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OPTIMALITY CONDITIONS FOR NONSMOOTH INTERVAL-VALUED AND
MULTIOBJECTIVE SEMI-INFINITE PROGRAMMING

MOHSINE JENNANE!, EL MOSTAFA KALMOUN?* AND LAHOUSSINE LAFHIM!

Abstract. We consider a nonsmooth semi-infinite interval-valued vector programming problem, where
the objectives and constraint functions need not to be locally Lipschitz. Using Abadie’s constraint
qualification and convexificators, we provide Karush—Kuhn—Tucker necessary optimality conditions
by converting the initial problem into a bi-criteria optimization problem. Furthermore, we establish
sufficient optimality conditions under the asymptotic convexity assumption.
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1. INTRODUCTION

Over the last two decades, optimization problems in which the objective and/or the constraint functions
are supposed to take interval values have sparked intense research efforts. Such problems provide a powerful
tool to account the effects of uncertainties or any unexpected errors in the final efficient solutions. In a similar
fashion to stochastic programming, uncertain variables are represented as intervals of real numbers or functions,
by assuming these intervals of variations to be known. The idea of deterministic modeling of uncertainty by
considering the coefficients as intervals or sets goes back to [3,5] in the case of linear programming. This
technique was applied later by Ishibuchi and Tanaka [13] to study multiobjective linear programs.

Recently, treating the uncertainty in a nonlinear program with interval-valued quantities was considered by
Wu [30]. The problem consisted of a scalar interval-valued function and finitely many real-valued constraint
functions. In particular, he proposed two ordering relationships for closed real intervals to introduce two solution
concepts, and then to derive Karush-Kuhn-Tucker (KKT) optimality conditions. Later, in [31], after stating
the continuity and differentiability concepts for interval-valued functions, necessary optimality conditions were
established. These results were extended in [33] for interval-valued objective functions under weakly continuous
differentiability and invexity assumptions. In [27], a new concept of generalized differentiability for interval-
valued functions was proposed, and later used to establish necessary and sufficient optimality conditions [23,26].
In [19], The KKT optimality conditions for interval-valued semi-infinite programs were derived by considering
generalized invexity assumptions.
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More recently, considerable interests have centered about studying multiobjective interval-valued optimization
problems. In [24,25], necessary and sufficient efficiency conditions were formulated for various concepts of efficient
solutions. Using Clarke’s subdifferential, extension of the previous results was proposed in [2] for nonsmooth
vector optimization problems with locally Lipschitz interval-valued multiobjective functions. In [29], the case of
semi-infinite programming with infinite number of real-valued convex constraints was investigated, and KKT
optimality conditions were derived for convex interval-valued multiobjective functions.

In the present paper, we seek to develop KKT type optimality conditions for semi-infinite programs where the
multiobjective function and constraints are both interval-valued but need not be locally Lipschitz. We introduce
Abadie’s constraint qualification by making use of upper convexifactors to deal with the non-smoothness in our
problem. Convexifactors were introduced by Demyanov [6], and later investigated in many papers [7-9, 14]. It
is worth pointing out that this concept can be seen as a convenient extension of some known subdifferentials,
like those of Clarke [4], Michel-Penot [21], Mordukhovich [22] and Treiman [28]. Therefore, the advantage of
using convexifactors includes obtaining sharper optimality conditions than what we get when using Clarke’s,
Michel-Penot’s or other subdifferentials.

The paper is structured as follows: In Section 2, we set up notation, recall definitions and state two results for
later use. Section 3 introduces the interval-valued and multiobjective semi-infinite program studied in this paper,
and presents an equivalent reformulation. To characterize the weak efficient solutions, we establish necessary
KKT conditions in Section 4 by using Abadie’s constraint qualification, and give sufficient optimality conditions
under a generalized asymptotic convexity condition in Section 5. We illustrate the obtained results by providing
an example in Section 6. Finally, we draw our conclusions in the final section.

2. PRELIMINARIES

For any points z and y in R”, we write z < y if x; < y; for all i = 1,2,...,n, and z < y if x; < y; for all
i=1,2,...,n with strict inequality holding for at least one 1.

