Figures 1a and 1b represents a maximum edge geodetic self decomposition of G such that πsge(G) = 2. Hence
1 < πsge

(G) < q.

Theorem 2.7. Let G be a connected graph with ge(G) = k(3 ≤ k ≤ p− 2). Then πsge
(G) ≥ 2, if

(i) G has at least two non adjacent non pheripheral vertices u and v of degree k such that maximum degree of
each component of 〈V − {u, v}〉 ≤ 2 or
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Graph having edge geodetic self decomposition number 1

Figure 2.

(ii) ∆(G) = k + 1 and G has at least two adjacent vertices u and v of degree k + 1 such that maximum degree
of each component of 〈V − {u, v}〉 ≤ 2.

Proof. Case i. Suppose that G has at least two non adjacent non pheripheral vertices u and v of degree k such
that maximum degree of each component of 〈V − {u, v}〉 ≤ 2.
Subcase ia. Suppose that the maximum degree of each component of 〈V − {u, v}〉 = 0. Then ge(G) = 2,

which is a contradiction to k ≥ 3. Without loss of generality let us assume that {u, v, w} is a set
of non adjacent vertices such that the components of V − {u, v, w} are isolated vertices. Then since
deg(u) = deg(v) = deg(w) = k, G = K3,3 and can be decomposed as exactly three star subgraphs
G1 = K1,k, G2 = K1,k and G3 = K1,k(k = 3) with rooted vertices u, v and w. Then π = {G1, G2, G3}
is a decomposition of G. Hence by Theorem 1.2, ge(Gi) = k, (i = 1, 2, 3). Since ge(G) = k, π is an edge
geodetic self decomposition of G.

Subcase ib. Suppose that maximum degree of each component of 〈V − {u, v}〉 is either 1 or 2. Assume
that {u, v} is a cut set of G. Let Gl1 , Gl2 , . . . , Gln be the components of 〈V −{u, v}〉. Since 1 ≤ [〈∆(V −
{u, v})〉] ≤ 2, at least one component Gli(1 ≤ i ≤ n) is a path. Let uli , uli+1 , . . . , ulj = Gli be the path.
Then either u, v or both adjacent with uli and ulj . Also G1 = [〈u ∪ N(u) ∪ {uli , uli+1 , . . . , ulj}〉] and
G2 = [〈v∪N(v)〉] or G1 = [〈v∪N(v)∪{uli , uli+1 , . . . , ulj}〉] and G2 = [〈u∪N(u)〉] are trees having k end
vertices. Now π = {G1, G2} is a decomposition of G and by Theorem 1.2, ge(G1) = ge(G2) = ge(G) = k
so that π is an edge geodetic self decomposition of G and hence πsge

(G) ≥ 2.
Suppose that {u, v} is not a cut set of G. Since 1 ≤ ∆(〈V − {u, v}〉) ≤ 2, 〈V − {u, v}〉 is path. Let
ui, ui+1, . . . , uj be the path. Then π = {G1, G2} is a decomposition of G, where G1 = [〈u∪N(u)∪{u1u2}〉]
and G2 = [〈v∪N(v)∪{u2, u3, . . . , uj}〉]. Moreover G1 and G2 are trees and has k end vertices. Hence by
Theorem 1.2, ge(G1) = ge(G2) = ge(G) = k so that π is an edge geodetic self decomposition of G. Thus
πsge

(G) ≥ 2.
Case ii. Without loss of generality assume that u and v are the two adjacent vertices of G having degree k+ 1.

Let G1 = K1,k be a star graph with rooted vertex v. Since 4(G) = k + 1, G2 = G− {v} is a graph having
exactly one vertex of degree k. Then as in the Case i, π(G) = {G1, G2} is an edge geodetic self decomposition
of G so that πsge(G) ≥ 2.

�

Remark 2.8. The converse of the Theorem 2.7 need not be true. For the graph G given in Figure 3,
S = {v1, v2, v5} is the minimum edge geodetic set of G so that ge(G) = k = 3. However G can be decomposed as
G1 and G2 given in Figures 3a and 3b, each has edge geodetic number 3 and G has only one vertex v3 of degree
3 and adjacent vertex v8 has degree 5 6= k + 1.
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Edge geodetic self decomposable graph having  edge geodetic number 3 and unique vertex of  degree 3

Decomposed subgraphs having edge geodetic number 3

Figure 3.

