Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming
RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 1-11

We consider a nonsmooth semi-infinite interval-valued vector programming problem, where the objectives and constraint functions need not to be locally Lipschitz. Using Abadie’s constraint qualification and convexificators, we provide Karush–Kuhn–Tucker necessary optimality conditions by converting the initial problem into a bi-criteria optimization problem. Furthermore, we establish sufficient optimality conditions under the asymptotic convexity assumption.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020066
Classification : 49J52, 90C46, 58E35
Keywords: Multiobjective semi-infinite programming, interval-valued functions, Karush–Kuhn–Tucker optimality conditions, Convexificators, Abadie’s constraint qualification
@article{RO_2021__55_1_1_0,
     author = {Jennane, Mohsine and Kalmoun, El Mostafa and Lafhim, Lahoussine},
     title = {Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming},
     journal = {RAIRO. Operations Research},
     pages = {1--11},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/ro/2020066},
     mrnumber = {4223881},
     zbl = {1468.49016},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020066/}
}
TY  - JOUR
AU  - Jennane, Mohsine
AU  - Kalmoun, El Mostafa
AU  - Lafhim, Lahoussine
TI  - Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 1
EP  - 11
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020066/
DO  - 10.1051/ro/2020066
LA  - en
ID  - RO_2021__55_1_1_0
ER  - 
%0 Journal Article
%A Jennane, Mohsine
%A Kalmoun, El Mostafa
%A Lafhim, Lahoussine
%T Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming
%J RAIRO. Operations Research
%D 2021
%P 1-11
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020066/
%R 10.1051/ro/2020066
%G en
%F RO_2021__55_1_1_0
Jennane, Mohsine; Kalmoun, El Mostafa; Lafhim, Lahoussine. Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming. RAIRO. Operations Research, Tome 55 (2021) no. 1, pp. 1-11. doi: 10.1051/ro/2020066

A. Ansari Ardali, N. Movahedian and S. Nobakhtian, Convexificators and boundedness of the Kuhn-Tucker multipliers set. Optimization 66 (2017) 1445–1463. | MR | Zbl | DOI

T. Antczak, Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Sci. 37 (2017) 1133–1150. | MR | Zbl | DOI

A. Ben-Israel and P. D. Robers, A decomposition method for interval linear programming. Manage. Sci. 16 (1970) 374–387. | MR | Zbl | DOI

F. H. Clarke, Optimization and Nonsmooth Analysis. SIAM 5 (1990). | MR | Zbl

G. B. Dantzig, Linear Programming and Extensions. In: Vol. 48 of Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton, NJ (1998). | Zbl

V. F. Demyanov, Convexification and concavification of a positively homogeneous function by the same family of linear functions. Universia di Pisa, Report 3, 208, 802 (1994).

V. F. Demyanov and V. Jeyakumar, Hunting for a smaller convex subdifferential. J. Global Optim. 10 (1997) 305–326. | MR | Zbl | DOI

J. Dutta and S. Chandra, Convexifactors, generalized convexity and optimality conditions. J. Optim. Theory App. 113 (2002) 41–65. | MR | Zbl | DOI

J. Dutta and S. Chandra, Convexifactors, generalized convexity and vector optimization. Optimization 53 (2004) 77–94. | MR | Zbl | DOI

G. M. Ewing, Sufficient conditions for global minima of suitably convex functionals from variational and control theory. SIAM Rev. 19 (1977) 202–220. | MR | Zbl | DOI

J. B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Springer, New York, NY (2012). | MR | Zbl

J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I: Fundamentals. In: Vol. 305 of Series of Comprehensive Studies in Mathematics, Springer, New York, NY (2013). | MR | Zbl

H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48 (1990) 219–225. | Zbl | DOI

V. Jeyakumar and D. T. Luc, Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Opt. Theory App. 101 (1999) 599–621. | MR | Zbl | DOI

A. Kabgani and M. Soleimani-Damaneh, Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semiinfinite multiobjective optimization using convexificators. Optimization 67 (2017) 217–235. | MR | Zbl | DOI

A. Kabgani and M. Soleimani-Damaneh, Constraint qualifications and optimality conditions in nonsmooth locally star-shaped optimization using convexificators. Pac. J. Opt. 15 (2019) 399–413. | MR | Zbl

N. Kanzi, Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Global Optim. 49 (2011) 713–725. | MR | Zbl | DOI

R. N. Kaul and S. Kaur, Generalized convex functions: properties, optimality and duality (No. Systems Optimization Lab. SOL-84-4). Stanford University, Stanford, CA (1984).

P. Kumar, B. Sharma and J. Dagar, Interval-valued programming problem with infinite constraints. J. Oper. Res. Soc. Chin. 6 (2018) 611–626. | MR | Zbl | DOI

X. F. Li and J. Z. Zhang, Necessary optimality conditions in terms of convexificators in Lipschitz optimization. J. Optim. Theory App. 131 (2006) 429–452. | MR | Zbl | DOI

P. Michel and J.-P. Penot, A generalized derivative for calm and stable functions. Differ. Integr. Equ. 5 (1992) 433–454. | MR | Zbl

B. S. Mordukhovich and Y. Shao, On nonconvex subdifferential calculus in Banach spaces. J. Conv. Anal. 2 (1995) 211–228. | MR | Zbl

R. Osuna-Gómez, Y. Chalco-Cano, B. Hernández-Jiménez and G. Ruiz-Garzón, Optimality conditions for generalized differentiable interval-valued functions. Inf. Sci. 321 (2015) 136–146. | MR | Zbl | DOI

R. Osuna-Gómez, B. Hernádez-Jiménez, Y. Chalco-Cano and G. Ruiz-Gazón, New efficiency conditions for multiobjective interval-valued programming problems. Inf. Sci. 420 (2017) 235–248. | Zbl | DOI

D. Singh, B. A. Dar and D. S. Kim, KKT optimality conditions in interval-valued multiobjective programming with generalized differentiable functions. Eur. J. Oper. Res. 254 (2016) 29–39. | MR | Zbl | DOI

L. Stefanini and M. Arana-Jiménez, Karush–Kuhn–Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability. Fuzzy Sets Syst. 362 (2019) 1–34. | MR | Zbl | DOI

L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. Theory Methods App. 71 (2009) 1311–1328. | MR | Zbl | DOI

J. S. Treiman, The linear nonconvex generalized gradient and Lagrange multipliers. SIAM J. Optim. 5 (1995) 670–680. | MR | Zbl | DOI

L. T. Tung, Karush–Kuhn–Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions. J. Appl. Math. Comput. (2019) 1–25. | MR | Zbl

H. C. Wu, The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 176 (2007) 46–59. | MR | Zbl | DOI

H. C. Wu, The Karush–Kuhn–Tucker optimality conditions in multiobjective programming problems with interval-valued objective function. Eur. J. Oper. Res. 196 (2009) 49–60. | MR | Zbl | DOI

X. Q. Yang, Continuous generalized convex functions and their characterizations. Optimization 54 (2005) 495–506. | MR | Zbl | DOI

J. Zhang, S. Liu, L. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8 (2014) 607–631. | MR | Zbl | DOI

Cité par Sources :