Let S be a nonempty set in R”. We denote by co S, int S, S°, cl .S and ¢l co S the convex hull, interior, polar
cone, closure and closed convex hull of S, respectively. At a given point T in ¢l S, the cone of feasible directions
Ds(T), the tangent cone Ts(T), and the normal cone Ng(Z) are defined with respect to S by

Ds(z):={deR":306 >0, VA€ (0,0), T+ \d € S},
Ts(Z):={deR":3t, | 0, 3d,, — d, T+ tnd, € S},
Ns(Z) :={C € R": (¢,d) <0, Vd € Ts(T)} = Ts(T)°.

Remark 2.1. The cone Dg(T) is neither closed nor convex necessarily, while Ts(T) is closed but not necessarily
convex. We have, in general, Dg(Z) C Ts(Z).

The convex cone generated by S is the set containing all conic combinations of the elements of S, which can
be expressed as follows:

l
cone(S) = {yeR”:y:Z)\iyi, N >0y, €8 i=1,2,...,1, ZZO}.

i=1

Definition 2.2 ([10]). A nonempty set S C R is said to be locally star-shaped at T € S, if there exists a scalar
d € (0,1] such that T+ A(z — %) € S, for all A € (0,9).

Note that open sets and convex sets are locally star-shaped at each of their elements, and cones are locally
star-shaped at the origin. Moreover, if S is closed and locally star-shaped at each x € S, then S is convex (see

[18]).
Lemma 2.3 ([16]). Let S be locally star-shaped at T € S. Then Ts(T) = cl (Ds(T)) .
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Now, Let f : R® — R := RU{+oc}. The lower and upper Dini derivatives of f at x € dom f in the direction
of a vector v € R™ are defined, respectively, by

_ e fla ) = f(x)
f(z,v) := hrﬁg)nf ;

o flz+tv) — f(x)

fH(z,v) = hntllsoup . .

)

Next, let us recall some notions of upper convexificators of f given by Jeyakumar and Luc [14].

Definition 2.4. Let x € R™. f is said to have an

(i) upper convexificator 9* f(x) at x if this set is closed, and for all v € R,

f(z,v) < sup (€ v);
§€0* f(=)

(ii) upper semi-regular convexificator (USRC) 0* f(z) at z if this set is closed, and for all v € R™,

fHav) < sup (€ 0); (2.1)
£€0* f(x)

(iii) upper regular convexificator 0* f(x) at x if equality holds in (2.1).

Obviously, each upper regular is an upper semi-regular, and each upper semi-regular is an upper convexificator
of f at x. However, the converse claim is not necessarily true (see [1], Example 2.2).

We close the list of notation with interval-valued related concepts (for more details see [30]). First, we denote
the class of all closed intervals in R by Z. For two elements A = [aL, aU] and B = [bL, bU] in Z, we say that
A <py B if a® < b" and oV < bY with at least one strict inequality. We write A <;y B if a” < bY and
aV < bY. On the other hand, A = (A;,...,A4,) is called an interval-valued vector if A, = [a,%,a,g] € T for
each k = 1,...,p. For two interval-valued vectors A = (A;,...,4,) and B = (By,...,B,), we write A <py B
if Ay, <py By for each k = 1,... p except at least one index for which the inequality is strict, and A <y B
if Ap <puy Bp foreach k=1,...,p.

Functions that take values in Z are said to be interval-valued; i.e. when we write f : R™ — 7, then we mean
a function f(z) = [fL(z), fY(x)], where f&, fU : R® — R are such that fL(z) < fY(x) for each z € R". In a
similar way, an interval-valued vector function on R™ will be written as f = (f1,..., fp) : R® — I?, where each
fe(x) = [f,f (z), f,g(x)] ,k=1,...,pis an interval-valued function.