Theorem 2.9. Let G be an edge geodetic self decomposable graph with ge(G) = k(3 ≤ k ≤ p− 2) and G has r
non adjacent vertices of degree k. Then πsge

(G) ≥ r.

Proof. Let S = {u1, u2, . . . , ur} be the set of r non adjacent vertices of degree k.

Case i. Suppose that each component of 〈V−S〉 is K1. Then it is easily verified that π = {G1, G2, . . . , Gr} is
an edge geodetic self decomposition of G, where Gi = K1,k(1 ≤ i ≤ r) and so πsge

(G) = r.
Case ii. Suppose that ∆(〈V−S〉) ≥ 2.

Subcase iia. Suppose that the components of 〈V−S〉 are paths and S dominates G. Then as the same
arguments given in Theorem 2.7, πsge

(G) = r.
Subcase iib. Suppose that at least one component of 〈V−S〉 is not a path. Since G is an edge geodetic

self decomposable, the non path component has edge geodetic number k (otherwise G cannot be edge
geodetic self decomposable). Hence πsge(G) ≥ r.

�
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Graph having edge geodetic number 3, edge geodetic self decomposition number 2 and has no vertices of degree 3

Decomposed subgraphs having edge geodetic number 3

Figure 4.

Remark 2.10. The converse of the Theorem 2.9 need not be true. For the graph G given in Figure 4,
S = {v1, v5, v8} is a minimum edge geodetic set of G so that ge(G) = k = 3. However G can be decomposed as
G1 and G2 given in Figures 4a and 4b, each has edge geodetic number 3 and G has no vertex of degree 3.

Theorem 2.11. Let G be a k-regular graph, where ge(G) = k(3 ≤ k ≤ p− 2). Then πsge(G) ≥ β(G).

Proof. This follows from Theorem 2.9. �

Theorem 2.12. Let G be a k-regular graph where ge(G) = k(3 ≤ k ≤ p− 2) and S be an independent set of G.
Then πsge

(G) = β(G), if and only if S is a dominating set of G as well as maximum degree of each component
of 〈V−S〉 ≤ 2.

Proof. Let S = {u1, u2, . . . , ur} be an independent set of G. Suppose that πsge
(G) = β(G). We have to prove S

is a dominating set of G and maximum degree of each component of 〈V−S〉 ≤ 2.
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Case i. Suppose that S is not a dominating set of G. Then, there exists at least one vertex v ∈ V such that
v /∈ N(S). Without loss of generality let us assume that v is adjacent to w, where w ∈ N(ui)(1 ≤ i ≤ r).
As the same argument in the Theorem 2.7, let ui be the rooted vertex of Gi ∈ π. Hence, either ge(Gi) 6= k
or G is not edge geodetic self decomposable so that πsge

(G) 6= β(G), which is a contradiction.
Case ii. Suppose that maximum degree of each component of 〈V−S〉 ≤ 2. Then each component of 〈V−S〉

is neither K̄|v−s| nor a path. If S is a cut set of G, then at least one component of 〈V−S〉 has degree at
least three. Also, if S is not a cut set of G, then ∆[〈V−S〉] ≥ 3. Since G is edge geodetic self decomposable,
ge[〈V−S〉] = k or each component of V−S has edge geodetic number k (otherwise G cannot be edge geodetic
self decomposable) so that πsge

(G) 6= β(G), which is a contradiction.
Conversely suppose that S is a dominating set of G and maximum degree of each component of 〈V−S〉 ≤ 2.
Then by Theorem 2.9, πsge

(G) ≥ β(G). Suppose that πsge
(G) > β(G). Let β = {u1, u2, . . . , ur} be

a maximum independent set of G. Then the maximum degree of 〈V − β〉 ≥ 3, which is a contradiction.
Therefore πsge

(G) = β(G).

�

Remark 2.13. The Theorem 2.12 need not be true, if G is a non regular graph. For the graph G = K3,4,
πsge

(G) = β(G) = 4. However G is not a regular graph.

Theorem 2.14. Let G be an edge geodetic self decomposable graph and ge(G) = k(k 6= 2). Then πsge
(G) ≤ d q

k e.
Moreover πsge

(G) = q
k , if and only ifGi = K1,k, (1 ≤ i ≤ n), (k 6= 3) and for k = 3,Gi = K1,3 orK3, (1 ≤ i ≤ n).