3. THE PROBLEM AND ITS REFORMULATION

In this section we seek to address the following semi-infinite interval-valued vector program

{min {F(z) = (Fy(2),..., Fy(x)) 1w € O}, 51)
Q= {fEERnGt(fE) SLU At, VtGT}, ’

where T' is an arbitrary (possibly infinite) index set, Fj = [F,CL VBV ] and Gy = [GtL ,GY } are interval-valued
functions defined on R™ for all k =1,...,pand ¢t € T, and A; = [A{“, A?] € 7 for all t € T. The terminology
semi-infinite comes from the fact that the feasible set €2 is included in a finite dimensional space R™ but the
index set T' can be infinite.

For the above problem, we use the following concept of solutions introduced by Wu [31].

Definition 3.1 ([31]). We say that T € Q is a (weak) efficient solution to Problem (3.1) if there exist no z € Q
such that F(z) <pv (<pv)F(T).
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Remark 3.2. If Fj, is a scalar function for all k =1, ..., p, then the above definition is equivalent to the known
(weak) minimum definition.

For z € Q, we set
9¢(z) = max {G{ (z) — A};GY (x) — A]'}, VteT, (3.2)

and
T(x)={teT: g/ (z)=0}.

Lemma 3.3. The feasible set of Problem (3.1) satisfies
Q={reR":gq(x) <0, VteT}.
Proof. Let x € R™ and t € T. The proof follows immediately from the equivalences:

Gi(z) <pv Ay < (G{‘(m) < AtL and G?(m) < AtU) < gi(z) <0.

(I
Next, let us look at how Problem (3.1) is connected to the following bicriteria optimization problem
min {f(r) = ((x), fo(x)) 7 € O}, 53
Q={reR”: g(x) <0, VteT}, ’
where
file) = max {Fl(x) - FE@)}  and  fole) = max {F (x) - FY (@)} (3.4)

Lemma 3.4. The set of weak efficient solutions of (3.1) is equal to that of weak minima of (3.3).

Proof. Suppose we are given T € ) which is not a weak minimum of (3.3). This means there exist z € Q
satisfying f(x) < f(%). Hence

filz) < fi(@) =0 and fa(z) < fo(T) = 0.

Thus
FE(z) < FE(@) and F{(z) < FY(z), forall k=1,...,p.

It follows that
Fi(z) <pu Fp(z) forall k=1,...,p.

Consequently
F({E) <LUu F(T),

which contradict the fact that T is a weak efficient solution of (3.1). To get the converse, we proceed by the
same argument as above. O
4. NECESSARY CONDITION FOR WEAK EFFICIENT SOLUTIONS

In this section we derive first order necessary optimality conditions for the initial problem. To proceed, we
need the following assumption which is sometimes called Pshenichyni-Levin—Valadier property [17].
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Assumption 4.1. (1) The functions f1 and fa which are defined in (3.4) have an USRCs at T € Q, respectively

as
of@E ceo| |J 0OF@ | and 0°f@ceol| |J F/ @ |,
kerl(z) keIl (z)
where
I"@) ={ke{l1,2,....,p}: fi(T) = FX(T)},
and

Y@ ={ke{l,2,....p}: o(@) = F{ (@)} .
(2) For allt €T, the function g; which is defined in (3.2) has a USRC at T € Q such that

*g(T) C co ("G (T) UI*GY (T)) .

Note that Assumption 4.1 might hold even for discontinuous functions (see [15]). Moreover, if for all t € T,

GE and GY are continuous and admit an upper convexificator at Z, then from V. Jeyakumar and D.T. Luc [14]
Rule 4.4 one has

0" g:(x) = "G (T) V" GY (7)

is an upper convexificator of g; at T.
To develop KKT necessary conditions for weak efficient solution T € Q of (3.1), we recall the known Abadie
constraint qualification (ACQ) which will be used in the sequal.

Definition 4.2 (]20]). Let Z € Q and 9*¢:(Z) be an USRC of g; for any ¢t € T. We say that the Abadie
Constraint Qualification (ACQ) holds at T if

I°(z) € To(7),

where

Uagt

teT (T)
Remark 4.3 ([15]). Assume that € is locally star-shaped at Z €  and ACQ holds at Z. Then
o I'°(Z) = To(T).

o Nqo(T) = clcone (I'(T)) = cl cone U co (0*g+(T))
teT (%)

The following lemma will be used in the proof of Theorem 4.5.