Proof. Let G be an edge geodetic self decomposable graph and ge(G) = k and G1, G2, . . . , Gn ∈ π. Then
ge(Gi) = k, (1 ≤ i ≤ n) so that |E(Gi)| ≥ k. Therefore πsge

(G) ≤ d q
k e. Suppose that πsge

(G) = q
k and

Gi 6= K1,k. Then E(Gi) > k and so πsge(G) < q
k , which is a contradiction. Moreover if Gi = K1,3, (1 ≤ i ≤ n−1)

or Gi = K3, E(Gi) = k(1 ≤ i ≤ n)(or Gi = K3, Gj = K1,3(1 ≤ i, j ≤ n)). Then it is clear that πsge
(G) = q

k .
Converse is clear. �

Corollary 2.15. For the wheel graph G = W1,p−1(p ≥ 3), πsge
(G) = 1.

Proof. For the wheel graph G = W1,p−1(p ≥ 4), q = 2(p− 1) and hence ge(G) = p− 1. Also by Theorem 2.14,
π = {G1, G2} and G1 = G2 = K1,p−1. Since G contains only one universal vertex this decomposition is not
possible. Hence it follows that πsge

(G) = 1. �

Theorem 2.16. For a connected graph G, πsge
(G) = q, if and only if ge(G) = 2.

Proof. Let πsge
(G) = q. Then it is clear that π = {Gi = K2}, (1 ≤ i ≤ q). Hence by Theorem 1.2, ge(G) = 2.

Conversely suppose that ge(G) = 2. We have to prove πsge
(G) = q. It is enough to prove that π = {Gi = K2},

(1 ≤ i ≤ q). Suppose that Gi 6= K2 for some i(1 ≤ i ≤ q). Then | E(Gi) |≥ 2 for some i, (1 ≤ i ≤ q). Hence, it
follows that πsge(G) < q, which is a contradiction. Therefore πsge(G) = q. �

Corollary 2.17. For an even cycle G = C2n(n ≥ 2), πsge
(G) = q.

Proof. This follows from Theorem 2.16. �

Observation 2.18. Let G 6= Cp be a unicyclic graph with edge geodetic number ge(G) = k(3 ≤ k ≤ p − 3).
Then G has at least k − 2 end vertices.

Theorem 2.19. Let G 6= Cp be a unicyclic graph. Then πsge
(G) ≥ 2, if and only if G is the anyone of the

graph given in the family =.

Proof. Let G 6= Cp be a unicyclic graph and C be the cycle in G such that | C |= C(G).
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Edge geodetic self decomposable unicyclic graphs having edge geodetic number 4 

Figure 5. The family of graph =.

Case i. Suppose that ge(G) = k, (5 ≤ k ≤ p− 1). Then by Observation 2.18, G has at least k− 2 end vertices.
If πsge(G) = r(r ≥ 2), then each decomposition indices graph Gi(1 ≤ i ≤ r) has at least k − 2 end vertices
of G. Hence G has at least r(k − 2) end vertices and so ge(G) ≥ r(k − 2), which is a contradiction.

Case ii. Suppose that ge(G) = 4. Then by Theorem 1.1, G has at most four end vertices. Let S = {v1, v2, v3, v4}
be the set of all end vertices.
Subcase iia. Suppose that C(G) is odd and any two non adjacent vertices has degree four. Then there

exists at least one edge e of G such that e /∈ Ie[S]. Hence, it follows that S is not an edge geodetic set of
G so that ge(G) > 4, which is a contradiction.

Subcase iib. Suppose that C(G) is even and ∆(G) = 4. Let u and v be the pair of peripheral vertices of
C. If at least one of the peripheral vertex of G has degree 2, then there exists at least one edge e of G
such that e /∈ Ie[S]. Hence, it follows that S is not an edge geodetic set of G so that ge(G) > 4, which is
a contradiction.

Subcase iic. Suppose thatC(G) is even andG has exactly three end vertices. Then it is clear thatπsge
(G) = 1.

Thus, if ge(G) = 4, then only possible unicyclic edge geodetic self decomposable graph G are given in
Figures 5a and 5b in the family =. The graphs G of = given in Figures 5a and 5b can be decomposed
as G1 and G2 such that each graph is a tree with four end vertices. Hence by Theorem 1.2, ge(G1) =
ge(G2) = ge(G) = 4 so that πsge(G) ≥ 2.
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Edge geodetic self decomposable unicyclic graphs having edge geodetic number 3

Figure 5. (Continued.)
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Edge geodetic self decomposable unicyclic graphs having edge geodetic number  2

Figure 5. (Continued.)

Case iii. ge(G) = 3. Then by Theorem 1.1, G has at most three end vertices. Let S = {v1, v2, v3} be the set of
all end vertices of G.
Subcase iiia. Suppose G has exactly three vertices u, v and w of degree 3 such that d(u,w) > d(u, v) +

d(v, w). Then it is clear that G has at least one edge e of G such that e /∈ Ie[S]. Hence, it follows that S
is not an edge geodetic set of G so that ge(G) > 3, which is a contradiction.

Subcase iiib. Suppose C is an even cycle with at least one non peripheral vertex has degree three. Then
G has an edge e such that e /∈ Ie[S]. Hence, it follows that S is not an edge geodetic set of G so that
ge(G) > 3, which is a contradiction. Moreover, if G has exactly one vertex of degree 3. Hence it follows
that πsge

(G) = 1.
Subcase iiic. Suppose C(G) is even and exactly one non peripheral vertex has degree four. Then there

exists at least one edge e of G such that e /∈ Ie[S]. Hence, it follows that S is not an edge geodetic set of
G so that ge(G) > 3, which is a contradiction.

Subcase iiid. Suppose G has exactly two end vertices u and v. If any two peripheral vertices of G has
degree three, then ge(G) = 2, which is a contradiction. Thus, if ge(G) = 3, then only possible unicyclic
edge geodetic self decomposable graphs G are given in Figures 5c–5f in the family =. The graphs G of
= given in Figures 5c–5f can be decomposed as G1, G2 or G3 such that each graph is a tree with three
end vertices. Hence by Theorem 1.2, ge(Gi) = ge(G) = 3(1 ≤ i ≤ 3) so that πsge(G) ≥ 2.

Case iv. Suppose that ge(G) = 2. Then by Theorem 1.1, G has at most two end vertices and C(G) must
be even. Hence at most two peripheral vertices of G can have degree three. Thus, if ge(G) = 2, then only
possible unicyclic edge geodetic self decomposable graphs G are given in Figures 5g and 5h in the family =.
Then by Theorem 2.16, πsge

(G) ≥ 2.

�

Corollary 2.20. Let G be a unicyclic graph with ge(G) 6= 2. Then πsge(G) ≤ 3.

Proof. This follows from Theorem 2.19. �

The following theorem was proved in [5].
Theorem A. For a connected graph G, ge(G) = p, if and only if G is semi complete.

Theorem 2.21. Let G be a connected graph with ge(G) = p. Then πsge
(G) = 1.

Proof. Suppose that G is an edge geodetic self decomposable graph with ge(G) = p. Then by Theorem A, G is
semi complete. Let π = {G1, G2, . . . , Gn} be a edge geodetic self decomposition of G. Then ge(G) = ge(Gi)(1 ≤
i ≤ n). Since ge(G) = p, ge(Gi) = p(1 ≤ i ≤ n). Then each Gi(1 ≤ i ≤ n) is semi complete. Therefore each
Gi(1 ≤ i ≤ n) has either at least two universal vertices or G has no universal vertices.
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Case i. Suppose that G1(say) has at least two universal vertices. Hence any one of Gi(2 ≤ i ≤ n) has order at
most p− 2. Then ge(Gi) ≤ p− 2(2 ≤ i ≤ n), which is a contradiction. Therefore πsge

(G) = 1.
Case ii. Suppose that G1(say) has no universal vertices. Then at least two vertices of G has degree p−2. Hence

anyone of Gi(2 ≤ i ≤ n) has at least two pendent vertices (otherwise V (Gi) ≤ p − 1(2 ≤ i ≤ n)). Hence
Gi(2 ≤ i ≤ n) is not semi complete, which is a contradiction. Therefore πsge(G) = 1.

�

Corollary 2.22. Let G be a connected graph having more than one universal vertex. Then πsge
(G) = 1.

Proof. This follows from Theorem 2.21. �

Corollary 2.23. For the complete graph G = Kp(p ≥ 3), πsge
(G) = 1.