Lemma 4.4 ([11]). Let A and B be two nonempty subsets of R™. Then

(i) co(A+ B) = co(A) + co(B),
(ii) cl(cl A+ el B) =cl(A+cl B) =cl(A+ B),
(iii) el co(A) = clco(cl A) = clco(co A).

The next theorem gives KKT-type necessary conditions for weak efficiency.

Theorem 4.5. Let Q be locally star-shaped at T € Q, and let FE,FV,GF and GY (i € {1,...,p} and t € T),
admit respectively USRCs, 0* FF(z), 0*FV (7), G*GL( ) and 0*GY (%) at T. Moreover, assume that ACQ holds
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at T and Assumption 4.1 is fulfilled. If T is a weak efficient solution of (3.1), then there exist an index set
L= U (= ’ ’ ’
T C T(x) with |T'| <n, a e R geRIT® ), e RV AL e R AU e R and A € R2 with

MAde= D a= ), B=3 W= =1
keIl (z) keIl () teT’ teT’

such that

0Oec [N Z arco (0*FE(T)) + As Z Brco (8*FY ()

keIl (z) keIl (z)

+ > mrbeo (0°GE@) + Y o (0°GY (@) | -

teT’ teT”’

Proof. Let T be a weakly efficient solution of (3.1). Setting
S:= {)\ERit)q-f—)\Q:l}
and

T(@) =l | (Meo (97 f1(@)) + Aaco (07 f2(2))) (4.1)

A€S

where f1 and fo are given by (3.4), one has

sup (n,d) >0, Vd € Dq(7). (4.2)
neY(T)

Indeed, suppose contrary to our claim, that there exist d € Dq(¥) such that sup,cyz) (7,d) < 0. Then, by
using 2.4 and (4.1), we obtain for any j € {1,2}

fi(@d) < sup (n,d) < sup (n,d) <O0.
n€d* () neT (@)

Hence
T+todeQ and f(T+tod) < f(T),

for ¢ty small enough. This contradicts the weak efficiency hypothesis.
On the other hand, by taking into account that (4.2) holds also for any vector d € ¢l Dq(%) and from
Ta(Z) = cl Do(T) (see Lem. 2.3), we obtain

sup (1,d) + Itz (d) >0, VdeR",
neY(z)

such that Iz, () is the indicator function of T (7).
Moreover, since To(Z)° = Nq(Z), it follows from J.B. Hiriart-Urruty and C. Lemarechal [12] Example 2.3.1
that
oY (z) (d) + UNQ(E)(d) >0, VdeR",

where oy (z) + 0N, ) is the support function of ¢l (Y(Z) + Nq(T)) (see [12], Thm. V.3.3.3(i)). According to J.B.
Hiriart-Urruty and C. Lemarechal [12] Theorem V.2.2.2, we have consequently

0€clco(c(Y(T)+ Na(@))).
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By Lemma 4.4 we deduce that

0ed (co lU (A1co (0" f1(T)) + Azco (07 f2(T)))

AES

Therefore there exist two scalars Ay > 0, Ao > 0 with A\; + Ay = 1 such that
0 € cl[Mco(0" f1(T)) + Aaco (07 f2(T)) + No(T)] .

Hence, from Assumption 4.1, we get

0€ecl|Aico U O*FE(@) | + Maco U O*FY (@) | + Na(z)
keIL(z) keIV(T)

Thus
0ed {)\100 (UkeIL@ co (a*FkL(E))) + Aaco (UkGIU(E) co (a*Fg(E))) + Ng(m)] .

The convex hull property gives us a € RI"@! and 8 € RI” @) with 2 okeri(m % = Xperu(z) P = 1 such that

0Oecd | M Z akco (0" FE(T)) + Ao Z Breo (0*F (T)) + No(T)

keIl (z) keIl (z)

Now, since ACQ holds, then by Proposition (4.3), there exist an index set 77 C T'(Z) with |T”| < n, and a vector
7’|
u € Ry ' such that

0cecl |\ Z akco(é)*FkL( ) + Ao Z ﬂkco 8Fk ZMCG (0" g1 (T

kell(z) keIl (z) teT”’

Consequently, (3.2) yields

O€c |\ > areo (0" FF@) + X2 Y Breco (0 FY (@) + Y meo (9°GF (@) UI*GY (T))

keIt (z) keIl (z) teT’

Finally, we deduce that there exist v} € RLTW and 7 € RLTW with 3, W =Y 1er 7Y = 1 such that

0Oec |\ Z arco (0" FE(T)) + As Z Brco (8*FY (%))

keIl (z) keIl (z)

+ Z ,uﬂt co (G*GL Z ,ut’yt co (8 GU( ))

teT”’ teT”’

This completes the proof.
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5. SUFFICIENT OPTIMALITY CONDITIONS FOR WEAK EFFICIENT SOLUTIONS

In order to provide sufficient optimality conditions for the initial problem (3.1), we need the following gener-
alized asymptotic convexity concepts introduced by Yang in [32].

Definition 5.1. Suppose that f has an upper convexificator 0* f(z) at every x € R™. We say that f is

(i) asymptotic pseudoconvex at T € R™ if for every x € R",

(395; €co(0"f(x)): lim (z),x —T) > 0) = f(z) > f(T);

n—oo

(ii) asymptotic quasiconvex at T € R™ if for every x € R",
fl) < f(@) = (\m; € co (0 f(z)) : lim (25,0 —7) < o) .
n—oo
In the sequel, we give sufficient conditions for weak efficient solutions.

Theorem 5.2. Let T be a feasible point of (3.1). Assume that the following assertions hold

(i) FL, ieIt(x), FV, i € IV(Z), GF and GY (t € T(T)), admit respectively upper convezificators, 0* FF(T),
0*FY (), 0*GL(Z) and 0*GY () at T, such that one of the upper convexificators 0* FF(T), i € I*(T), and
0*FY(z), i € IY(T), are upper regular at T.

L —

(ii) There exist Ay > 0 ,k € {1,2}, there exist an index set T C T(T) with |T'| < n, and o € ]Rl_g (w)‘,

U (= ’ ’ ’
8 e R‘i (I)l, uE RLFT ‘, e RLFT ‘, W e RLFT ‘, such that

0ec [\ Z agco (0 FE(T)) + Ao Z Brco (0*FY ()

keIL(T) keIl (z) (5.1)

+ Z wyeo (0*GE(T)) + Z ey co (0*GY(T)) | -

teT’ teT”

(iii) The function A = AleeIL(f) apFl + )\QZ%IL(E) BeEY is asymptotic pseudoconver at T € Q.

(iv) Each function GE and GY, t € T', is asymptotic quasiconvez at T € ().

Then T is a weak efficient solutions of (3.1).

Proof. Assume that (i)—(iv) hold. From (i), there exist X,(Cn) € co (0"Ft(@)), i € I*(z), ,(Cn) € co (0" FY (),
i€ 1Y(z), §tn) € co (0*GE(T)), Ctn) € co (0*GY(T)), t € T' such that

0=1lim, |:)\1 Zke]L(j) akXI(cn) + Az ZkEIU(E) 5k1/11(€n) + ZteT/ Nt'Ytnggn) + ZteT’ ﬂt’Vg]Ct(n)} .