Proof. This follows from Corollary 2.22. �

Theorem 2.24. Let G be a connected graph with edge geodetic number p−1. Then πsge(G) = 2, if G = K1+H,
where H is a semi complete graph of order p− 1.

Proof. Let G = K1 + H, where H is a semi complete graph of order p − 1. Then G can be decomposed
as G1 = K1,p and G2 = H and hence by Theorems 1.2 and A, πsge

(G) ≥ 2. Moreover by Theorem 2.21,
πsge

(G) = 1 so that πsge
(G) = 2. �

Theorem 2.25. For the complete bipartite graph G = Km,n(1 ≤ m ≤ n),

πsge
(Km,n) =


1 if m = 1,
2n if m = 2, n ≥ 3,
n if m,n ≥ 3.

Proof. Case i. Suppose that m = 1. Then G = K1,n. Hence by Theorem 2.14, πsge(G) = 1.
Case ii. Suppose that m = 2. Then by Theorems 1.3 and 2.16, πsge

(G) = 2n.
Case iii. Suppose that 3 ≤ m ≤ n. LetU = {u1, u2, . . . , um} andW = {w1, w2, . . . , wn}(m ≤ n) be a bi-partition

ofG. Then by Theorem 1.3, ge(G) = m. Since deg(wi) = m(1 ≤ i ≤ n) G can be decomposes to n subgraphs
Gi = K1,m(1 ≤ i ≤ n) with rooted vertex wi(1 ≤ i ≤ n) so that π = {G1, G2, . . . , Gn} is a decomposition of
G. Then by Theorem 1.2, ge(Gi) = m = ge(G) so that π is an edge geodetic self decomposition of G. Since
each Gi is a star, π is an edge geodetic self decomposition of G. Therefore πsge

(G) = n.
�

Lemma 2.26. Let G = Kr1,r2,r3,...,rn be a complete n-partite graph with r1 ≤ r2 ≤ r3 ≤, . . . ,≤ rn. Then

ge(G) =
n−1∑
i=1

ri.

Proof. Let us prove the theorem by induction on i. Suppose i = 2. Then by Theorem 1.3, the result is true.
Let V1 = {v11, v12, . . . , v1r1}, V2 = {v21, v22, . . . , v2r2}, . . . , Vk = {vk1, vk2, . . . , vkrk

} be the partition of V of
a complete k− partite graph G′ such that r1 ≤ r2 ≤ r3 ≤ . . . ≤ rk. Then by induction hypothesis
ge(G) =

∑k−1
i=1 ri. Let Vk+1 = {v(k+1)1, v(k+1)2, . . . , v(k+1)r(k+1)

}. Then G = G′ + Vk+1 is a complete k + 1−
partite graph and

d(vij , vrs) =

{
1 if i 6= r,

2 if i = r.

Therefore by assumption of induction hypothesis every edge having one terminal vertex from Vi(1 ≤ i ≤ k− 1)
lies in the geodesic joining a pair of vertices of Vi(1 ≤ i ≤ k − 1). Since the length of the geodesic vij − vrs
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through the edge vkiv(k+1)j(1 ≤ i ≤ rk, 1 ≤ j ≤ rk−1) is 3, the edges vkiv(k+1)j(1 ≤ i ≤ rk, 1 ≤ j ≤ rk−1)
doesn’t lie on a geodesic of S1 = ∪i=k−1

i=1 Vi. Then either S = S1 ∪ Vk or S = S1 ∪ Vk+1 is an edge geodetic set
of G. Since rk ≤ rk+1, S = S1 ∪ Vk is the minimum edge geodetic set of G so that ge(G) =

∑k
i=1 ri. Hence by

mathematical induction ge(G) =
∑n−1

i=1 ri. �

Theorem 2.27. Let G = Kr1,r2,r3,...,rn be a complete n-partite graph. Then πsge(G) = max{r1, r2, r3 . . . , rn}.

Proof. Let us prove this theorem by induction on n. Let n = 2. Then G is a complete bipartite graph.
By Theorem 2.25, the result is true for n = 2. Assume that the result is true for n = k. Let G′ be
a complete k-partite graph Kr1,r2,r3,...,rn

and πsge
(G) = max{r1, r2, . . . , rk}. Let V1 = {v11, v12, . . . , v1r1},

V2 = {v21, v22, . . . , v2r2}, . . . , Vk = {vk1, vk2 . . . , vkrk
} be the partition of V of a complete k-partite graph G′

such that r1 ≤ r2 ≤ r3 ≤ . . . ≤ rk. Let Vk+1 = {v(k+1)1, v(k+1)2 . . . , v(k+1)rk+1}. Then G = G′ + Vk+1 is
a complete k + 1-partite graph. By Lemma 2.26,

ge(G) =
k∑

i=1

ri.