Then, for all x € €2, one has

lim <)\1 St Y sae —x> + 3 ek lim (0z =)+ 37 et tim (¢, 5 - 7) =0.

keIl (z) keIl (z) teT’ teT’
(5.2)

Observing that GF(r) < GE(z) and GY (z) < GY(7) for any € Q and t € T', and taking into account the
asymptotic quasiconvexity of G and GV at T, we deduce

lim <§,(€n)x —7)<0 and lim (C,En)x —7) <0

n— oo -

(5.3)
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On the other hand, since one of the upper convexificators 0*Fl(7), i € I*(z), 0*F{ (%), i € IV(ZT) is upper
regular, by V. Jeyakumar and D.T. Luc [14] Rule 4.2, A1}, () aR0*FE(T) + A2D kerv (@) BrO*FY (T) is an
upper convexificator for the function MYy c oz kFfF + XX e vz BrFf at T. Combining (5.2) and (5.3)
we get,

nlinolo </\1 Z ozkx,(:) + Ao Z ﬂw,ﬁ"),x —x> >0, Vxel.
keIl (T) keIl (z)
Now, using the asymptotic pseudoconvexity of Ay Ekeﬂ(@ akF,f + )\szGIU@ ﬁkF,? at T, we obtain
MY arFE@) Hhe Yo @ B FE (@) 2 M Yo o (@)

kel ()
A2 Yoo B FY (T), Vo e,

which means that AF(z) > AF(Z). Since A\; > 0, > 0, a € RKL(E)I and (€ RKU@”, we deduce that there is
no x € ) that satisfies one of the following inequalities

Fii(x) < FE (@), FY (2) < F(3),

or
Fi(x) < Fy (z), FY (x) < F (@),

or

Fip (z) < Fii(z), F (2) < F (@),
which implies that there is no x € Q such that
Fii(x) < Fi (@), F (2) < F (@).

We conclude that T is a weak efficient solution of (3.1). O

6. EXAMPLE

As an illustration of the main result of this paper (Thm. 4.5), we consider the following example of semi-
infinite interval-valued vector program with interval-valued constraints

{min {F(x) = ([FE(x), FY (2)], [FE(2), FY (2)]) s 2 € Q}, 61)
Q= {zeR?:Gi(z) = [Gf(2),GY(2)] <pv [0,1], VEe T =[-1,1]}. '

The objective and constraint functions are given by

0, z2<0, FU (2, 22) = 0, 1 <0 and zo <0,
1, x>0, A R Rt Vl]z1|, otherwise,
FE(z1,20) = x5, FY(x1,29) = max{zy, x5},

Gf(achxg):tml—mg and G?(l‘l,xg):tl‘l—l'g-f—l, for teT.

Ff (21, 15) = {

Note that the set of efficient solutions is Q = {(z1,22) € R? : 25 > |21]}.
Observe that T = (0,0) is a weak efficient solution of Problem (6.1). It can be seen that T(z) = [—1,1],
@) ={(t,—1): t € [-1,1]} and T'°(Z) = T(Z). Then ACQ holds at Z.
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On the other hand, 0*FE(z) = {0} x [0,00), 0*FV(Z) = [0,00) x [0,00), O*F&(z) = {(0,1)} and
0*FY(z) = {(0,1),(1,0)}, are respectively USRCs of Ff, FY, Ff and FY at 7.

The set € is locally star-shaped at Z because it is convex. Also, we have I (Z) = IY(z) = {1,2} and
0*GE(@) = 0*GY (z) = {(t,—1)} are USRCs of GF and GV, t € T, at 7.

Setting 7" = {1} and taking \y = A = a1 =ap =1 = 2 = 3, iy = 1, 7 = 1 and 7 = 1, one can easily
verify that

(0,0) € cl | A\arco (0*FE(T)) + AeBico (0°F(T)) + Masco (0°Fy (T))

+ Aafaco (0" FY (7)) + Z vt co (0*GY(T)) + Z vy co (9*GY (%)) |.
teT’ teT’

Consequently, Theorem 4.5 is verified.

7. CONCLUSIONS

In this work, we have studied a nonsmooth semi-infinite programming problem where both the multiobjec-
tive and constraint functions are interval-valued. Using an intermediate bicriteria optimization problem, we
have derived necessary optimality conditions in terms of convexificators. Moreover, under assumptions on the
asymptotic pseudoconvexity of the multiobjective function and the asymptotic quasiconvexity of inequality
constraints, we have shown that the Karush-Kuhn-Tucker necessary conditions become also sufficient. Our
results have been obtained without assuming neither convexity nor locally Lipshitz assumptions of the involved
functions.
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