Since the deg(vi) =
∑k

i=1 ri for all vi ∈ Vk+1 and Vk+1 is an independent set, by Theorem 2.9, πsge
(G) ≥

k + 1. Let π = {H1, H2, . . . ,Hrk
, Hrk+1}, where {Hi(1 ≤ i ≤ k)} be the star subgraphs having rooted vertex

v(k+1)ri
(1 ≤ i ≤ k) and Hrk+1 = 〈V −{v(k+1)1, v(k+1)2, . . . , v(k+1)rk

}〉. Since each Hi(1 ≤ i ≤ k+1) is a subgraph
having exactly one universal vertex of degree

k∑
i=1

ri

for (1 ≤ j ≤ k + 1),

ge(Hj) =
k∑

i=1

ri

and hence π is an edge geodetic decomposition of G. Moreover by Lemma 2.26, 〈V − Vk+1〉 is a connected
subgraph with edge geodetic number

ge(G) =
(k−1)∑
i=1

ri.

Hence, π be a maximum edge geodetic self decomposition so that πsge(G) = rk+1 = max{r1, r2, r3, . . . , rk+1}.
Hence, the result is true for n = k + 1. Therefore by induction hypothesis the result is true for all n. �

Corollary 2.28. For the complete r-partite graph G = Kr1,r2,r3,...,rn(ri > 2), πsge(G) + ge(G) = p.

Proof. This follows from Lemma 2.26 and Theorem 2.27. �

Theorem 2.29. For any connected graph G, πsge
(G)ge(G) = q and πsge

(G) + ge(G) = p, if and only if
G = Km,n, (3 ≤ m ≤ n).

Proof. Suppose that πsge
(G)ge(G) = q and πsge

(G) + ge(G) = p. By Theorem 2.14, it is enough to prove that
Gi = K1,m, if and only if G = Km,n(m ≤ n). Let V = {v1, v2 . . . , vm} and W = {w1, w2 . . . , wn=p−m}(m ≤ n).
Without loss of generality assume that vi 6= wj(1 ≤ i ≤ m, 1 ≤ j ≤ n). To prove U and V are the partition of
V (G). Suppose this not the case. Then G has at least two adjacent vertices vi and vj from V or some adjacent
vertices from W . Moreover vi,vj and wl(1 ≤ l ≤ n) form a triangle so that wl is an extreme vertex of G. Then
wl belongs to every minimum edge geodetic set of G. Hence, ge(G) > m 6= ge(Gi) and πsge

(G) < p − ge(G),
which is a contradiction. The converse follows from Theorems 1.3, 2.14 and 2.25. �
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Theorem 2.30. Let G be a bipartite graph. Then πsge
(G) = ge(G), if and only if G = Km,m(m ≥ 3) or K1,2.

Proof. Let G be a bipartite graph and πsge
(G) = ge(G). Suppose that G = Km,n(n > m) and G 6= K1,2.

Then by Theorems 1.3 and 2.25, πsge
(G) 6= ge(G), which is a contradiction. Hence, G = Km,m(m ≥ 2)

or K1,2. Conversely suppose that G = Km,m(m ≥ 2). Theorems 1.3 and 2.25, πsge(G) = ge(G). Also, if
G = K1,2 then π = {K2,K2} and by Theorem 1.2, π is the unique edge geodetic self decomposition of G. Thus
πsge(G) = ge(G). �

We have the following realisation theorem.

Theorem 2.31. For any positive integer 3 ≤ a ≤ b, there exists a connected graph G such that ge(G) =
a,πsge

(G) = b.

Proof. Case i. Suppose that 3 ≤ a < b. Let G = Ka,b(3 ≤ a < b). Then by Theorems 1.3 and 2.25, ge = a,
πsge(G) = b.

Case ii. Suppose that 2 < a = b. Let G = Ka,a(a ≥ 3). Then by Theorem 2.30, ge(G) = a, πsge
(G) = a.

�
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